kern_racct.c revision 286322
1/*-
2 * Copyright (c) 2010 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Edward Tomasz Napierala under sponsorship
6 * from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: stable/10/sys/kern/kern_racct.c 286322 2015-08-05 15:57:08Z trasz $
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_racct.c 286322 2015-08-05 15:57:08Z trasz $");
34
35#include "opt_kdtrace.h"
36#include "opt_sched.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/eventhandler.h>
41#include <sys/jail.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/loginclass.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/racct.h>
50#include <sys/resourcevar.h>
51#include <sys/sbuf.h>
52#include <sys/sched.h>
53#include <sys/sdt.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysent.h>
58#include <sys/sysproto.h>
59#include <sys/umtx.h>
60#include <machine/smp.h>
61
62#ifdef RCTL
63#include <sys/rctl.h>
64#endif
65
66#ifdef RACCT
67
68FEATURE(racct, "Resource Accounting");
69
70/*
71 * Do not block processes that have their %cpu usage <= pcpu_threshold.
72 */
73static int pcpu_threshold = 1;
74#ifdef RACCT_DEFAULT_TO_DISABLED
75int racct_enable = 0;
76#else
77int racct_enable = 1;
78#endif
79
80SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting");
81TUNABLE_INT("kern.racct.enable", &racct_enable);
82SYSCTL_UINT(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable,
83    0, "Enable RACCT/RCTL");
84SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold,
85    0, "Processes with higher %cpu usage than this value can be throttled.");
86
87/*
88 * How many seconds it takes to use the scheduler %cpu calculations.  When a
89 * process starts, we compute its %cpu usage by dividing its runtime by the
90 * process wall clock time.  After RACCT_PCPU_SECS pass, we use the value
91 * provided by the scheduler.
92 */
93#define RACCT_PCPU_SECS		3
94
95static struct mtx racct_lock;
96MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF);
97
98static uma_zone_t racct_zone;
99
100static void racct_sub_racct(struct racct *dest, const struct racct *src);
101static void racct_sub_cred_locked(struct ucred *cred, int resource,
102		uint64_t amount);
103static void racct_add_cred_locked(struct ucred *cred, int resource,
104		uint64_t amount);
105
106SDT_PROVIDER_DEFINE(racct);
107SDT_PROBE_DEFINE3(racct, kernel, rusage, add, "struct proc *", "int",
108    "uint64_t");
109SDT_PROBE_DEFINE3(racct, kernel, rusage, add__failure,
110    "struct proc *", "int", "uint64_t");
111SDT_PROBE_DEFINE3(racct, kernel, rusage, add__cred, "struct ucred *",
112    "int", "uint64_t");
113SDT_PROBE_DEFINE3(racct, kernel, rusage, add__force, "struct proc *",
114    "int", "uint64_t");
115SDT_PROBE_DEFINE3(racct, kernel, rusage, set, "struct proc *", "int",
116    "uint64_t");
117SDT_PROBE_DEFINE3(racct, kernel, rusage, set__failure,
118    "struct proc *", "int", "uint64_t");
119SDT_PROBE_DEFINE3(racct, kernel, rusage, sub, "struct proc *", "int",
120    "uint64_t");
121SDT_PROBE_DEFINE3(racct, kernel, rusage, sub__cred, "struct ucred *",
122    "int", "uint64_t");
123SDT_PROBE_DEFINE1(racct, kernel, racct, create, "struct racct *");
124SDT_PROBE_DEFINE1(racct, kernel, racct, destroy, "struct racct *");
125SDT_PROBE_DEFINE2(racct, kernel, racct, join, "struct racct *",
126    "struct racct *");
127SDT_PROBE_DEFINE2(racct, kernel, racct, join__failure,
128    "struct racct *", "struct racct *");
129SDT_PROBE_DEFINE2(racct, kernel, racct, leave, "struct racct *",
130    "struct racct *");
131
132int racct_types[] = {
133	[RACCT_CPU] =
134		RACCT_IN_MILLIONS,
135	[RACCT_DATA] =
136		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
137	[RACCT_STACK] =
138		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
139	[RACCT_CORE] =
140		RACCT_DENIABLE,
141	[RACCT_RSS] =
142		RACCT_RECLAIMABLE,
143	[RACCT_MEMLOCK] =
144		RACCT_RECLAIMABLE | RACCT_DENIABLE,
145	[RACCT_NPROC] =
146		RACCT_RECLAIMABLE | RACCT_DENIABLE,
147	[RACCT_NOFILE] =
148		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
149	[RACCT_VMEM] =
150		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
151	[RACCT_NPTS] =
152		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
153	[RACCT_SWAP] =
154		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
155	[RACCT_NTHR] =
156		RACCT_RECLAIMABLE | RACCT_DENIABLE,
157	[RACCT_MSGQQUEUED] =
158		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
159	[RACCT_MSGQSIZE] =
160		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
161	[RACCT_NMSGQ] =
162		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
163	[RACCT_NSEM] =
164		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
165	[RACCT_NSEMOP] =
166		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
167	[RACCT_NSHM] =
168		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
169	[RACCT_SHMSIZE] =
170		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
171	[RACCT_WALLCLOCK] =
172		RACCT_IN_MILLIONS,
173	[RACCT_PCTCPU] =
174		RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS };
175
176static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE;
177
178#ifdef SCHED_4BSD
179/*
180 * Contains intermediate values for %cpu calculations to avoid using floating
181 * point in the kernel.
182 * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20)
183 * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to
184 * zero so the calculations are more straightforward.
185 */
186fixpt_t ccpu_exp[] = {
187	[0] = FSCALE * 1,
188	[1] = FSCALE * 0.95122942450071400909,
189	[2] = FSCALE * 0.90483741803595957316,
190	[3] = FSCALE * 0.86070797642505780722,
191	[4] = FSCALE * 0.81873075307798185866,
192	[5] = FSCALE * 0.77880078307140486824,
193	[6] = FSCALE * 0.74081822068171786606,
194	[7] = FSCALE * 0.70468808971871343435,
195	[8] = FSCALE * 0.67032004603563930074,
196	[9] = FSCALE * 0.63762815162177329314,
197	[10] = FSCALE * 0.60653065971263342360,
198	[11] = FSCALE * 0.57694981038048669531,
199	[12] = FSCALE * 0.54881163609402643262,
200	[13] = FSCALE * 0.52204577676101604789,
201	[14] = FSCALE * 0.49658530379140951470,
202	[15] = FSCALE * 0.47236655274101470713,
203	[16] = FSCALE * 0.44932896411722159143,
204	[17] = FSCALE * 0.42741493194872666992,
205	[18] = FSCALE * 0.40656965974059911188,
206	[19] = FSCALE * 0.38674102345450120691,
207	[20] = FSCALE * 0.36787944117144232159,
208	[21] = FSCALE * 0.34993774911115535467,
209	[22] = FSCALE * 0.33287108369807955328,
210	[23] = FSCALE * 0.31663676937905321821,
211	[24] = FSCALE * 0.30119421191220209664,
212	[25] = FSCALE * 0.28650479686019010032,
213	[26] = FSCALE * 0.27253179303401260312,
214	[27] = FSCALE * 0.25924026064589150757,
215	[28] = FSCALE * 0.24659696394160647693,
216	[29] = FSCALE * 0.23457028809379765313,
217	[30] = FSCALE * 0.22313016014842982893,
218	[31] = FSCALE * 0.21224797382674305771,
219	[32] = FSCALE * 0.20189651799465540848,
220	[33] = FSCALE * 0.19204990862075411423,
221	[34] = FSCALE * 0.18268352405273465022,
222	[35] = FSCALE * 0.17377394345044512668,
223	[36] = FSCALE * 0.16529888822158653829,
224	[37] = FSCALE * 0.15723716631362761621,
225	[38] = FSCALE * 0.14956861922263505264,
226	[39] = FSCALE * 0.14227407158651357185,
227	[40] = FSCALE * 0.13533528323661269189,
228	[41] = FSCALE * 0.12873490358780421886,
229	[42] = FSCALE * 0.12245642825298191021,
230	[43] = FSCALE * 0.11648415777349695786,
231	[44] = FSCALE * 0.11080315836233388333,
232	[45] = FSCALE * 0.10539922456186433678,
233	[46] = FSCALE * 0.10025884372280373372,
234	[47] = FSCALE * 0.09536916221554961888,
235	[48] = FSCALE * 0.09071795328941250337,
236	[49] = FSCALE * 0.08629358649937051097,
237	[50] = FSCALE * 0.08208499862389879516,
238	[51] = FSCALE * 0.07808166600115315231,
239	[52] = FSCALE * 0.07427357821433388042,
240	[53] = FSCALE * 0.07065121306042958674,
241	[54] = FSCALE * 0.06720551273974976512,
242	[55] = FSCALE * 0.06392786120670757270,
243	[56] = FSCALE * 0.06081006262521796499,
244	[57] = FSCALE * 0.05784432087483846296,
245	[58] = FSCALE * 0.05502322005640722902,
246	[59] = FSCALE * 0.05233970594843239308,
247	[60] = FSCALE * 0.04978706836786394297,
248	[61] = FSCALE * 0.04735892439114092119,
249	[62] = FSCALE * 0.04504920239355780606,
250	[63] = FSCALE * 0.04285212686704017991,
251	[64] = FSCALE * 0.04076220397836621516,
252	[65] = FSCALE * 0.03877420783172200988,
253	[66] = FSCALE * 0.03688316740124000544,
254	[67] = FSCALE * 0.03508435410084502588,
255	[68] = FSCALE * 0.03337326996032607948,
256	[69] = FSCALE * 0.03174563637806794323,
257	[70] = FSCALE * 0.03019738342231850073,
258	[71] = FSCALE * 0.02872463965423942912,
259	[72] = FSCALE * 0.02732372244729256080,
260	[73] = FSCALE * 0.02599112877875534358,
261	[74] = FSCALE * 0.02472352647033939120,
262	[75] = FSCALE * 0.02351774585600910823,
263	[76] = FSCALE * 0.02237077185616559577,
264	[77] = FSCALE * 0.02127973643837716938,
265	[78] = FSCALE * 0.02024191144580438847,
266	[79] = FSCALE * 0.01925470177538692429,
267	[80] = FSCALE * 0.01831563888873418029,
268	[81] = FSCALE * 0.01742237463949351138,
269	[82] = FSCALE * 0.01657267540176124754,
270	[83] = FSCALE * 0.01576441648485449082,
271	[84] = FSCALE * 0.01499557682047770621,
272	[85] = FSCALE * 0.01426423390899925527,
273	[86] = FSCALE * 0.01356855901220093175,
274	[87] = FSCALE * 0.01290681258047986886,
275	[88] = FSCALE * 0.01227733990306844117,
276	[89] = FSCALE * 0.01167856697039544521,
277	[90] = FSCALE * 0.01110899653824230649,
278	[91] = FSCALE * 0.01056720438385265337,
279	[92] = FSCALE * 0.01005183574463358164,
280	[93] = FSCALE * 0.00956160193054350793,
281	[94] = FSCALE * 0.00909527710169581709,
282	[95] = FSCALE * 0.00865169520312063417,
283	[96] = FSCALE * 0.00822974704902002884,
284	[97] = FSCALE * 0.00782837754922577143,
285	[98] = FSCALE * 0.00744658307092434051,
286	[99] = FSCALE * 0.00708340892905212004,
287	[100] = FSCALE * 0.00673794699908546709,
288	[101] = FSCALE * 0.00640933344625638184,
289	[102] = FSCALE * 0.00609674656551563610,
290	[103] = FSCALE * 0.00579940472684214321,
291	[104] = FSCALE * 0.00551656442076077241,
292	[105] = FSCALE * 0.00524751839918138427,
293	[106] = FSCALE * 0.00499159390691021621,
294	[107] = FSCALE * 0.00474815099941147558,
295	[108] = FSCALE * 0.00451658094261266798,
296	[109] = FSCALE * 0.00429630469075234057,
297	[110] = FSCALE * 0.00408677143846406699,
298};
299#endif
300
301#define	CCPU_EXP_MAX	110
302
303/*
304 * This function is analogical to the getpcpu() function in the ps(1) command.
305 * They should both calculate in the same way so that the racct %cpu
306 * calculations are consistent with the values showed by the ps(1) tool.
307 * The calculations are more complex in the 4BSD scheduler because of the value
308 * of the ccpu variable.  In ULE it is defined to be zero which saves us some
309 * work.
310 */
311static uint64_t
312racct_getpcpu(struct proc *p, u_int pcpu)
313{
314	u_int swtime;
315#ifdef SCHED_4BSD
316	fixpt_t pctcpu, pctcpu_next;
317#endif
318#ifdef SMP
319	struct pcpu *pc;
320	int found;
321#endif
322	fixpt_t p_pctcpu;
323	struct thread *td;
324
325	ASSERT_RACCT_ENABLED();
326
327	/*
328	 * If the process is swapped out, we count its %cpu usage as zero.
329	 * This behaviour is consistent with the userland ps(1) tool.
330	 */
331	if ((p->p_flag & P_INMEM) == 0)
332		return (0);
333	swtime = (ticks - p->p_swtick) / hz;
334
335	/*
336	 * For short-lived processes, the sched_pctcpu() returns small
337	 * values even for cpu intensive processes.  Therefore we use
338	 * our own estimate in this case.
339	 */
340	if (swtime < RACCT_PCPU_SECS)
341		return (pcpu);
342
343	p_pctcpu = 0;
344	FOREACH_THREAD_IN_PROC(p, td) {
345		if (td == PCPU_GET(idlethread))
346			continue;
347#ifdef SMP
348		found = 0;
349		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
350			if (td == pc->pc_idlethread) {
351				found = 1;
352				break;
353			}
354		}
355		if (found)
356			continue;
357#endif
358		thread_lock(td);
359#ifdef SCHED_4BSD
360		pctcpu = sched_pctcpu(td);
361		/* Count also the yet unfinished second. */
362		pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT;
363		pctcpu_next += sched_pctcpu_delta(td);
364		p_pctcpu += max(pctcpu, pctcpu_next);
365#else
366		/*
367		 * In ULE the %cpu statistics are updated on every
368		 * sched_pctcpu() call.  So special calculations to
369		 * account for the latest (unfinished) second are
370		 * not needed.
371		 */
372		p_pctcpu += sched_pctcpu(td);
373#endif
374		thread_unlock(td);
375	}
376
377#ifdef SCHED_4BSD
378	if (swtime <= CCPU_EXP_MAX)
379		return ((100 * (uint64_t)p_pctcpu * 1000000) /
380		    (FSCALE - ccpu_exp[swtime]));
381#endif
382
383	return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE);
384}
385
386static void
387racct_add_racct(struct racct *dest, const struct racct *src)
388{
389	int i;
390
391	ASSERT_RACCT_ENABLED();
392	mtx_assert(&racct_lock, MA_OWNED);
393
394	/*
395	 * Update resource usage in dest.
396	 */
397	for (i = 0; i <= RACCT_MAX; i++) {
398		KASSERT(dest->r_resources[i] >= 0,
399		    ("%s: resource %d propagation meltdown: dest < 0",
400		    __func__, i));
401		KASSERT(src->r_resources[i] >= 0,
402		    ("%s: resource %d propagation meltdown: src < 0",
403		    __func__, i));
404		dest->r_resources[i] += src->r_resources[i];
405	}
406}
407
408static void
409racct_sub_racct(struct racct *dest, const struct racct *src)
410{
411	int i;
412
413	ASSERT_RACCT_ENABLED();
414	mtx_assert(&racct_lock, MA_OWNED);
415
416	/*
417	 * Update resource usage in dest.
418	 */
419	for (i = 0; i <= RACCT_MAX; i++) {
420		if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) {
421			KASSERT(dest->r_resources[i] >= 0,
422			    ("%s: resource %d propagation meltdown: dest < 0",
423			    __func__, i));
424			KASSERT(src->r_resources[i] >= 0,
425			    ("%s: resource %d propagation meltdown: src < 0",
426			    __func__, i));
427			KASSERT(src->r_resources[i] <= dest->r_resources[i],
428			    ("%s: resource %d propagation meltdown: src > dest",
429			    __func__, i));
430		}
431		if (RACCT_CAN_DROP(i)) {
432			dest->r_resources[i] -= src->r_resources[i];
433			if (dest->r_resources[i] < 0) {
434				KASSERT(RACCT_IS_SLOPPY(i) ||
435				    RACCT_IS_DECAYING(i),
436				    ("%s: resource %d usage < 0", __func__, i));
437				dest->r_resources[i] = 0;
438			}
439		}
440	}
441}
442
443void
444racct_create(struct racct **racctp)
445{
446
447	if (!racct_enable)
448		return;
449
450	SDT_PROBE(racct, kernel, racct, create, racctp, 0, 0, 0, 0);
451
452	KASSERT(*racctp == NULL, ("racct already allocated"));
453
454	*racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO);
455}
456
457static void
458racct_destroy_locked(struct racct **racctp)
459{
460	int i;
461	struct racct *racct;
462
463	ASSERT_RACCT_ENABLED();
464
465	SDT_PROBE(racct, kernel, racct, destroy, racctp, 0, 0, 0, 0);
466
467	mtx_assert(&racct_lock, MA_OWNED);
468	KASSERT(racctp != NULL, ("NULL racctp"));
469	KASSERT(*racctp != NULL, ("NULL racct"));
470
471	racct = *racctp;
472
473	for (i = 0; i <= RACCT_MAX; i++) {
474		if (RACCT_IS_SLOPPY(i))
475			continue;
476		if (!RACCT_IS_RECLAIMABLE(i))
477			continue;
478		KASSERT(racct->r_resources[i] == 0,
479		    ("destroying non-empty racct: "
480		    "%ju allocated for resource %d\n",
481		    racct->r_resources[i], i));
482	}
483	uma_zfree(racct_zone, racct);
484	*racctp = NULL;
485}
486
487void
488racct_destroy(struct racct **racct)
489{
490
491	if (!racct_enable)
492		return;
493
494	mtx_lock(&racct_lock);
495	racct_destroy_locked(racct);
496	mtx_unlock(&racct_lock);
497}
498
499/*
500 * Increase consumption of 'resource' by 'amount' for 'racct'
501 * and all its parents.  Differently from other cases, 'amount' here
502 * may be less than zero.
503 */
504static void
505racct_alloc_resource(struct racct *racct, int resource,
506    uint64_t amount)
507{
508
509	ASSERT_RACCT_ENABLED();
510	mtx_assert(&racct_lock, MA_OWNED);
511	KASSERT(racct != NULL, ("NULL racct"));
512
513	racct->r_resources[resource] += amount;
514	if (racct->r_resources[resource] < 0) {
515		KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource),
516		    ("%s: resource %d usage < 0", __func__, resource));
517		racct->r_resources[resource] = 0;
518	}
519
520	/*
521	 * There are some cases where the racct %cpu resource would grow
522	 * beyond 100%.
523	 * For example in racct_proc_exit() we add the process %cpu usage
524	 * to the ucred racct containers.  If too many processes terminated
525	 * in a short time span, the ucred %cpu resource could grow too much.
526	 * Also, the 4BSD scheduler sometimes returns for a thread more than
527	 * 100% cpu usage.  So we set a boundary here to 100%.
528	 */
529	if ((resource == RACCT_PCTCPU) &&
530	    (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000))
531		racct->r_resources[RACCT_PCTCPU] = 100 * 1000000;
532}
533
534static int
535racct_add_locked(struct proc *p, int resource, uint64_t amount)
536{
537#ifdef RCTL
538	int error;
539#endif
540
541	ASSERT_RACCT_ENABLED();
542
543	SDT_PROBE(racct, kernel, rusage, add, p, resource, amount, 0, 0);
544
545	/*
546	 * We need proc lock to dereference p->p_ucred.
547	 */
548	PROC_LOCK_ASSERT(p, MA_OWNED);
549
550#ifdef RCTL
551	error = rctl_enforce(p, resource, amount);
552	if (error && RACCT_IS_DENIABLE(resource)) {
553		SDT_PROBE(racct, kernel, rusage, add__failure, p, resource,
554		    amount, 0, 0);
555		return (error);
556	}
557#endif
558	racct_alloc_resource(p->p_racct, resource, amount);
559	racct_add_cred_locked(p->p_ucred, resource, amount);
560
561	return (0);
562}
563
564/*
565 * Increase allocation of 'resource' by 'amount' for process 'p'.
566 * Return 0 if it's below limits, or errno, if it's not.
567 */
568int
569racct_add(struct proc *p, int resource, uint64_t amount)
570{
571	int error;
572
573	if (!racct_enable)
574		return (0);
575
576	mtx_lock(&racct_lock);
577	error = racct_add_locked(p, resource, amount);
578	mtx_unlock(&racct_lock);
579	return (error);
580}
581
582static void
583racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount)
584{
585	struct prison *pr;
586
587	ASSERT_RACCT_ENABLED();
588
589	SDT_PROBE(racct, kernel, rusage, add__cred, cred, resource, amount,
590	    0, 0);
591
592	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, amount);
593	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
594		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
595		    amount);
596	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, amount);
597}
598
599/*
600 * Increase allocation of 'resource' by 'amount' for credential 'cred'.
601 * Doesn't check for limits and never fails.
602 *
603 * XXX: Shouldn't this ever return an error?
604 */
605void
606racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
607{
608
609	if (!racct_enable)
610		return;
611
612	mtx_lock(&racct_lock);
613	racct_add_cred_locked(cred, resource, amount);
614	mtx_unlock(&racct_lock);
615}
616
617/*
618 * Increase allocation of 'resource' by 'amount' for process 'p'.
619 * Doesn't check for limits and never fails.
620 */
621void
622racct_add_force(struct proc *p, int resource, uint64_t amount)
623{
624
625	if (!racct_enable)
626		return;
627
628	SDT_PROBE(racct, kernel, rusage, add__force, p, resource, amount, 0, 0);
629
630	/*
631	 * We need proc lock to dereference p->p_ucred.
632	 */
633	PROC_LOCK_ASSERT(p, MA_OWNED);
634
635	mtx_lock(&racct_lock);
636	racct_alloc_resource(p->p_racct, resource, amount);
637	mtx_unlock(&racct_lock);
638	racct_add_cred(p->p_ucred, resource, amount);
639}
640
641static int
642racct_set_locked(struct proc *p, int resource, uint64_t amount)
643{
644	int64_t old_amount, decayed_amount;
645	int64_t diff_proc, diff_cred;
646#ifdef RCTL
647	int error;
648#endif
649
650	ASSERT_RACCT_ENABLED();
651
652	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
653
654	/*
655	 * We need proc lock to dereference p->p_ucred.
656	 */
657	PROC_LOCK_ASSERT(p, MA_OWNED);
658
659	old_amount = p->p_racct->r_resources[resource];
660	/*
661	 * The diffs may be negative.
662	 */
663	diff_proc = amount - old_amount;
664	if (RACCT_IS_DECAYING(resource)) {
665		/*
666		 * Resources in per-credential racct containers may decay.
667		 * If this is the case, we need to calculate the difference
668		 * between the new amount and the proportional value of the
669		 * old amount that has decayed in the ucred racct containers.
670		 */
671		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
672		diff_cred = amount - decayed_amount;
673	} else
674		diff_cred = diff_proc;
675#ifdef notyet
676	KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource),
677	    ("%s: usage of non-droppable resource %d dropping", __func__,
678	     resource));
679#endif
680#ifdef RCTL
681	if (diff_proc > 0) {
682		error = rctl_enforce(p, resource, diff_proc);
683		if (error && RACCT_IS_DENIABLE(resource)) {
684			SDT_PROBE(racct, kernel, rusage, set__failure, p,
685			    resource, amount, 0, 0);
686			return (error);
687		}
688	}
689#endif
690	racct_alloc_resource(p->p_racct, resource, diff_proc);
691	if (diff_cred > 0)
692		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
693	else if (diff_cred < 0)
694		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
695
696	return (0);
697}
698
699/*
700 * Set allocation of 'resource' to 'amount' for process 'p'.
701 * Return 0 if it's below limits, or errno, if it's not.
702 *
703 * Note that decreasing the allocation always returns 0,
704 * even if it's above the limit.
705 */
706int
707racct_set(struct proc *p, int resource, uint64_t amount)
708{
709	int error;
710
711	if (!racct_enable)
712		return (0);
713
714	mtx_lock(&racct_lock);
715	error = racct_set_locked(p, resource, amount);
716	mtx_unlock(&racct_lock);
717	return (error);
718}
719
720static void
721racct_set_force_locked(struct proc *p, int resource, uint64_t amount)
722{
723	int64_t old_amount, decayed_amount;
724	int64_t diff_proc, diff_cred;
725
726	ASSERT_RACCT_ENABLED();
727
728	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
729
730	/*
731	 * We need proc lock to dereference p->p_ucred.
732	 */
733	PROC_LOCK_ASSERT(p, MA_OWNED);
734
735	old_amount = p->p_racct->r_resources[resource];
736	/*
737	 * The diffs may be negative.
738	 */
739	diff_proc = amount - old_amount;
740	if (RACCT_IS_DECAYING(resource)) {
741		/*
742		 * Resources in per-credential racct containers may decay.
743		 * If this is the case, we need to calculate the difference
744		 * between the new amount and the proportional value of the
745		 * old amount that has decayed in the ucred racct containers.
746		 */
747		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
748		diff_cred = amount - decayed_amount;
749	} else
750		diff_cred = diff_proc;
751
752	racct_alloc_resource(p->p_racct, resource, diff_proc);
753	if (diff_cred > 0)
754		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
755	else if (diff_cred < 0)
756		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
757}
758
759void
760racct_set_force(struct proc *p, int resource, uint64_t amount)
761{
762
763	if (!racct_enable)
764		return;
765
766	mtx_lock(&racct_lock);
767	racct_set_force_locked(p, resource, amount);
768	mtx_unlock(&racct_lock);
769}
770
771/*
772 * Returns amount of 'resource' the process 'p' can keep allocated.
773 * Allocating more than that would be denied, unless the resource
774 * is marked undeniable.  Amount of already allocated resource does
775 * not matter.
776 */
777uint64_t
778racct_get_limit(struct proc *p, int resource)
779{
780
781	if (!racct_enable)
782		return (UINT64_MAX);
783
784#ifdef RCTL
785	return (rctl_get_limit(p, resource));
786#else
787	return (UINT64_MAX);
788#endif
789}
790
791/*
792 * Returns amount of 'resource' the process 'p' can keep allocated.
793 * Allocating more than that would be denied, unless the resource
794 * is marked undeniable.  Amount of already allocated resource does
795 * matter.
796 */
797uint64_t
798racct_get_available(struct proc *p, int resource)
799{
800
801	if (!racct_enable)
802		return (UINT64_MAX);
803
804#ifdef RCTL
805	return (rctl_get_available(p, resource));
806#else
807	return (UINT64_MAX);
808#endif
809}
810
811/*
812 * Returns amount of the %cpu resource that process 'p' can add to its %cpu
813 * utilization.  Adding more than that would lead to the process being
814 * throttled.
815 */
816static int64_t
817racct_pcpu_available(struct proc *p)
818{
819
820	ASSERT_RACCT_ENABLED();
821
822#ifdef RCTL
823	return (rctl_pcpu_available(p));
824#else
825	return (INT64_MAX);
826#endif
827}
828
829/*
830 * Decrease allocation of 'resource' by 'amount' for process 'p'.
831 */
832void
833racct_sub(struct proc *p, int resource, uint64_t amount)
834{
835
836	if (!racct_enable)
837		return;
838
839	SDT_PROBE(racct, kernel, rusage, sub, p, resource, amount, 0, 0);
840
841	/*
842	 * We need proc lock to dereference p->p_ucred.
843	 */
844	PROC_LOCK_ASSERT(p, MA_OWNED);
845	KASSERT(RACCT_CAN_DROP(resource),
846	    ("%s: called for non-droppable resource %d", __func__, resource));
847
848	mtx_lock(&racct_lock);
849	KASSERT(amount <= p->p_racct->r_resources[resource],
850	    ("%s: freeing %ju of resource %d, which is more "
851	     "than allocated %jd for %s (pid %d)", __func__, amount, resource,
852	    (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid));
853
854	racct_alloc_resource(p->p_racct, resource, -amount);
855	racct_sub_cred_locked(p->p_ucred, resource, amount);
856	mtx_unlock(&racct_lock);
857}
858
859static void
860racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount)
861{
862	struct prison *pr;
863
864	ASSERT_RACCT_ENABLED();
865
866	SDT_PROBE(racct, kernel, rusage, sub__cred, cred, resource, amount,
867	    0, 0);
868
869#ifdef notyet
870	KASSERT(RACCT_CAN_DROP(resource),
871	    ("%s: called for resource %d which can not drop", __func__,
872	     resource));
873#endif
874
875	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, -amount);
876	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
877		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
878		    -amount);
879	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, -amount);
880}
881
882/*
883 * Decrease allocation of 'resource' by 'amount' for credential 'cred'.
884 */
885void
886racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
887{
888
889	if (!racct_enable)
890		return;
891
892	mtx_lock(&racct_lock);
893	racct_sub_cred_locked(cred, resource, amount);
894	mtx_unlock(&racct_lock);
895}
896
897/*
898 * Inherit resource usage information from the parent process.
899 */
900int
901racct_proc_fork(struct proc *parent, struct proc *child)
902{
903	int i, error = 0;
904
905	if (!racct_enable)
906		return (0);
907
908	/*
909	 * Create racct for the child process.
910	 */
911	racct_create(&child->p_racct);
912
913	PROC_LOCK(parent);
914	PROC_LOCK(child);
915	mtx_lock(&racct_lock);
916
917#ifdef RCTL
918	error = rctl_proc_fork(parent, child);
919	if (error != 0)
920		goto out;
921#endif
922
923	/* Init process cpu time. */
924	child->p_prev_runtime = 0;
925	child->p_throttled = 0;
926
927	/*
928	 * Inherit resource usage.
929	 */
930	for (i = 0; i <= RACCT_MAX; i++) {
931		if (parent->p_racct->r_resources[i] == 0 ||
932		    !RACCT_IS_INHERITABLE(i))
933			continue;
934
935		error = racct_set_locked(child, i,
936		    parent->p_racct->r_resources[i]);
937		if (error != 0)
938			goto out;
939	}
940
941	error = racct_add_locked(child, RACCT_NPROC, 1);
942	error += racct_add_locked(child, RACCT_NTHR, 1);
943
944out:
945	mtx_unlock(&racct_lock);
946	PROC_UNLOCK(child);
947	PROC_UNLOCK(parent);
948
949	if (error != 0)
950		racct_proc_exit(child);
951
952	return (error);
953}
954
955/*
956 * Called at the end of fork1(), to handle rules that require the process
957 * to be fully initialized.
958 */
959void
960racct_proc_fork_done(struct proc *child)
961{
962
963#ifdef RCTL
964	if (!racct_enable)
965		return;
966
967	PROC_LOCK(child);
968	mtx_lock(&racct_lock);
969	rctl_enforce(child, RACCT_NPROC, 0);
970	rctl_enforce(child, RACCT_NTHR, 0);
971	mtx_unlock(&racct_lock);
972	PROC_UNLOCK(child);
973#endif
974}
975
976void
977racct_proc_exit(struct proc *p)
978{
979	int i;
980	uint64_t runtime;
981	struct timeval wallclock;
982	uint64_t pct_estimate, pct;
983
984	if (!racct_enable)
985		return;
986
987	PROC_LOCK(p);
988	/*
989	 * We don't need to calculate rux, proc_reap() has already done this.
990	 */
991	runtime = cputick2usec(p->p_rux.rux_runtime);
992#ifdef notyet
993	KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime"));
994#else
995	if (runtime < p->p_prev_runtime)
996		runtime = p->p_prev_runtime;
997#endif
998	microuptime(&wallclock);
999	timevalsub(&wallclock, &p->p_stats->p_start);
1000	if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
1001		pct_estimate = (1000000 * runtime * 100) /
1002		    ((uint64_t)wallclock.tv_sec * 1000000 +
1003		    wallclock.tv_usec);
1004	} else
1005		pct_estimate = 0;
1006	pct = racct_getpcpu(p, pct_estimate);
1007
1008	mtx_lock(&racct_lock);
1009	racct_set_locked(p, RACCT_CPU, runtime);
1010	racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct);
1011
1012	for (i = 0; i <= RACCT_MAX; i++) {
1013		if (p->p_racct->r_resources[i] == 0)
1014			continue;
1015	    	if (!RACCT_IS_RECLAIMABLE(i))
1016			continue;
1017		racct_set_locked(p, i, 0);
1018	}
1019
1020	mtx_unlock(&racct_lock);
1021	PROC_UNLOCK(p);
1022
1023#ifdef RCTL
1024	rctl_racct_release(p->p_racct);
1025#endif
1026	racct_destroy(&p->p_racct);
1027}
1028
1029/*
1030 * Called after credentials change, to move resource utilisation
1031 * between raccts.
1032 */
1033void
1034racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred,
1035    struct ucred *newcred)
1036{
1037	struct uidinfo *olduip, *newuip;
1038	struct loginclass *oldlc, *newlc;
1039	struct prison *oldpr, *newpr, *pr;
1040
1041	if (!racct_enable)
1042		return;
1043
1044	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1045
1046	newuip = newcred->cr_ruidinfo;
1047	olduip = oldcred->cr_ruidinfo;
1048	newlc = newcred->cr_loginclass;
1049	oldlc = oldcred->cr_loginclass;
1050	newpr = newcred->cr_prison;
1051	oldpr = oldcred->cr_prison;
1052
1053	mtx_lock(&racct_lock);
1054	if (newuip != olduip) {
1055		racct_sub_racct(olduip->ui_racct, p->p_racct);
1056		racct_add_racct(newuip->ui_racct, p->p_racct);
1057	}
1058	if (newlc != oldlc) {
1059		racct_sub_racct(oldlc->lc_racct, p->p_racct);
1060		racct_add_racct(newlc->lc_racct, p->p_racct);
1061	}
1062	if (newpr != oldpr) {
1063		for (pr = oldpr; pr != NULL; pr = pr->pr_parent)
1064			racct_sub_racct(pr->pr_prison_racct->prr_racct,
1065			    p->p_racct);
1066		for (pr = newpr; pr != NULL; pr = pr->pr_parent)
1067			racct_add_racct(pr->pr_prison_racct->prr_racct,
1068			    p->p_racct);
1069	}
1070	mtx_unlock(&racct_lock);
1071
1072#ifdef RCTL
1073	rctl_proc_ucred_changed(p, newcred);
1074#endif
1075}
1076
1077void
1078racct_move(struct racct *dest, struct racct *src)
1079{
1080
1081	ASSERT_RACCT_ENABLED();
1082
1083	mtx_lock(&racct_lock);
1084
1085	racct_add_racct(dest, src);
1086	racct_sub_racct(src, src);
1087
1088	mtx_unlock(&racct_lock);
1089}
1090
1091static void
1092racct_proc_throttle(struct proc *p)
1093{
1094	struct thread *td;
1095#ifdef SMP
1096	int cpuid;
1097#endif
1098
1099	ASSERT_RACCT_ENABLED();
1100	PROC_LOCK_ASSERT(p, MA_OWNED);
1101
1102	/*
1103	 * Do not block kernel processes.  Also do not block processes with
1104	 * low %cpu utilization to improve interactivity.
1105	 */
1106	if (((p->p_flag & (P_SYSTEM | P_KTHREAD)) != 0) ||
1107	    (p->p_racct->r_resources[RACCT_PCTCPU] <= pcpu_threshold))
1108		return;
1109	p->p_throttled = 1;
1110
1111	FOREACH_THREAD_IN_PROC(p, td) {
1112		thread_lock(td);
1113		switch (td->td_state) {
1114		case TDS_RUNQ:
1115			/*
1116			 * If the thread is on the scheduler run-queue, we can
1117			 * not just remove it from there.  So we set the flag
1118			 * TDF_NEEDRESCHED for the thread, so that once it is
1119			 * running, it is taken off the cpu as soon as possible.
1120			 */
1121			td->td_flags |= TDF_NEEDRESCHED;
1122			break;
1123		case TDS_RUNNING:
1124			/*
1125			 * If the thread is running, we request a context
1126			 * switch for it by setting the TDF_NEEDRESCHED flag.
1127			 */
1128			td->td_flags |= TDF_NEEDRESCHED;
1129#ifdef SMP
1130			cpuid = td->td_oncpu;
1131			if ((cpuid != NOCPU) && (td != curthread))
1132				ipi_cpu(cpuid, IPI_AST);
1133#endif
1134			break;
1135		default:
1136			break;
1137		}
1138		thread_unlock(td);
1139	}
1140}
1141
1142static void
1143racct_proc_wakeup(struct proc *p)
1144{
1145
1146	ASSERT_RACCT_ENABLED();
1147
1148	PROC_LOCK_ASSERT(p, MA_OWNED);
1149
1150	if (p->p_throttled) {
1151		p->p_throttled = 0;
1152		wakeup(p->p_racct);
1153	}
1154}
1155
1156static void
1157racct_decay_resource(struct racct *racct, void * res, void* dummy)
1158{
1159	int resource;
1160	int64_t r_old, r_new;
1161
1162	ASSERT_RACCT_ENABLED();
1163
1164	resource = *(int *)res;
1165	r_old = racct->r_resources[resource];
1166
1167	/* If there is nothing to decay, just exit. */
1168	if (r_old <= 0)
1169		return;
1170
1171	mtx_lock(&racct_lock);
1172	r_new = r_old * RACCT_DECAY_FACTOR / FSCALE;
1173	racct->r_resources[resource] = r_new;
1174	mtx_unlock(&racct_lock);
1175}
1176
1177static void
1178racct_decay(int resource)
1179{
1180
1181	ASSERT_RACCT_ENABLED();
1182
1183	ui_racct_foreach(racct_decay_resource, &resource, NULL);
1184	loginclass_racct_foreach(racct_decay_resource, &resource, NULL);
1185	prison_racct_foreach(racct_decay_resource, &resource, NULL);
1186}
1187
1188static void
1189racctd(void)
1190{
1191	struct thread *td;
1192	struct proc *p;
1193	struct timeval wallclock;
1194	uint64_t runtime;
1195	uint64_t pct, pct_estimate;
1196
1197	ASSERT_RACCT_ENABLED();
1198
1199	for (;;) {
1200		racct_decay(RACCT_PCTCPU);
1201
1202		sx_slock(&allproc_lock);
1203
1204		LIST_FOREACH(p, &zombproc, p_list) {
1205			PROC_LOCK(p);
1206			racct_set(p, RACCT_PCTCPU, 0);
1207			PROC_UNLOCK(p);
1208		}
1209
1210		FOREACH_PROC_IN_SYSTEM(p) {
1211			PROC_LOCK(p);
1212			if (p->p_state != PRS_NORMAL) {
1213				PROC_UNLOCK(p);
1214				continue;
1215			}
1216
1217			microuptime(&wallclock);
1218			timevalsub(&wallclock, &p->p_stats->p_start);
1219			PROC_SLOCK(p);
1220			FOREACH_THREAD_IN_PROC(p, td)
1221				ruxagg(p, td);
1222			runtime = cputick2usec(p->p_rux.rux_runtime);
1223			PROC_SUNLOCK(p);
1224#ifdef notyet
1225			KASSERT(runtime >= p->p_prev_runtime,
1226			    ("runtime < p_prev_runtime"));
1227#else
1228			if (runtime < p->p_prev_runtime)
1229				runtime = p->p_prev_runtime;
1230#endif
1231			p->p_prev_runtime = runtime;
1232			if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
1233				pct_estimate = (1000000 * runtime * 100) /
1234				    ((uint64_t)wallclock.tv_sec * 1000000 +
1235				    wallclock.tv_usec);
1236			} else
1237				pct_estimate = 0;
1238			pct = racct_getpcpu(p, pct_estimate);
1239			mtx_lock(&racct_lock);
1240			racct_set_force_locked(p, RACCT_PCTCPU, pct);
1241			racct_set_locked(p, RACCT_CPU, runtime);
1242			racct_set_locked(p, RACCT_WALLCLOCK,
1243			    (uint64_t)wallclock.tv_sec * 1000000 +
1244			    wallclock.tv_usec);
1245			mtx_unlock(&racct_lock);
1246			PROC_UNLOCK(p);
1247		}
1248
1249		/*
1250		 * To ensure that processes are throttled in a fair way, we need
1251		 * to iterate over all processes again and check the limits
1252		 * for %cpu resource only after ucred racct containers have been
1253		 * properly filled.
1254		 */
1255		FOREACH_PROC_IN_SYSTEM(p) {
1256			PROC_LOCK(p);
1257			if (p->p_state != PRS_NORMAL) {
1258				PROC_UNLOCK(p);
1259				continue;
1260			}
1261
1262			if (racct_pcpu_available(p) <= 0)
1263				racct_proc_throttle(p);
1264			else if (p->p_throttled)
1265				racct_proc_wakeup(p);
1266			PROC_UNLOCK(p);
1267		}
1268		sx_sunlock(&allproc_lock);
1269		pause("-", hz);
1270	}
1271}
1272
1273static struct kproc_desc racctd_kp = {
1274	"racctd",
1275	racctd,
1276	NULL
1277};
1278
1279static void
1280racctd_init(void)
1281{
1282	if (!racct_enable)
1283		return;
1284
1285	kproc_start(&racctd_kp);
1286}
1287SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL);
1288
1289static void
1290racct_init(void)
1291{
1292	if (!racct_enable)
1293		return;
1294
1295	racct_zone = uma_zcreate("racct", sizeof(struct racct),
1296	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1297	/*
1298	 * XXX: Move this somewhere.
1299	 */
1300	prison0.pr_prison_racct = prison_racct_find("0");
1301}
1302SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL);
1303
1304#else /* !RACCT */
1305
1306int
1307racct_add(struct proc *p, int resource, uint64_t amount)
1308{
1309
1310	return (0);
1311}
1312
1313void
1314racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
1315{
1316}
1317
1318void
1319racct_add_force(struct proc *p, int resource, uint64_t amount)
1320{
1321
1322	return;
1323}
1324
1325int
1326racct_set(struct proc *p, int resource, uint64_t amount)
1327{
1328
1329	return (0);
1330}
1331
1332void
1333racct_set_force(struct proc *p, int resource, uint64_t amount)
1334{
1335}
1336
1337void
1338racct_sub(struct proc *p, int resource, uint64_t amount)
1339{
1340}
1341
1342void
1343racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
1344{
1345}
1346
1347uint64_t
1348racct_get_limit(struct proc *p, int resource)
1349{
1350
1351	return (UINT64_MAX);
1352}
1353
1354uint64_t
1355racct_get_available(struct proc *p, int resource)
1356{
1357
1358	return (UINT64_MAX);
1359}
1360
1361void
1362racct_create(struct racct **racctp)
1363{
1364}
1365
1366void
1367racct_destroy(struct racct **racctp)
1368{
1369}
1370
1371int
1372racct_proc_fork(struct proc *parent, struct proc *child)
1373{
1374
1375	return (0);
1376}
1377
1378void
1379racct_proc_fork_done(struct proc *child)
1380{
1381}
1382
1383void
1384racct_proc_exit(struct proc *p)
1385{
1386}
1387
1388#endif /* !RACCT */
1389