kern_tc.c revision 122610
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 122610 2003-11-13 10:03:58Z phk $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/systm.h>
19#include <sys/timepps.h>
20#include <sys/timetc.h>
21#include <sys/timex.h>
22
23/*
24 * A large step happens on boot.  This constant detects such steps.
25 * It is relatively small so that ntp_update_second gets called enough
26 * in the typical 'missed a couple of seconds' case, but doesn't loop
27 * forever when the time step is large.
28 */
29#define LARGE_STEP	200
30
31/*
32 * Implement a dummy timecounter which we can use until we get a real one
33 * in the air.  This allows the console and other early stuff to use
34 * time services.
35 */
36
37static u_int
38dummy_get_timecount(struct timecounter *tc)
39{
40	static u_int now;
41
42	return (++now);
43}
44
45static struct timecounter dummy_timecounter = {
46	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
47};
48
49struct timehands {
50	/* These fields must be initialized by the driver. */
51	struct timecounter	*th_counter;
52	int64_t			th_adjustment;
53	u_int64_t		th_scale;
54	u_int	 		th_offset_count;
55	struct bintime		th_offset;
56	struct timeval		th_microtime;
57	struct timespec		th_nanotime;
58	/* Fields not to be copied in tc_windup start with th_generation. */
59	volatile u_int		th_generation;
60	struct timehands	*th_next;
61};
62
63extern struct timehands th0;
64static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
65static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
66static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
67static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
68static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
69static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
70static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
71static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
72static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
73static struct timehands th0 = {
74	&dummy_timecounter,
75	0,
76	(uint64_t)-1 / 1000000,
77	0,
78	{1, 0},
79	{0, 0},
80	{0, 0},
81	1,
82	&th1
83};
84
85static struct timehands *volatile timehands = &th0;
86struct timecounter *timecounter = &dummy_timecounter;
87static struct timecounter *timecounters = &dummy_timecounter;
88
89time_t time_second = 1;
90time_t time_uptime = 0;
91
92static struct bintime boottimebin;
93struct timeval boottime;
94SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
95    &boottime, timeval, "System boottime");
96
97SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
98
99#define TC_STATS(foo) \
100	static u_int foo; \
101	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
102	struct __hack
103
104TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
105TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
106TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
107TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
108TC_STATS(nsetclock);
109
110#undef TC_STATS
111
112static void tc_windup(void);
113
114/*
115 * Return the difference between the timehands' counter value now and what
116 * was when we copied it to the timehands' offset_count.
117 */
118static __inline u_int
119tc_delta(struct timehands *th)
120{
121	struct timecounter *tc;
122
123	tc = th->th_counter;
124	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
125	    tc->tc_counter_mask);
126}
127
128/*
129 * Functions for reading the time.  We have to loop until we are sure that
130 * the timehands that we operated on was not updated under our feet.  See
131 * the comment in <sys/time.h> for a description of these 12 functions.
132 */
133
134void
135binuptime(struct bintime *bt)
136{
137	struct timehands *th;
138	u_int gen;
139
140	nbinuptime++;
141	do {
142		th = timehands;
143		gen = th->th_generation;
144		*bt = th->th_offset;
145		bintime_addx(bt, th->th_scale * tc_delta(th));
146	} while (gen == 0 || gen != th->th_generation);
147}
148
149void
150nanouptime(struct timespec *tsp)
151{
152	struct bintime bt;
153
154	nnanouptime++;
155	binuptime(&bt);
156	bintime2timespec(&bt, tsp);
157}
158
159void
160microuptime(struct timeval *tvp)
161{
162	struct bintime bt;
163
164	nmicrouptime++;
165	binuptime(&bt);
166	bintime2timeval(&bt, tvp);
167}
168
169void
170bintime(struct bintime *bt)
171{
172
173	nbintime++;
174	binuptime(bt);
175	bintime_add(bt, &boottimebin);
176}
177
178void
179nanotime(struct timespec *tsp)
180{
181	struct bintime bt;
182
183	nnanotime++;
184	bintime(&bt);
185	bintime2timespec(&bt, tsp);
186}
187
188void
189microtime(struct timeval *tvp)
190{
191	struct bintime bt;
192
193	nmicrotime++;
194	bintime(&bt);
195	bintime2timeval(&bt, tvp);
196}
197
198void
199getbinuptime(struct bintime *bt)
200{
201	struct timehands *th;
202	u_int gen;
203
204	ngetbinuptime++;
205	do {
206		th = timehands;
207		gen = th->th_generation;
208		*bt = th->th_offset;
209	} while (gen == 0 || gen != th->th_generation);
210}
211
212void
213getnanouptime(struct timespec *tsp)
214{
215	struct timehands *th;
216	u_int gen;
217
218	ngetnanouptime++;
219	do {
220		th = timehands;
221		gen = th->th_generation;
222		bintime2timespec(&th->th_offset, tsp);
223	} while (gen == 0 || gen != th->th_generation);
224}
225
226void
227getmicrouptime(struct timeval *tvp)
228{
229	struct timehands *th;
230	u_int gen;
231
232	ngetmicrouptime++;
233	do {
234		th = timehands;
235		gen = th->th_generation;
236		bintime2timeval(&th->th_offset, tvp);
237	} while (gen == 0 || gen != th->th_generation);
238}
239
240void
241getbintime(struct bintime *bt)
242{
243	struct timehands *th;
244	u_int gen;
245
246	ngetbintime++;
247	do {
248		th = timehands;
249		gen = th->th_generation;
250		*bt = th->th_offset;
251	} while (gen == 0 || gen != th->th_generation);
252	bintime_add(bt, &boottimebin);
253}
254
255void
256getnanotime(struct timespec *tsp)
257{
258	struct timehands *th;
259	u_int gen;
260
261	ngetnanotime++;
262	do {
263		th = timehands;
264		gen = th->th_generation;
265		*tsp = th->th_nanotime;
266	} while (gen == 0 || gen != th->th_generation);
267}
268
269void
270getmicrotime(struct timeval *tvp)
271{
272	struct timehands *th;
273	u_int gen;
274
275	ngetmicrotime++;
276	do {
277		th = timehands;
278		gen = th->th_generation;
279		*tvp = th->th_microtime;
280	} while (gen == 0 || gen != th->th_generation);
281}
282
283/*
284 * Initialize a new timecounter and possibly use it.
285 */
286void
287tc_init(struct timecounter *tc)
288{
289	u_int u;
290
291	u = tc->tc_frequency / tc->tc_counter_mask;
292	/* XXX: We need some margin here, 10% is a guess */
293	u *= 11;
294	u /= 10;
295	if (u > hz && tc->tc_quality >= 0) {
296		tc->tc_quality = -2000;
297		if (bootverbose) {
298			printf("Timecounter \"%s\" frequency %ju Hz",
299			    tc->tc_name, (uintmax_t)tc->tc_frequency);
300			printf(" -- Insufficient hz, needs at least %u\n", u);
301		}
302	} else if (tc->tc_quality >= 0 || bootverbose) {
303		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
304		    tc->tc_name, (uintmax_t)tc->tc_frequency,
305		    tc->tc_quality);
306	}
307
308	tc->tc_next = timecounters;
309	timecounters = tc;
310	/*
311	 * Never automatically use a timecounter with negative quality.
312	 * Even though we run on the dummy counter, switching here may be
313	 * worse since this timecounter may not be monotonous.
314	 */
315	if (tc->tc_quality < 0)
316		return;
317	if (tc->tc_quality < timecounter->tc_quality)
318		return;
319	if (tc->tc_quality == timecounter->tc_quality &&
320	    tc->tc_frequency < timecounter->tc_frequency)
321		return;
322	(void)tc->tc_get_timecount(tc);
323	(void)tc->tc_get_timecount(tc);
324	timecounter = tc;
325}
326
327/* Report the frequency of the current timecounter. */
328u_int64_t
329tc_getfrequency(void)
330{
331
332	return (timehands->th_counter->tc_frequency);
333}
334
335/*
336 * Step our concept of UTC.  This is done by modifying our estimate of
337 * when we booted.  XXX: needs further work.
338 */
339void
340tc_setclock(struct timespec *ts)
341{
342	struct timespec ts2;
343
344	nsetclock++;
345	nanouptime(&ts2);
346	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
347	/* XXX boottime should probably be a timespec. */
348	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
349	if (boottime.tv_usec < 0) {
350		boottime.tv_usec += 1000000;
351		boottime.tv_sec--;
352	}
353	timeval2bintime(&boottime, &boottimebin);
354
355	/* XXX fiddle all the little crinkly bits around the fiords... */
356	tc_windup();
357}
358
359/*
360 * Initialize the next struct timehands in the ring and make
361 * it the active timehands.  Along the way we might switch to a different
362 * timecounter and/or do seconds processing in NTP.  Slightly magic.
363 */
364static void
365tc_windup(void)
366{
367	struct bintime bt;
368	struct timehands *th, *tho;
369	u_int64_t scale;
370	u_int delta, ncount, ogen;
371	int i;
372	time_t t;
373
374	/*
375	 * Make the next timehands a copy of the current one, but do not
376	 * overwrite the generation or next pointer.  While we update
377	 * the contents, the generation must be zero.
378	 */
379	tho = timehands;
380	th = tho->th_next;
381	ogen = th->th_generation;
382	th->th_generation = 0;
383	bcopy(tho, th, offsetof(struct timehands, th_generation));
384
385	/*
386	 * Capture a timecounter delta on the current timecounter and if
387	 * changing timecounters, a counter value from the new timecounter.
388	 * Update the offset fields accordingly.
389	 */
390	delta = tc_delta(th);
391	if (th->th_counter != timecounter)
392		ncount = timecounter->tc_get_timecount(timecounter);
393	else
394		ncount = 0;
395	th->th_offset_count += delta;
396	th->th_offset_count &= th->th_counter->tc_counter_mask;
397	bintime_addx(&th->th_offset, th->th_scale * delta);
398
399	/*
400	 * Hardware latching timecounters may not generate interrupts on
401	 * PPS events, so instead we poll them.  There is a finite risk that
402	 * the hardware might capture a count which is later than the one we
403	 * got above, and therefore possibly in the next NTP second which might
404	 * have a different rate than the current NTP second.  It doesn't
405	 * matter in practice.
406	 */
407	if (tho->th_counter->tc_poll_pps)
408		tho->th_counter->tc_poll_pps(tho->th_counter);
409
410	/*
411	 * Deal with NTP second processing.  The for loop normally
412	 * iterates at most once, but in extreme situations it might
413	 * keep NTP sane if timeouts are not run for several seconds.
414	 * At boot, the time step can be large when the TOD hardware
415	 * has been read, so on really large steps, we call
416	 * ntp_update_second only twice.  We need to call it twice in
417	 * case we missed a leap second.
418	 */
419	bt = th->th_offset;
420	bintime_add(&bt, &boottimebin);
421	i = bt.sec - tho->th_microtime.tv_sec;
422	if (i > LARGE_STEP)
423		i = 2;
424	for (; i > 0; i--) {
425		t = bt.sec;
426		ntp_update_second(&th->th_adjustment, &bt.sec);
427		if (bt.sec != t)
428			boottimebin.sec += bt.sec - t;
429	}
430	/* Update the UTC timestamps used by the get*() functions. */
431	/* XXX shouldn't do this here.  Should force non-`get' versions. */
432	bintime2timeval(&bt, &th->th_microtime);
433	bintime2timespec(&bt, &th->th_nanotime);
434
435	/* Now is a good time to change timecounters. */
436	if (th->th_counter != timecounter) {
437		th->th_counter = timecounter;
438		th->th_offset_count = ncount;
439	}
440
441	/*-
442	 * Recalculate the scaling factor.  We want the number of 1/2^64
443	 * fractions of a second per period of the hardware counter, taking
444	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
445	 * processing provides us with.
446	 *
447	 * The th_adjustment is nanoseconds per second with 32 bit binary
448	 * fraction and we want 64 bit binary fraction of second:
449	 *
450	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
451	 *
452	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
453	 * we can only multiply by about 850 without overflowing, but that
454	 * leaves suitably precise fractions for multiply before divide.
455	 *
456	 * Divide before multiply with a fraction of 2199/512 results in a
457	 * systematic undercompensation of 10PPM of th_adjustment.  On a
458	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
459 	 *
460	 * We happily sacrifice the lowest of the 64 bits of our result
461	 * to the goddess of code clarity.
462	 *
463	 */
464	scale = (u_int64_t)1 << 63;
465	scale += (th->th_adjustment / 1024) * 2199;
466	scale /= th->th_counter->tc_frequency;
467	th->th_scale = scale * 2;
468
469	/*
470	 * Now that the struct timehands is again consistent, set the new
471	 * generation number, making sure to not make it zero.
472	 */
473	if (++ogen == 0)
474		ogen = 1;
475	th->th_generation = ogen;
476
477	/* Go live with the new struct timehands. */
478	time_second = th->th_microtime.tv_sec;
479	time_uptime = th->th_offset.sec;
480	timehands = th;
481}
482
483/* Report or change the active timecounter hardware. */
484static int
485sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
486{
487	char newname[32];
488	struct timecounter *newtc, *tc;
489	int error;
490
491	tc = timecounter;
492	strlcpy(newname, tc->tc_name, sizeof(newname));
493
494	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
495	if (error != 0 || req->newptr == NULL ||
496	    strcmp(newname, tc->tc_name) == 0)
497		return (error);
498	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
499		if (strcmp(newname, newtc->tc_name) != 0)
500			continue;
501
502		/* Warm up new timecounter. */
503		(void)newtc->tc_get_timecount(newtc);
504		(void)newtc->tc_get_timecount(newtc);
505
506		timecounter = newtc;
507		return (0);
508	}
509	return (EINVAL);
510}
511
512SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
513    0, 0, sysctl_kern_timecounter_hardware, "A", "");
514
515
516/* Report or change the active timecounter hardware. */
517static int
518sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
519{
520	char buf[32], *spc;
521	struct timecounter *tc;
522	int error;
523
524	spc = "";
525	error = 0;
526	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
527		sprintf(buf, "%s%s(%d)",
528		    spc, tc->tc_name, tc->tc_quality);
529		error = SYSCTL_OUT(req, buf, strlen(buf));
530		spc = " ";
531	}
532	return (error);
533}
534
535SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
536    0, 0, sysctl_kern_timecounter_choice, "A", "");
537
538/*
539 * RFC 2783 PPS-API implementation.
540 */
541
542int
543pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
544{
545	pps_params_t *app;
546	struct pps_fetch_args *fapi;
547#ifdef PPS_SYNC
548	struct pps_kcbind_args *kapi;
549#endif
550
551	switch (cmd) {
552	case PPS_IOC_CREATE:
553		return (0);
554	case PPS_IOC_DESTROY:
555		return (0);
556	case PPS_IOC_SETPARAMS:
557		app = (pps_params_t *)data;
558		if (app->mode & ~pps->ppscap)
559			return (EINVAL);
560		pps->ppsparam = *app;
561		return (0);
562	case PPS_IOC_GETPARAMS:
563		app = (pps_params_t *)data;
564		*app = pps->ppsparam;
565		app->api_version = PPS_API_VERS_1;
566		return (0);
567	case PPS_IOC_GETCAP:
568		*(int*)data = pps->ppscap;
569		return (0);
570	case PPS_IOC_FETCH:
571		fapi = (struct pps_fetch_args *)data;
572		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
573			return (EINVAL);
574		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
575			return (EOPNOTSUPP);
576		pps->ppsinfo.current_mode = pps->ppsparam.mode;
577		fapi->pps_info_buf = pps->ppsinfo;
578		return (0);
579	case PPS_IOC_KCBIND:
580#ifdef PPS_SYNC
581		kapi = (struct pps_kcbind_args *)data;
582		/* XXX Only root should be able to do this */
583		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
584			return (EINVAL);
585		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
586			return (EINVAL);
587		if (kapi->edge & ~pps->ppscap)
588			return (EINVAL);
589		pps->kcmode = kapi->edge;
590		return (0);
591#else
592		return (EOPNOTSUPP);
593#endif
594	default:
595		return (ENOTTY);
596	}
597}
598
599void
600pps_init(struct pps_state *pps)
601{
602	pps->ppscap |= PPS_TSFMT_TSPEC;
603	if (pps->ppscap & PPS_CAPTUREASSERT)
604		pps->ppscap |= PPS_OFFSETASSERT;
605	if (pps->ppscap & PPS_CAPTURECLEAR)
606		pps->ppscap |= PPS_OFFSETCLEAR;
607}
608
609void
610pps_capture(struct pps_state *pps)
611{
612	struct timehands *th;
613
614	th = timehands;
615	pps->capgen = th->th_generation;
616	pps->capth = th;
617	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
618	if (pps->capgen != th->th_generation)
619		pps->capgen = 0;
620}
621
622void
623pps_event(struct pps_state *pps, int event)
624{
625	struct bintime bt;
626	struct timespec ts, *tsp, *osp;
627	u_int tcount, *pcount;
628	int foff, fhard;
629	pps_seq_t *pseq;
630
631	/* If the timecounter was wound up underneath us, bail out. */
632	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
633		return;
634
635	/* Things would be easier with arrays. */
636	if (event == PPS_CAPTUREASSERT) {
637		tsp = &pps->ppsinfo.assert_timestamp;
638		osp = &pps->ppsparam.assert_offset;
639		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
640		fhard = pps->kcmode & PPS_CAPTUREASSERT;
641		pcount = &pps->ppscount[0];
642		pseq = &pps->ppsinfo.assert_sequence;
643	} else {
644		tsp = &pps->ppsinfo.clear_timestamp;
645		osp = &pps->ppsparam.clear_offset;
646		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
647		fhard = pps->kcmode & PPS_CAPTURECLEAR;
648		pcount = &pps->ppscount[1];
649		pseq = &pps->ppsinfo.clear_sequence;
650	}
651
652	/*
653	 * If the timecounter changed, we cannot compare the count values, so
654	 * we have to drop the rest of the PPS-stuff until the next event.
655	 */
656	if (pps->ppstc != pps->capth->th_counter) {
657		pps->ppstc = pps->capth->th_counter;
658		*pcount = pps->capcount;
659		pps->ppscount[2] = pps->capcount;
660		return;
661	}
662
663	/* Return if nothing really happened. */
664	if (*pcount == pps->capcount)
665		return;
666
667	/* Convert the count to a timespec. */
668	tcount = pps->capcount - pps->capth->th_offset_count;
669	tcount &= pps->capth->th_counter->tc_counter_mask;
670	bt = pps->capth->th_offset;
671	bintime_addx(&bt, pps->capth->th_scale * tcount);
672	bintime_add(&bt, &boottimebin);
673	bintime2timespec(&bt, &ts);
674
675	/* If the timecounter was wound up underneath us, bail out. */
676	if (pps->capgen != pps->capth->th_generation)
677		return;
678
679	*pcount = pps->capcount;
680	(*pseq)++;
681	*tsp = ts;
682
683	if (foff) {
684		timespecadd(tsp, osp);
685		if (tsp->tv_nsec < 0) {
686			tsp->tv_nsec += 1000000000;
687			tsp->tv_sec -= 1;
688		}
689	}
690#ifdef PPS_SYNC
691	if (fhard) {
692		u_int64_t scale;
693
694		/*
695		 * Feed the NTP PLL/FLL.
696		 * The FLL wants to know how many (hardware) nanoseconds
697		 * elapsed since the previous event.
698		 */
699		tcount = pps->capcount - pps->ppscount[2];
700		pps->ppscount[2] = pps->capcount;
701		tcount &= pps->capth->th_counter->tc_counter_mask;
702		scale = (u_int64_t)1 << 63;
703		scale /= pps->capth->th_counter->tc_frequency;
704		scale *= 2;
705		bt.sec = 0;
706		bt.frac = 0;
707		bintime_addx(&bt, scale * tcount);
708		bintime2timespec(&bt, &ts);
709		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
710	}
711#endif
712}
713
714/*
715 * Timecounters need to be updated every so often to prevent the hardware
716 * counter from overflowing.  Updating also recalculates the cached values
717 * used by the get*() family of functions, so their precision depends on
718 * the update frequency.
719 */
720
721static int tc_tick;
722SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
723
724void
725tc_ticktock(void)
726{
727	static int count;
728
729	if (++count < tc_tick)
730		return;
731	count = 0;
732	tc_windup();
733}
734
735static void
736inittimecounter(void *dummy)
737{
738	u_int p;
739
740	/*
741	 * Set the initial timeout to
742	 * max(1, <approx. number of hardclock ticks in a millisecond>).
743	 * People should probably not use the sysctl to set the timeout
744	 * to smaller than its inital value, since that value is the
745	 * smallest reasonable one.  If they want better timestamps they
746	 * should use the non-"get"* functions.
747	 */
748	if (hz > 1000)
749		tc_tick = (hz + 500) / 1000;
750	else
751		tc_tick = 1;
752	p = (tc_tick * 1000000) / hz;
753	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
754
755	/* warm up new timecounter (again) and get rolling. */
756	(void)timecounter->tc_get_timecount(timecounter);
757	(void)timecounter->tc_get_timecount(timecounter);
758}
759
760SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
761