kern_time.c revision 141483
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 141483 2005-02-07 21:45:48Z jhb $");
34
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/mac.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysent.h>
48#include <sys/proc.h>
49#include <sys/time.h>
50#include <sys/timetc.h>
51#include <sys/vnode.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55
56int tz_minuteswest;
57int tz_dsttime;
58
59/*
60 * Time of day and interval timer support.
61 *
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers.  Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
67 */
68
69static int	settime(struct thread *, struct timeval *);
70static void	timevalfix(struct timeval *);
71static void	no_lease_updatetime(int);
72
73static void
74no_lease_updatetime(deltat)
75	int deltat;
76{
77}
78
79void (*lease_updatetime)(int)  = no_lease_updatetime;
80
81static int
82settime(struct thread *td, struct timeval *tv)
83{
84	struct timeval delta, tv1, tv2;
85	static struct timeval maxtime, laststep;
86	struct timespec ts;
87	int s;
88
89	s = splclock();
90	microtime(&tv1);
91	delta = *tv;
92	timevalsub(&delta, &tv1);
93
94	/*
95	 * If the system is secure, we do not allow the time to be
96	 * set to a value earlier than 1 second less than the highest
97	 * time we have yet seen. The worst a miscreant can do in
98	 * this circumstance is "freeze" time. He couldn't go
99	 * back to the past.
100	 *
101	 * We similarly do not allow the clock to be stepped more
102	 * than one second, nor more than once per second. This allows
103	 * a miscreant to make the clock march double-time, but no worse.
104	 */
105	if (securelevel_gt(td->td_ucred, 1) != 0) {
106		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107			/*
108			 * Update maxtime to latest time we've seen.
109			 */
110			if (tv1.tv_sec > maxtime.tv_sec)
111				maxtime = tv1;
112			tv2 = *tv;
113			timevalsub(&tv2, &maxtime);
114			if (tv2.tv_sec < -1) {
115				tv->tv_sec = maxtime.tv_sec - 1;
116				printf("Time adjustment clamped to -1 second\n");
117			}
118		} else {
119			if (tv1.tv_sec == laststep.tv_sec) {
120				splx(s);
121				return (EPERM);
122			}
123			if (delta.tv_sec > 1) {
124				tv->tv_sec = tv1.tv_sec + 1;
125				printf("Time adjustment clamped to +1 second\n");
126			}
127			laststep = *tv;
128		}
129	}
130
131	ts.tv_sec = tv->tv_sec;
132	ts.tv_nsec = tv->tv_usec * 1000;
133	mtx_lock(&Giant);
134	tc_setclock(&ts);
135	(void) splsoftclock();
136	lease_updatetime(delta.tv_sec);
137	splx(s);
138	resettodr();
139	mtx_unlock(&Giant);
140	return (0);
141}
142
143#ifndef _SYS_SYSPROTO_H_
144struct clock_gettime_args {
145	clockid_t clock_id;
146	struct	timespec *tp;
147};
148#endif
149
150/*
151 * MPSAFE
152 */
153/* ARGSUSED */
154int
155clock_gettime(struct thread *td, struct clock_gettime_args *uap)
156{
157	struct timespec ats;
158	struct timeval sys, user;
159	struct proc *p;
160
161	p = td->td_proc;
162	switch (uap->clock_id) {
163	case CLOCK_REALTIME:
164		nanotime(&ats);
165		break;
166	case CLOCK_VIRTUAL:
167		PROC_LOCK(p);
168		calcru(p, &user, &sys);
169		PROC_UNLOCK(p);
170		TIMEVAL_TO_TIMESPEC(&user, &ats);
171		break;
172	case CLOCK_PROF:
173		PROC_LOCK(p);
174		calcru(p, &user, &sys);
175		PROC_UNLOCK(p);
176		timevaladd(&user, &sys);
177		TIMEVAL_TO_TIMESPEC(&user, &ats);
178		break;
179	case CLOCK_MONOTONIC:
180		nanouptime(&ats);
181		break;
182	default:
183		return (EINVAL);
184	}
185	return (copyout(&ats, uap->tp, sizeof(ats)));
186}
187
188#ifndef _SYS_SYSPROTO_H_
189struct clock_settime_args {
190	clockid_t clock_id;
191	const struct	timespec *tp;
192};
193#endif
194
195/*
196 * MPSAFE
197 */
198/* ARGSUSED */
199int
200clock_settime(struct thread *td, struct clock_settime_args *uap)
201{
202	struct timeval atv;
203	struct timespec ats;
204	int error;
205
206#ifdef MAC
207	error = mac_check_system_settime(td->td_ucred);
208	if (error)
209		return (error);
210#endif
211	if ((error = suser(td)) != 0)
212		return (error);
213	if (uap->clock_id != CLOCK_REALTIME)
214		return (EINVAL);
215	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
216		return (error);
217	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
218		return (EINVAL);
219	/* XXX Don't convert nsec->usec and back */
220	TIMESPEC_TO_TIMEVAL(&atv, &ats);
221	error = settime(td, &atv);
222	return (error);
223}
224
225#ifndef _SYS_SYSPROTO_H_
226struct clock_getres_args {
227	clockid_t clock_id;
228	struct	timespec *tp;
229};
230#endif
231
232int
233clock_getres(struct thread *td, struct clock_getres_args *uap)
234{
235	struct timespec ts;
236
237	ts.tv_sec = 0;
238	switch (uap->clock_id) {
239	case CLOCK_REALTIME:
240	case CLOCK_MONOTONIC:
241		/*
242		 * Round up the result of the division cheaply by adding 1.
243		 * Rounding up is especially important if rounding down
244		 * would give 0.  Perfect rounding is unimportant.
245		 */
246		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
247		break;
248	case CLOCK_VIRTUAL:
249	case CLOCK_PROF:
250		/* Accurately round up here because we can do so cheaply. */
251		ts.tv_nsec = (1000000000 + hz - 1) / hz;
252		break;
253	default:
254		return (EINVAL);
255	}
256	if (uap->tp == NULL)
257		return (0);
258	return (copyout(&ts, uap->tp, sizeof(ts)));
259}
260
261static int nanowait;
262
263int
264kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
265{
266	struct timespec ts, ts2, ts3;
267	struct timeval tv;
268	int error;
269
270	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
271		return (EINVAL);
272	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
273		return (0);
274	getnanouptime(&ts);
275	timespecadd(&ts, rqt);
276	TIMESPEC_TO_TIMEVAL(&tv, rqt);
277	for (;;) {
278		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
279		    tvtohz(&tv));
280		getnanouptime(&ts2);
281		if (error != EWOULDBLOCK) {
282			if (error == ERESTART)
283				error = EINTR;
284			if (rmt != NULL) {
285				timespecsub(&ts, &ts2);
286				if (ts.tv_sec < 0)
287					timespecclear(&ts);
288				*rmt = ts;
289			}
290			return (error);
291		}
292		if (timespeccmp(&ts2, &ts, >=))
293			return (0);
294		ts3 = ts;
295		timespecsub(&ts3, &ts2);
296		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
297	}
298}
299
300#ifndef _SYS_SYSPROTO_H_
301struct nanosleep_args {
302	struct	timespec *rqtp;
303	struct	timespec *rmtp;
304};
305#endif
306
307/*
308 * MPSAFE
309 */
310/* ARGSUSED */
311int
312nanosleep(struct thread *td, struct nanosleep_args *uap)
313{
314	struct timespec rmt, rqt;
315	int error;
316
317	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
318	if (error)
319		return (error);
320
321	if (uap->rmtp &&
322	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
323			return (EFAULT);
324	error = kern_nanosleep(td, &rqt, &rmt);
325	if (error && uap->rmtp) {
326		int error2;
327
328		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
329		if (error2)
330			error = error2;
331	}
332	return (error);
333}
334
335#ifndef _SYS_SYSPROTO_H_
336struct gettimeofday_args {
337	struct	timeval *tp;
338	struct	timezone *tzp;
339};
340#endif
341/*
342 * MPSAFE
343 */
344/* ARGSUSED */
345int
346gettimeofday(struct thread *td, struct gettimeofday_args *uap)
347{
348	struct timeval atv;
349	struct timezone rtz;
350	int error = 0;
351
352	if (uap->tp) {
353		microtime(&atv);
354		error = copyout(&atv, uap->tp, sizeof (atv));
355	}
356	if (error == 0 && uap->tzp != NULL) {
357		rtz.tz_minuteswest = tz_minuteswest;
358		rtz.tz_dsttime = tz_dsttime;
359		error = copyout(&rtz, uap->tzp, sizeof (rtz));
360	}
361	return (error);
362}
363
364#ifndef _SYS_SYSPROTO_H_
365struct settimeofday_args {
366	struct	timeval *tv;
367	struct	timezone *tzp;
368};
369#endif
370/*
371 * MPSAFE
372 */
373/* ARGSUSED */
374int
375settimeofday(struct thread *td, struct settimeofday_args *uap)
376{
377	struct timeval atv;
378	struct timezone atz;
379	int error = 0;
380
381#ifdef MAC
382	error = mac_check_system_settime(td->td_ucred);
383	if (error)
384		return (error);
385#endif
386	if ((error = suser(td)))
387		return (error);
388	/* Verify all parameters before changing time. */
389	if (uap->tv) {
390		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
391			return (error);
392		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
393			return (EINVAL);
394	}
395	if (uap->tzp &&
396	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
397		return (error);
398
399	if (uap->tv && (error = settime(td, &atv)))
400		return (error);
401	if (uap->tzp) {
402		tz_minuteswest = atz.tz_minuteswest;
403		tz_dsttime = atz.tz_dsttime;
404	}
405	return (error);
406}
407/*
408 * Get value of an interval timer.  The process virtual and
409 * profiling virtual time timers are kept in the p_stats area, since
410 * they can be swapped out.  These are kept internally in the
411 * way they are specified externally: in time until they expire.
412 *
413 * The real time interval timer is kept in the process table slot
414 * for the process, and its value (it_value) is kept as an
415 * absolute time rather than as a delta, so that it is easy to keep
416 * periodic real-time signals from drifting.
417 *
418 * Virtual time timers are processed in the hardclock() routine of
419 * kern_clock.c.  The real time timer is processed by a timeout
420 * routine, called from the softclock() routine.  Since a callout
421 * may be delayed in real time due to interrupt processing in the system,
422 * it is possible for the real time timeout routine (realitexpire, given below),
423 * to be delayed in real time past when it is supposed to occur.  It
424 * does not suffice, therefore, to reload the real timer .it_value from the
425 * real time timers .it_interval.  Rather, we compute the next time in
426 * absolute time the timer should go off.
427 */
428#ifndef _SYS_SYSPROTO_H_
429struct getitimer_args {
430	u_int	which;
431	struct	itimerval *itv;
432};
433#endif
434/*
435 * MPSAFE
436 */
437int
438getitimer(struct thread *td, struct getitimer_args *uap)
439{
440	struct itimerval aitv;
441	int error;
442
443	error = kern_getitimer(td, uap->which, &aitv);
444	if (error != 0)
445		return (error);
446	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
447}
448
449int
450kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
451{
452	struct proc *p = td->td_proc;
453	struct timeval ctv;
454
455	if (which > ITIMER_PROF)
456		return (EINVAL);
457
458	if (which == ITIMER_REAL) {
459		/*
460		 * Convert from absolute to relative time in .it_value
461		 * part of real time timer.  If time for real time timer
462		 * has passed return 0, else return difference between
463		 * current time and time for the timer to go off.
464		 */
465		PROC_LOCK(p);
466		*aitv = p->p_realtimer;
467		PROC_UNLOCK(p);
468		if (timevalisset(&aitv->it_value)) {
469			getmicrouptime(&ctv);
470			if (timevalcmp(&aitv->it_value, &ctv, <))
471				timevalclear(&aitv->it_value);
472			else
473				timevalsub(&aitv->it_value, &ctv);
474		}
475	} else {
476		mtx_lock_spin(&sched_lock);
477		*aitv = p->p_stats->p_timer[which];
478		mtx_unlock_spin(&sched_lock);
479	}
480	return (0);
481}
482
483#ifndef _SYS_SYSPROTO_H_
484struct setitimer_args {
485	u_int	which;
486	struct	itimerval *itv, *oitv;
487};
488#endif
489
490/*
491 * MPSAFE
492 */
493int
494setitimer(struct thread *td, struct setitimer_args *uap)
495{
496	struct itimerval aitv, oitv;
497	int error;
498
499	if (uap->itv == NULL) {
500		uap->itv = uap->oitv;
501		return (getitimer(td, (struct getitimer_args *)uap));
502	}
503
504	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
505		return (error);
506	error = kern_setitimer(td, uap->which, &aitv, &oitv);
507	if (error != 0 || uap->oitv == NULL)
508		return (error);
509	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
510}
511
512int
513kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
514    struct itimerval *oitv)
515{
516	struct proc *p = td->td_proc;
517	struct timeval ctv;
518
519	if (aitv == NULL)
520		return (kern_getitimer(td, which, oitv));
521
522	if (which > ITIMER_PROF)
523		return (EINVAL);
524	if (itimerfix(&aitv->it_value))
525		return (EINVAL);
526	if (!timevalisset(&aitv->it_value))
527		timevalclear(&aitv->it_interval);
528	else if (itimerfix(&aitv->it_interval))
529		return (EINVAL);
530
531	if (which == ITIMER_REAL) {
532		PROC_LOCK(p);
533		if (timevalisset(&p->p_realtimer.it_value))
534			callout_stop(&p->p_itcallout);
535		getmicrouptime(&ctv);
536		if (timevalisset(&aitv->it_value)) {
537			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
538			    realitexpire, p);
539			timevaladd(&aitv->it_value, &ctv);
540		}
541		*oitv = p->p_realtimer;
542		p->p_realtimer = *aitv;
543		PROC_UNLOCK(p);
544		if (timevalisset(&oitv->it_value)) {
545			if (timevalcmp(&oitv->it_value, &ctv, <))
546				timevalclear(&oitv->it_value);
547			else
548				timevalsub(&oitv->it_value, &ctv);
549		}
550	} else {
551		mtx_lock_spin(&sched_lock);
552		*oitv = p->p_stats->p_timer[which];
553		p->p_stats->p_timer[which] = *aitv;
554		mtx_unlock_spin(&sched_lock);
555	}
556	return (0);
557}
558
559/*
560 * Real interval timer expired:
561 * send process whose timer expired an alarm signal.
562 * If time is not set up to reload, then just return.
563 * Else compute next time timer should go off which is > current time.
564 * This is where delay in processing this timeout causes multiple
565 * SIGALRM calls to be compressed into one.
566 * tvtohz() always adds 1 to allow for the time until the next clock
567 * interrupt being strictly less than 1 clock tick, but we don't want
568 * that here since we want to appear to be in sync with the clock
569 * interrupt even when we're delayed.
570 */
571void
572realitexpire(void *arg)
573{
574	struct proc *p;
575	struct timeval ctv, ntv;
576
577	p = (struct proc *)arg;
578	PROC_LOCK(p);
579	psignal(p, SIGALRM);
580	if (!timevalisset(&p->p_realtimer.it_interval)) {
581		timevalclear(&p->p_realtimer.it_value);
582		if (p->p_flag & P_WEXIT)
583			wakeup(&p->p_itcallout);
584		PROC_UNLOCK(p);
585		return;
586	}
587	for (;;) {
588		timevaladd(&p->p_realtimer.it_value,
589		    &p->p_realtimer.it_interval);
590		getmicrouptime(&ctv);
591		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
592			ntv = p->p_realtimer.it_value;
593			timevalsub(&ntv, &ctv);
594			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
595			    realitexpire, p);
596			PROC_UNLOCK(p);
597			return;
598		}
599	}
600	/*NOTREACHED*/
601}
602
603/*
604 * Check that a proposed value to load into the .it_value or
605 * .it_interval part of an interval timer is acceptable, and
606 * fix it to have at least minimal value (i.e. if it is less
607 * than the resolution of the clock, round it up.)
608 */
609int
610itimerfix(struct timeval *tv)
611{
612
613	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
614	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
615		return (EINVAL);
616	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
617		tv->tv_usec = tick;
618	return (0);
619}
620
621/*
622 * Decrement an interval timer by a specified number
623 * of microseconds, which must be less than a second,
624 * i.e. < 1000000.  If the timer expires, then reload
625 * it.  In this case, carry over (usec - old value) to
626 * reduce the value reloaded into the timer so that
627 * the timer does not drift.  This routine assumes
628 * that it is called in a context where the timers
629 * on which it is operating cannot change in value.
630 */
631int
632itimerdecr(struct itimerval *itp, int usec)
633{
634
635	if (itp->it_value.tv_usec < usec) {
636		if (itp->it_value.tv_sec == 0) {
637			/* expired, and already in next interval */
638			usec -= itp->it_value.tv_usec;
639			goto expire;
640		}
641		itp->it_value.tv_usec += 1000000;
642		itp->it_value.tv_sec--;
643	}
644	itp->it_value.tv_usec -= usec;
645	usec = 0;
646	if (timevalisset(&itp->it_value))
647		return (1);
648	/* expired, exactly at end of interval */
649expire:
650	if (timevalisset(&itp->it_interval)) {
651		itp->it_value = itp->it_interval;
652		itp->it_value.tv_usec -= usec;
653		if (itp->it_value.tv_usec < 0) {
654			itp->it_value.tv_usec += 1000000;
655			itp->it_value.tv_sec--;
656		}
657	} else
658		itp->it_value.tv_usec = 0;		/* sec is already 0 */
659	return (0);
660}
661
662/*
663 * Add and subtract routines for timevals.
664 * N.B.: subtract routine doesn't deal with
665 * results which are before the beginning,
666 * it just gets very confused in this case.
667 * Caveat emptor.
668 */
669void
670timevaladd(struct timeval *t1, const struct timeval *t2)
671{
672
673	t1->tv_sec += t2->tv_sec;
674	t1->tv_usec += t2->tv_usec;
675	timevalfix(t1);
676}
677
678void
679timevalsub(struct timeval *t1, const struct timeval *t2)
680{
681
682	t1->tv_sec -= t2->tv_sec;
683	t1->tv_usec -= t2->tv_usec;
684	timevalfix(t1);
685}
686
687static void
688timevalfix(struct timeval *t1)
689{
690
691	if (t1->tv_usec < 0) {
692		t1->tv_sec--;
693		t1->tv_usec += 1000000;
694	}
695	if (t1->tv_usec >= 1000000) {
696		t1->tv_sec++;
697		t1->tv_usec -= 1000000;
698	}
699}
700
701/*
702 * ratecheck(): simple time-based rate-limit checking.
703 */
704int
705ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
706{
707	struct timeval tv, delta;
708	int rv = 0;
709
710	getmicrouptime(&tv);		/* NB: 10ms precision */
711	delta = tv;
712	timevalsub(&delta, lasttime);
713
714	/*
715	 * check for 0,0 is so that the message will be seen at least once,
716	 * even if interval is huge.
717	 */
718	if (timevalcmp(&delta, mininterval, >=) ||
719	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
720		*lasttime = tv;
721		rv = 1;
722	}
723
724	return (rv);
725}
726
727/*
728 * ppsratecheck(): packets (or events) per second limitation.
729 *
730 * Return 0 if the limit is to be enforced (e.g. the caller
731 * should drop a packet because of the rate limitation).
732 *
733 * maxpps of 0 always causes zero to be returned.  maxpps of -1
734 * always causes 1 to be returned; this effectively defeats rate
735 * limiting.
736 *
737 * Note that we maintain the struct timeval for compatibility
738 * with other bsd systems.  We reuse the storage and just monitor
739 * clock ticks for minimal overhead.
740 */
741int
742ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
743{
744	int now;
745
746	/*
747	 * Reset the last time and counter if this is the first call
748	 * or more than a second has passed since the last update of
749	 * lasttime.
750	 */
751	now = ticks;
752	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
753		lasttime->tv_sec = now;
754		*curpps = 1;
755		return (maxpps != 0);
756	} else {
757		(*curpps)++;		/* NB: ignore potential overflow */
758		return (maxpps < 0 || *curpps < maxpps);
759	}
760}
761