kern_ntptime.c revision 75540
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2001			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * $FreeBSD: head/sys/kern/kern_ntptime.c 75540 2001-04-16 13:05:05Z jhay $
32 */
33
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/time.h>
42#include <sys/timex.h>
43#include <sys/timetc.h>
44#include <sys/timepps.h>
45#include <sys/sysctl.h>
46
47/*
48 * Single-precision macros for 64-bit machines
49 */
50typedef long long l_fp;
51#define L_ADD(v, u)	((v) += (u))
52#define L_SUB(v, u)	((v) -= (u))
53#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
54#define L_NEG(v)	((v) = -(v))
55#define L_RSHIFT(v, n) \
56	do { \
57		if ((v) < 0) \
58			(v) = -(-(v) >> (n)); \
59		else \
60			(v) = (v) >> (n); \
61	} while (0)
62#define L_MPY(v, a)	((v) *= (a))
63#define L_CLR(v)	((v) = 0)
64#define L_ISNEG(v)	((v) < 0)
65#define L_LINT(v, a)	((v) = (long long)(a) << 32)
66#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
67
68/*
69 * Generic NTP kernel interface
70 *
71 * These routines constitute the Network Time Protocol (NTP) interfaces
72 * for user and daemon application programs. The ntp_gettime() routine
73 * provides the time, maximum error (synch distance) and estimated error
74 * (dispersion) to client user application programs. The ntp_adjtime()
75 * routine is used by the NTP daemon to adjust the system clock to an
76 * externally derived time. The time offset and related variables set by
77 * this routine are used by other routines in this module to adjust the
78 * phase and frequency of the clock discipline loop which controls the
79 * system clock.
80 *
81 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
82 * defined), the time at each tick interrupt is derived directly from
83 * the kernel time variable. When the kernel time is reckoned in
84 * microseconds, (NTP_NANO undefined), the time is derived from the
85 * kernel time variable together with a variable representing the
86 * leftover nanoseconds at the last tick interrupt. In either case, the
87 * current nanosecond time is reckoned from these values plus an
88 * interpolated value derived by the clock routines in another
89 * architecture-specific module. The interpolation can use either a
90 * dedicated counter or a processor cycle counter (PCC) implemented in
91 * some architectures.
92 *
93 * Note that all routines must run at priority splclock or higher.
94 */
95/*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The nanosecond clock discipline uses two variable types, time
99 * variables and frequency variables. Both types are represented as 64-
100 * bit fixed-point quantities with the decimal point between two 32-bit
101 * halves. On a 32-bit machine, each half is represented as a single
102 * word and mathematical operations are done using multiple-precision
103 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
104 * used.
105 *
106 * A time variable is a signed 64-bit fixed-point number in ns and
107 * fraction. It represents the remaining time offset to be amortized
108 * over succeeding tick interrupts. The maximum time offset is about
109 * 0.5 s and the resolution is about 2.3e-10 ns.
110 *
111 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
112 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
113 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114 * |s s s|			 ns				   |
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |			    fraction				   |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 *
119 * A frequency variable is a signed 64-bit fixed-point number in ns/s
120 * and fraction. It represents the ns and fraction to be added to the
121 * kernel time variable at each second. The maximum frequency offset is
122 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
123 *
124 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |s s s s s s s s s s s s s|	          ns/s			   |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |			    fraction				   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 */
132/*
133 * The following variables establish the state of the PLL/FLL and the
134 * residual time and frequency offset of the local clock.
135 */
136#define SHIFT_PLL	4		/* PLL loop gain (shift) */
137#define SHIFT_FLL	2		/* FLL loop gain (shift) */
138
139static int time_state = TIME_OK;	/* clock state */
140static int time_status = STA_UNSYNC;	/* clock status bits */
141static long time_tai;			/* TAI offset (s) */
142static long time_monitor;		/* last time offset scaled (ns) */
143static long time_constant;		/* poll interval (shift) (s) */
144static long time_precision = 1;		/* clock precision (ns) */
145static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
146static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
147static long time_reftime;		/* time at last adjustment (s) */
148static long time_tick;			/* nanoseconds per tick (ns) */
149static l_fp time_offset;		/* time offset (ns) */
150static l_fp time_freq;			/* frequency offset (ns/s) */
151static l_fp time_adj;			/* tick adjust (ns/s) */
152
153#ifdef PPS_SYNC
154/*
155 * The following variables are used when a pulse-per-second (PPS) signal
156 * is available and connected via a modem control lead. They establish
157 * the engineering parameters of the clock discipline loop when
158 * controlled by the PPS signal.
159 */
160#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
161#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
162#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
163#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
164#define PPS_VALID	120		/* PPS signal watchdog max (s) */
165#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
166#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
167
168static struct timespec pps_tf[3];	/* phase median filter */
169static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
170static long pps_fcount;			/* frequency accumulator */
171static long pps_jitter;			/* nominal jitter (ns) */
172static long pps_stabil;			/* nominal stability (scaled ns/s) */
173static long pps_lastsec;		/* time at last calibration (s) */
174static int pps_valid;			/* signal watchdog counter */
175static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
176static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
177static int pps_intcnt;			/* wander counter */
178
179/*
180 * PPS signal quality monitors
181 */
182static long pps_calcnt;			/* calibration intervals */
183static long pps_jitcnt;			/* jitter limit exceeded */
184static long pps_stbcnt;			/* stability limit exceeded */
185static long pps_errcnt;			/* calibration errors */
186#endif /* PPS_SYNC */
187/*
188 * End of phase/frequency-lock loop (PLL/FLL) definitions
189 */
190
191static void ntp_init(void);
192static void hardupdate(long offset);
193
194/*
195 * ntp_gettime() - NTP user application interface
196 *
197 * See the timex.h header file for synopsis and API description. Note
198 * that the TAI offset is returned in the ntvtimeval.tai structure
199 * member.
200 */
201static int
202ntp_sysctl(SYSCTL_HANDLER_ARGS)
203{
204	struct ntptimeval ntv;	/* temporary structure */
205	struct timespec atv;	/* nanosecond time */
206
207	nanotime(&atv);
208	ntv.time.tv_sec = atv.tv_sec;
209	ntv.time.tv_nsec = atv.tv_nsec;
210	ntv.maxerror = time_maxerror;
211	ntv.esterror = time_esterror;
212	ntv.tai = time_tai;
213	ntv.time_state = time_state;
214
215	/*
216	 * Status word error decode. If any of these conditions occur,
217	 * an error is returned, instead of the status word. Most
218	 * applications will care only about the fact the system clock
219	 * may not be trusted, not about the details.
220	 *
221	 * Hardware or software error
222	 */
223	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
224
225	/*
226	 * PPS signal lost when either time or frequency synchronization
227	 * requested
228	 */
229	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
230	    !(time_status & STA_PPSSIGNAL)) ||
231
232	/*
233	 * PPS jitter exceeded when time synchronization requested
234	 */
235	    (time_status & STA_PPSTIME &&
236	    time_status & STA_PPSJITTER) ||
237
238	/*
239	 * PPS wander exceeded or calibration error when frequency
240	 * synchronization requested
241	 */
242	    (time_status & STA_PPSFREQ &&
243	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
244		ntv.time_state = TIME_ERROR;
245	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
246}
247
248SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
249SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
250	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
251
252#ifdef PPS_SYNC
253SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
254SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
255SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
256
257SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
258SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
259#endif
260/*
261 * ntp_adjtime() - NTP daemon application interface
262 *
263 * See the timex.h header file for synopsis and API description. Note
264 * that the timex.constant structure member has a dual purpose to set
265 * the time constant and to set the TAI offset.
266 */
267#ifndef _SYS_SYSPROTO_H_
268struct ntp_adjtime_args {
269	struct timex *tp;
270};
271#endif
272
273int
274ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
275{
276	struct timex ntv;	/* temporary structure */
277	long freq;		/* frequency ns/s) */
278	int modes;		/* mode bits from structure */
279	int s;			/* caller priority */
280	int error;
281
282	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
283	if (error)
284		return(error);
285
286	/*
287	 * Update selected clock variables - only the superuser can
288	 * change anything. Note that there is no error checking here on
289	 * the assumption the superuser should know what it is doing.
290	 * Note that either the time constant or TAI offset are loaded
291	 * from the ntv.constant member, depending on the mode bits. If
292	 * the STA_PLL bit in the status word is cleared, the state and
293	 * status words are reset to the initial values at boot.
294	 */
295	modes = ntv.modes;
296	if (modes)
297		error = suser(p);
298	if (error)
299		return (error);
300	s = splclock();
301	if (modes & MOD_MAXERROR)
302		time_maxerror = ntv.maxerror;
303	if (modes & MOD_ESTERROR)
304		time_esterror = ntv.esterror;
305	if (modes & MOD_STATUS) {
306		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
307			time_state = TIME_OK;
308			time_status = STA_UNSYNC;
309#ifdef PPS_SYNC
310			pps_shift = PPS_FAVG;
311#endif /* PPS_SYNC */
312		}
313		time_status &= STA_RONLY;
314		time_status |= ntv.status & ~STA_RONLY;
315	}
316	if (modes & MOD_TIMECONST) {
317		if (ntv.constant < 0)
318			time_constant = 0;
319		else if (ntv.constant > MAXTC)
320			time_constant = MAXTC;
321		else
322			time_constant = ntv.constant;
323	}
324	if (modes & MOD_TAI) {
325		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
326			time_tai = ntv.constant;
327	}
328#ifdef PPS_SYNC
329	if (modes & MOD_PPSMAX) {
330		if (ntv.shift < PPS_FAVG)
331			pps_shiftmax = PPS_FAVG;
332		else if (ntv.shift > PPS_FAVGMAX)
333			pps_shiftmax = PPS_FAVGMAX;
334		else
335			pps_shiftmax = ntv.shift;
336	}
337#endif /* PPS_SYNC */
338	if (modes & MOD_NANO)
339		time_status |= STA_NANO;
340	if (modes & MOD_MICRO)
341		time_status &= ~STA_NANO;
342	if (modes & MOD_CLKB)
343		time_status |= STA_CLK;
344	if (modes & MOD_CLKA)
345		time_status &= ~STA_CLK;
346	if (modes & MOD_OFFSET) {
347		if (time_status & STA_NANO)
348			hardupdate(ntv.offset);
349		else
350			hardupdate(ntv.offset * 1000);
351	}
352	if (modes & MOD_FREQUENCY) {
353		freq = (ntv.freq * 1000LL) >> 16;
354		if (freq > MAXFREQ)
355			L_LINT(time_freq, MAXFREQ);
356		else if (freq < -MAXFREQ)
357			L_LINT(time_freq, -MAXFREQ);
358		else
359			L_LINT(time_freq, freq);
360#ifdef PPS_SYNC
361		pps_freq = time_freq;
362#endif /* PPS_SYNC */
363	}
364
365	/*
366	 * Retrieve all clock variables. Note that the TAI offset is
367	 * returned only by ntp_gettime();
368	 */
369	if (time_status & STA_NANO)
370		ntv.offset = time_monitor;
371	else
372		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
373	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
374	ntv.maxerror = time_maxerror;
375	ntv.esterror = time_esterror;
376	ntv.status = time_status;
377	ntv.constant = time_constant;
378	if (time_status & STA_NANO)
379		ntv.precision = time_precision;
380	else
381		ntv.precision = time_precision / 1000;
382	ntv.tolerance = MAXFREQ * SCALE_PPM;
383#ifdef PPS_SYNC
384	ntv.shift = pps_shift;
385	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
386	if (time_status & STA_NANO)
387		ntv.jitter = pps_jitter;
388	else
389		ntv.jitter = pps_jitter / 1000;
390	ntv.stabil = pps_stabil;
391	ntv.calcnt = pps_calcnt;
392	ntv.errcnt = pps_errcnt;
393	ntv.jitcnt = pps_jitcnt;
394	ntv.stbcnt = pps_stbcnt;
395#endif /* PPS_SYNC */
396	splx(s);
397
398	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
399	if (error)
400		return (error);
401
402	/*
403	 * Status word error decode. See comments in
404	 * ntp_gettime() routine.
405	 */
406	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
407	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
408	    !(time_status & STA_PPSSIGNAL)) ||
409	    (time_status & STA_PPSTIME &&
410	    time_status & STA_PPSJITTER) ||
411	    (time_status & STA_PPSFREQ &&
412	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
413		p->p_retval[0] = TIME_ERROR;
414	else
415		p->p_retval[0] = time_state;
416	return (error);
417}
418
419/*
420 * second_overflow() - called after ntp_tick_adjust()
421 *
422 * This routine is ordinarily called immediately following the above
423 * routine ntp_tick_adjust(). While these two routines are normally
424 * combined, they are separated here only for the purposes of
425 * simulation.
426 */
427void
428ntp_update_second(struct timecounter *tcp)
429{
430	u_int32_t *newsec;
431	l_fp ftemp;		/* 32/64-bit temporary */
432
433	newsec = &tcp->tc_offset_sec;
434	/*
435	 * On rollover of the second both the nanosecond and microsecond
436	 * clocks are updated and the state machine cranked as
437	 * necessary. The phase adjustment to be used for the next
438	 * second is calculated and the maximum error is increased by
439	 * the tolerance.
440	 */
441	time_maxerror += MAXFREQ / 1000;
442
443	/*
444	 * Leap second processing. If in leap-insert state at
445	 * the end of the day, the system clock is set back one
446	 * second; if in leap-delete state, the system clock is
447	 * set ahead one second. The nano_time() routine or
448	 * external clock driver will insure that reported time
449	 * is always monotonic.
450	 */
451	switch (time_state) {
452
453		/*
454		 * No warning.
455		 */
456		case TIME_OK:
457		if (time_status & STA_INS)
458			time_state = TIME_INS;
459		else if (time_status & STA_DEL)
460			time_state = TIME_DEL;
461		break;
462
463		/*
464		 * Insert second 23:59:60 following second
465		 * 23:59:59.
466		 */
467		case TIME_INS:
468		if (!(time_status & STA_INS))
469			time_state = TIME_OK;
470		else if ((*newsec) % 86400 == 0) {
471			(*newsec)--;
472			time_state = TIME_OOP;
473		}
474		break;
475
476		/*
477		 * Delete second 23:59:59.
478		 */
479		case TIME_DEL:
480		if (!(time_status & STA_DEL))
481			time_state = TIME_OK;
482		else if (((*newsec) + 1) % 86400 == 0) {
483			(*newsec)++;
484			time_tai--;
485			time_state = TIME_WAIT;
486		}
487		break;
488
489		/*
490		 * Insert second in progress.
491		 */
492		case TIME_OOP:
493			time_tai++;
494			time_state = TIME_WAIT;
495		break;
496
497		/*
498		 * Wait for status bits to clear.
499		 */
500		case TIME_WAIT:
501		if (!(time_status & (STA_INS | STA_DEL)))
502			time_state = TIME_OK;
503	}
504
505	/*
506	 * Compute the total time adjustment for the next second
507	 * in ns. The offset is reduced by a factor depending on
508	 * whether the PPS signal is operating. Note that the
509	 * value is in effect scaled by the clock frequency,
510	 * since the adjustment is added at each tick interrupt.
511	 */
512	ftemp = time_offset;
513#ifdef PPS_SYNC
514	/* XXX even if PPS signal dies we should finish adjustment ? */
515	if (time_status & STA_PPSTIME && time_status &
516	    STA_PPSSIGNAL)
517		L_RSHIFT(ftemp, pps_shift);
518	else
519		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
520#else
521		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
522#endif /* PPS_SYNC */
523	time_adj = ftemp;
524	L_SUB(time_offset, ftemp);
525	L_ADD(time_adj, time_freq);
526	tcp->tc_adjustment = time_adj;
527#ifdef PPS_SYNC
528	if (pps_valid > 0)
529		pps_valid--;
530	else
531		time_status &= ~STA_PPSSIGNAL;
532#endif /* PPS_SYNC */
533}
534
535/*
536 * ntp_init() - initialize variables and structures
537 *
538 * This routine must be called after the kernel variables hz and tick
539 * are set or changed and before the next tick interrupt. In this
540 * particular implementation, these values are assumed set elsewhere in
541 * the kernel. The design allows the clock frequency and tick interval
542 * to be changed while the system is running. So, this routine should
543 * probably be integrated with the code that does that.
544 */
545static void
546ntp_init()
547{
548
549	/*
550	 * The following variable must be initialized any time the
551	 * kernel variable hz is changed.
552	 */
553	time_tick = NANOSECOND / hz;
554
555	/*
556	 * The following variables are initialized only at startup. Only
557	 * those structures not cleared by the compiler need to be
558	 * initialized, and these only in the simulator. In the actual
559	 * kernel, any nonzero values here will quickly evaporate.
560	 */
561	L_CLR(time_offset);
562	L_CLR(time_freq);
563#ifdef PPS_SYNC
564	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
565	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
566	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
567	pps_fcount = 0;
568	L_CLR(pps_freq);
569#endif /* PPS_SYNC */
570}
571
572SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
573
574/*
575 * hardupdate() - local clock update
576 *
577 * This routine is called by ntp_adjtime() to update the local clock
578 * phase and frequency. The implementation is of an adaptive-parameter,
579 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
580 * time and frequency offset estimates for each call. If the kernel PPS
581 * discipline code is configured (PPS_SYNC), the PPS signal itself
582 * determines the new time offset, instead of the calling argument.
583 * Presumably, calls to ntp_adjtime() occur only when the caller
584 * believes the local clock is valid within some bound (+-128 ms with
585 * NTP). If the caller's time is far different than the PPS time, an
586 * argument will ensue, and it's not clear who will lose.
587 *
588 * For uncompensated quartz crystal oscillators and nominal update
589 * intervals less than 256 s, operation should be in phase-lock mode,
590 * where the loop is disciplined to phase. For update intervals greater
591 * than 1024 s, operation should be in frequency-lock mode, where the
592 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
593 * is selected by the STA_MODE status bit.
594 */
595static void
596hardupdate(offset)
597	long offset;		/* clock offset (ns) */
598{
599	long mtemp;
600	l_fp ftemp;
601
602	/*
603	 * Select how the phase is to be controlled and from which
604	 * source. If the PPS signal is present and enabled to
605	 * discipline the time, the PPS offset is used; otherwise, the
606	 * argument offset is used.
607	 */
608	if (!(time_status & STA_PLL))
609		return;
610	if (!(time_status & STA_PPSTIME && time_status &
611	    STA_PPSSIGNAL)) {
612		if (offset > MAXPHASE)
613			time_monitor = MAXPHASE;
614		else if (offset < -MAXPHASE)
615			time_monitor = -MAXPHASE;
616		else
617			time_monitor = offset;
618		L_LINT(time_offset, time_monitor);
619	}
620
621	/*
622	 * Select how the frequency is to be controlled and in which
623	 * mode (PLL or FLL). If the PPS signal is present and enabled
624	 * to discipline the frequency, the PPS frequency is used;
625	 * otherwise, the argument offset is used to compute it.
626	 */
627	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
628		time_reftime = time_second;
629		return;
630	}
631	if (time_status & STA_FREQHOLD || time_reftime == 0)
632		time_reftime = time_second;
633	mtemp = time_second - time_reftime;
634	L_LINT(ftemp, time_monitor);
635	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
636	L_MPY(ftemp, mtemp);
637	L_ADD(time_freq, ftemp);
638	time_status &= ~STA_MODE;
639	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
640	    MAXSEC)) {
641		L_LINT(ftemp, (time_monitor << 4) / mtemp);
642		L_RSHIFT(ftemp, SHIFT_FLL + 4);
643		L_ADD(time_freq, ftemp);
644		time_status |= STA_MODE;
645	}
646	time_reftime = time_second;
647	if (L_GINT(time_freq) > MAXFREQ)
648		L_LINT(time_freq, MAXFREQ);
649	else if (L_GINT(time_freq) < -MAXFREQ)
650		L_LINT(time_freq, -MAXFREQ);
651}
652
653#ifdef PPS_SYNC
654/*
655 * hardpps() - discipline CPU clock oscillator to external PPS signal
656 *
657 * This routine is called at each PPS interrupt in order to discipline
658 * the CPU clock oscillator to the PPS signal. There are two independent
659 * first-order feedback loops, one for the phase, the other for the
660 * frequency. The phase loop measures and grooms the PPS phase offset
661 * and leaves it in a handy spot for the seconds overflow routine. The
662 * frequency loop averages successive PPS phase differences and
663 * calculates the PPS frequency offset, which is also processed by the
664 * seconds overflow routine. The code requires the caller to capture the
665 * time and architecture-dependent hardware counter values in
666 * nanoseconds at the on-time PPS signal transition.
667 *
668 * Note that, on some Unix systems this routine runs at an interrupt
669 * priority level higher than the timer interrupt routine hardclock().
670 * Therefore, the variables used are distinct from the hardclock()
671 * variables, except for the actual time and frequency variables, which
672 * are determined by this routine and updated atomically.
673 */
674void
675hardpps(tsp, nsec)
676	struct timespec *tsp;	/* time at PPS */
677	long nsec;		/* hardware counter at PPS */
678{
679	long u_sec, u_nsec, v_nsec; /* temps */
680	l_fp ftemp;
681
682	/*
683	 * The signal is first processed by a range gate and frequency
684	 * discriminator. The range gate rejects noise spikes outside
685	 * the range +-500 us. The frequency discriminator rejects input
686	 * signals with apparent frequency outside the range 1 +-500
687	 * PPM. If two hits occur in the same second, we ignore the
688	 * later hit; if not and a hit occurs outside the range gate,
689	 * keep the later hit for later comparison, but do not process
690	 * it.
691	 */
692	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
693	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
694	pps_valid = PPS_VALID;
695	u_sec = tsp->tv_sec;
696	u_nsec = tsp->tv_nsec;
697	if (u_nsec >= (NANOSECOND >> 1)) {
698		u_nsec -= NANOSECOND;
699		u_sec++;
700	}
701	v_nsec = u_nsec - pps_tf[0].tv_nsec;
702	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
703	    MAXFREQ)
704		return;
705	pps_tf[2] = pps_tf[1];
706	pps_tf[1] = pps_tf[0];
707	pps_tf[0].tv_sec = u_sec;
708	pps_tf[0].tv_nsec = u_nsec;
709
710	/*
711	 * Compute the difference between the current and previous
712	 * counter values. If the difference exceeds 0.5 s, assume it
713	 * has wrapped around, so correct 1.0 s. If the result exceeds
714	 * the tick interval, the sample point has crossed a tick
715	 * boundary during the last second, so correct the tick. Very
716	 * intricate.
717	 */
718	u_nsec = nsec;
719	if (u_nsec > (NANOSECOND >> 1))
720		u_nsec -= NANOSECOND;
721	else if (u_nsec < -(NANOSECOND >> 1))
722		u_nsec += NANOSECOND;
723	pps_fcount += u_nsec;
724	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
725		return;
726	time_status &= ~STA_PPSJITTER;
727
728	/*
729	 * A three-stage median filter is used to help denoise the PPS
730	 * time. The median sample becomes the time offset estimate; the
731	 * difference between the other two samples becomes the time
732	 * dispersion (jitter) estimate.
733	 */
734	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
735		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
736			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
737			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
738		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
739			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
740			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
741		} else {
742			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
743			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
744		}
745	} else {
746		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
747			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
748			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
749		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
750			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
751			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
752		} else {
753			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
754			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
755		}
756	}
757
758	/*
759	 * Nominal jitter is due to PPS signal noise and interrupt
760	 * latency. If it exceeds the popcorn threshold, the sample is
761	 * discarded. otherwise, if so enabled, the time offset is
762	 * updated. We can tolerate a modest loss of data here without
763	 * much degrading time accuracy.
764	 */
765	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
766		time_status |= STA_PPSJITTER;
767		pps_jitcnt++;
768	} else if (time_status & STA_PPSTIME) {
769		time_monitor = -v_nsec;
770		L_LINT(time_offset, time_monitor);
771	}
772	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
773	u_sec = pps_tf[0].tv_sec - pps_lastsec;
774	if (u_sec < (1 << pps_shift))
775		return;
776
777	/*
778	 * At the end of the calibration interval the difference between
779	 * the first and last counter values becomes the scaled
780	 * frequency. It will later be divided by the length of the
781	 * interval to determine the frequency update. If the frequency
782	 * exceeds a sanity threshold, or if the actual calibration
783	 * interval is not equal to the expected length, the data are
784	 * discarded. We can tolerate a modest loss of data here without
785	 * much degrading frequency accuracy.
786	 */
787	pps_calcnt++;
788	v_nsec = -pps_fcount;
789	pps_lastsec = pps_tf[0].tv_sec;
790	pps_fcount = 0;
791	u_nsec = MAXFREQ << pps_shift;
792	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
793	    pps_shift)) {
794		time_status |= STA_PPSERROR;
795		pps_errcnt++;
796		return;
797	}
798
799	/*
800	 * Here the raw frequency offset and wander (stability) is
801	 * calculated. If the wander is less than the wander threshold
802	 * for four consecutive averaging intervals, the interval is
803	 * doubled; if it is greater than the threshold for four
804	 * consecutive intervals, the interval is halved. The scaled
805	 * frequency offset is converted to frequency offset. The
806	 * stability metric is calculated as the average of recent
807	 * frequency changes, but is used only for performance
808	 * monitoring.
809	 */
810	L_LINT(ftemp, v_nsec);
811	L_RSHIFT(ftemp, pps_shift);
812	L_SUB(ftemp, pps_freq);
813	u_nsec = L_GINT(ftemp);
814	if (u_nsec > PPS_MAXWANDER) {
815		L_LINT(ftemp, PPS_MAXWANDER);
816		pps_intcnt--;
817		time_status |= STA_PPSWANDER;
818		pps_stbcnt++;
819	} else if (u_nsec < -PPS_MAXWANDER) {
820		L_LINT(ftemp, -PPS_MAXWANDER);
821		pps_intcnt--;
822		time_status |= STA_PPSWANDER;
823		pps_stbcnt++;
824	} else {
825		pps_intcnt++;
826	}
827	if (pps_intcnt >= 4) {
828		pps_intcnt = 4;
829		if (pps_shift < pps_shiftmax) {
830			pps_shift++;
831			pps_intcnt = 0;
832		}
833	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
834		pps_intcnt = -4;
835		if (pps_shift > PPS_FAVG) {
836			pps_shift--;
837			pps_intcnt = 0;
838		}
839	}
840	if (u_nsec < 0)
841		u_nsec = -u_nsec;
842	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
843
844	/*
845	 * The PPS frequency is recalculated and clamped to the maximum
846	 * MAXFREQ. If enabled, the system clock frequency is updated as
847	 * well.
848	 */
849	L_ADD(pps_freq, ftemp);
850	u_nsec = L_GINT(pps_freq);
851	if (u_nsec > MAXFREQ)
852		L_LINT(pps_freq, MAXFREQ);
853	else if (u_nsec < -MAXFREQ)
854		L_LINT(pps_freq, -MAXFREQ);
855	if (time_status & STA_PPSFREQ)
856		time_freq = pps_freq;
857}
858#endif /* PPS_SYNC */
859