kern_ntptime.c revision 165969
1139804Simp/*-
2139804Simp ***********************************************************************
344574Sphk *								       *
475540Sjhay * Copyright (c) David L. Mills 1993-2001			       *
544574Sphk *								       *
644574Sphk * Permission to use, copy, modify, and distribute this software and   *
744574Sphk * its documentation for any purpose and without fee is hereby	       *
844574Sphk * granted, provided that the above copyright notice appears in all    *
944574Sphk * copies and that both the copyright notice and this permission       *
1044574Sphk * notice appear in supporting documentation, and that the name	       *
1144574Sphk * University of Delaware not be used in advertising or publicity      *
1244574Sphk * pertaining to distribution of the software without specific,	       *
1344574Sphk * written prior permission. The University of Delaware makes no       *
1444574Sphk * representations about the suitability this software for any	       *
1544574Sphk * purpose. It is provided "as is" without express or implied	       *
1644574Sphk * warranty.							       *
1744574Sphk *								       *
1844574Sphk **********************************************************************/
192858Swollman
202858Swollman/*
2144574Sphk * Adapted from the original sources for FreeBSD and timecounters by:
2244666Sphk * Poul-Henning Kamp <phk@FreeBSD.org>.
232858Swollman *
2444574Sphk * The 32bit version of the "LP" macros seems a bit past its "sell by"
2544574Sphk * date so I have retained only the 64bit version and included it directly
2644574Sphk * in this file.
2721101Sjhay *
2844574Sphk * Only minor changes done to interface with the timecounters over in
2944574Sphk * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
3044574Sphk * confusing and/or plain wrong in that context.
312858Swollman */
3232925Seivind
33116182Sobrien#include <sys/cdefs.h>
34116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 165969 2007-01-12 07:40:30Z imp $");
35116182Sobrien
3644666Sphk#include "opt_ntp.h"
3744666Sphk
382858Swollman#include <sys/param.h>
392858Swollman#include <sys/systm.h>
4012221Sbde#include <sys/sysproto.h>
412858Swollman#include <sys/kernel.h>
42164033Srwatson#include <sys/priv.h>
432858Swollman#include <sys/proc.h>
4482717Sdillon#include <sys/lock.h>
4582717Sdillon#include <sys/mutex.h>
4644574Sphk#include <sys/time.h>
472858Swollman#include <sys/timex.h>
4858377Sphk#include <sys/timetc.h>
4936941Sphk#include <sys/timepps.h>
50144445Sjhb#include <sys/syscallsubr.h>
512858Swollman#include <sys/sysctl.h>
522858Swollman
532858Swollman/*
5444574Sphk * Single-precision macros for 64-bit machines
5544574Sphk */
56126974Sphktypedef int64_t l_fp;
5744574Sphk#define L_ADD(v, u)	((v) += (u))
5844574Sphk#define L_SUB(v, u)	((v) -= (u))
59126974Sphk#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
6044574Sphk#define L_NEG(v)	((v) = -(v))
6144574Sphk#define L_RSHIFT(v, n) \
6244574Sphk	do { \
6344574Sphk		if ((v) < 0) \
6444574Sphk			(v) = -(-(v) >> (n)); \
6544574Sphk		else \
6644574Sphk			(v) = (v) >> (n); \
6744574Sphk	} while (0)
6844574Sphk#define L_MPY(v, a)	((v) *= (a))
6944574Sphk#define L_CLR(v)	((v) = 0)
7044574Sphk#define L_ISNEG(v)	((v) < 0)
71126974Sphk#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
7244574Sphk#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
7344574Sphk
7444574Sphk/*
7544574Sphk * Generic NTP kernel interface
7632513Sphk *
7744574Sphk * These routines constitute the Network Time Protocol (NTP) interfaces
7844574Sphk * for user and daemon application programs. The ntp_gettime() routine
7944574Sphk * provides the time, maximum error (synch distance) and estimated error
8044574Sphk * (dispersion) to client user application programs. The ntp_adjtime()
8144574Sphk * routine is used by the NTP daemon to adjust the system clock to an
8244574Sphk * externally derived time. The time offset and related variables set by
8344574Sphk * this routine are used by other routines in this module to adjust the
8444574Sphk * phase and frequency of the clock discipline loop which controls the
8544574Sphk * system clock.
8632513Sphk *
8745294Sphk * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
8844574Sphk * defined), the time at each tick interrupt is derived directly from
8944574Sphk * the kernel time variable. When the kernel time is reckoned in
9045294Sphk * microseconds, (NTP_NANO undefined), the time is derived from the
9145294Sphk * kernel time variable together with a variable representing the
9245294Sphk * leftover nanoseconds at the last tick interrupt. In either case, the
9345294Sphk * current nanosecond time is reckoned from these values plus an
9445294Sphk * interpolated value derived by the clock routines in another
9545294Sphk * architecture-specific module. The interpolation can use either a
9645294Sphk * dedicated counter or a processor cycle counter (PCC) implemented in
9745294Sphk * some architectures.
9832513Sphk *
9944574Sphk * Note that all routines must run at priority splclock or higher.
10044574Sphk */
10144574Sphk/*
10244574Sphk * Phase/frequency-lock loop (PLL/FLL) definitions
10332513Sphk *
10444574Sphk * The nanosecond clock discipline uses two variable types, time
10544574Sphk * variables and frequency variables. Both types are represented as 64-
10644574Sphk * bit fixed-point quantities with the decimal point between two 32-bit
10744574Sphk * halves. On a 32-bit machine, each half is represented as a single
10844574Sphk * word and mathematical operations are done using multiple-precision
10944574Sphk * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
11044574Sphk * used.
11132513Sphk *
11244574Sphk * A time variable is a signed 64-bit fixed-point number in ns and
11344574Sphk * fraction. It represents the remaining time offset to be amortized
11444574Sphk * over succeeding tick interrupts. The maximum time offset is about
11545294Sphk * 0.5 s and the resolution is about 2.3e-10 ns.
11632513Sphk *
11744574Sphk *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
11844574Sphk *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
11944574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
12044574Sphk * |s s s|			 ns				   |
12144574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
12244574Sphk * |			    fraction				   |
12344574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
12432513Sphk *
12544574Sphk * A frequency variable is a signed 64-bit fixed-point number in ns/s
12644574Sphk * and fraction. It represents the ns and fraction to be added to the
12744574Sphk * kernel time variable at each second. The maximum frequency offset is
12845294Sphk * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
12932513Sphk *
13044574Sphk *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
13144574Sphk *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
13244574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
13344574Sphk * |s s s s s s s s s s s s s|	          ns/s			   |
13444574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
13544574Sphk * |			    fraction				   |
13644574Sphk * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1372858Swollman */
13832513Sphk/*
13932513Sphk * The following variables establish the state of the PLL/FLL and the
14044574Sphk * residual time and frequency offset of the local clock.
14132513Sphk */
14244574Sphk#define SHIFT_PLL	4		/* PLL loop gain (shift) */
14344574Sphk#define SHIFT_FLL	2		/* FLL loop gain (shift) */
14432513Sphk
14544574Sphkstatic int time_state = TIME_OK;	/* clock state */
14644574Sphkstatic int time_status = STA_UNSYNC;	/* clock status bits */
14765432Sphkstatic long time_tai;			/* TAI offset (s) */
14865432Sphkstatic long time_monitor;		/* last time offset scaled (ns) */
14944574Sphkstatic long time_constant;		/* poll interval (shift) (s) */
15044574Sphkstatic long time_precision = 1;		/* clock precision (ns) */
15144574Sphkstatic long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
15244574Sphkstatic long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
15344574Sphkstatic long time_reftime;		/* time at last adjustment (s) */
15444574Sphkstatic l_fp time_offset;		/* time offset (ns) */
15544574Sphkstatic l_fp time_freq;			/* frequency offset (ns/s) */
15665432Sphkstatic l_fp time_adj;			/* tick adjust (ns/s) */
15744574Sphk
15894754Sphkstatic int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
15994754Sphk
1602858Swollman#ifdef PPS_SYNC
1612858Swollman/*
16244574Sphk * The following variables are used when a pulse-per-second (PPS) signal
16344574Sphk * is available and connected via a modem control lead. They establish
16444574Sphk * the engineering parameters of the clock discipline loop when
16544574Sphk * controlled by the PPS signal.
1662858Swollman */
16744574Sphk#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
16875540Sjhay#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
16950656Sphk#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
17044574Sphk#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
17144574Sphk#define PPS_VALID	120		/* PPS signal watchdog max (s) */
17250656Sphk#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
17350656Sphk#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
17432513Sphk
17550656Sphkstatic struct timespec pps_tf[3];	/* phase median filter */
17644574Sphkstatic l_fp pps_freq;			/* scaled frequency offset (ns/s) */
17745294Sphkstatic long pps_fcount;			/* frequency accumulator */
17850656Sphkstatic long pps_jitter;			/* nominal jitter (ns) */
17950656Sphkstatic long pps_stabil;			/* nominal stability (scaled ns/s) */
18044574Sphkstatic long pps_lastsec;		/* time at last calibration (s) */
18144574Sphkstatic int pps_valid;			/* signal watchdog counter */
18244574Sphkstatic int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
18350656Sphkstatic int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
18444574Sphkstatic int pps_intcnt;			/* wander counter */
18544574Sphk
18632513Sphk/*
18732513Sphk * PPS signal quality monitors
18832513Sphk */
18944574Sphkstatic long pps_calcnt;			/* calibration intervals */
19044574Sphkstatic long pps_jitcnt;			/* jitter limit exceeded */
19144574Sphkstatic long pps_stbcnt;			/* stability limit exceeded */
19244574Sphkstatic long pps_errcnt;			/* calibration errors */
1932858Swollman#endif /* PPS_SYNC */
19432513Sphk/*
19544574Sphk * End of phase/frequency-lock loop (PLL/FLL) definitions
19632513Sphk */
19732513Sphk
19844574Sphkstatic void ntp_init(void);
19944574Sphkstatic void hardupdate(long offset);
200137873Smarksstatic void ntp_gettime1(struct ntptimeval *ntvp);
20132513Sphk
202137873Smarksstatic void
203137873Smarksntp_gettime1(struct ntptimeval *ntvp)
2042858Swollman{
20544574Sphk	struct timespec atv;	/* nanosecond time */
2062858Swollman
207146722Srwatson	GIANT_REQUIRED;
208146722Srwatson
20944574Sphk	nanotime(&atv);
210137873Smarks	ntvp->time.tv_sec = atv.tv_sec;
211137873Smarks	ntvp->time.tv_nsec = atv.tv_nsec;
212137873Smarks	ntvp->maxerror = time_maxerror;
213137873Smarks	ntvp->esterror = time_esterror;
214137873Smarks	ntvp->tai = time_tai;
215137873Smarks	ntvp->time_state = time_state;
2162858Swollman
2172858Swollman	/*
21844574Sphk	 * Status word error decode. If any of these conditions occur,
21944574Sphk	 * an error is returned, instead of the status word. Most
22044574Sphk	 * applications will care only about the fact the system clock
22144574Sphk	 * may not be trusted, not about the details.
2222858Swollman	 *
2232858Swollman	 * Hardware or software error
2242858Swollman	 */
22544574Sphk	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
2262858Swollman
2272858Swollman	/*
22844574Sphk	 * PPS signal lost when either time or frequency synchronization
22944574Sphk	 * requested
2302858Swollman	 */
23144574Sphk	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
23244574Sphk	    !(time_status & STA_PPSSIGNAL)) ||
2332858Swollman
2342858Swollman	/*
23544574Sphk	 * PPS jitter exceeded when time synchronization requested
2362858Swollman	 */
23744574Sphk	    (time_status & STA_PPSTIME &&
23844574Sphk	    time_status & STA_PPSJITTER) ||
2392858Swollman
2402858Swollman	/*
24144574Sphk	 * PPS wander exceeded or calibration error when frequency
24244574Sphk	 * synchronization requested
2432858Swollman	 */
24444574Sphk	    (time_status & STA_PPSFREQ &&
24544574Sphk	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246137873Smarks		ntvp->time_state = TIME_ERROR;
2472858Swollman}
2482858Swollman
249137879Smarks/*
250137879Smarks * ntp_gettime() - NTP user application interface
251137879Smarks *
252137879Smarks * See the timex.h header file for synopsis and API description. Note
253137879Smarks * that the TAI offset is returned in the ntvtimeval.tai structure
254137879Smarks * member.
255137879Smarks */
256137873Smarks#ifndef _SYS_SYSPROTO_H_
257137873Smarksstruct ntp_gettime_args {
258137873Smarks	struct ntptimeval *ntvp;
259137873Smarks};
260137873Smarks#endif
261137873Smarks/* ARGSUSED */
262137873Smarksint
263137873Smarksntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
264137873Smarks{
265137873Smarks	struct ntptimeval ntv;
266137873Smarks
267146722Srwatson	mtx_lock(&Giant);
268137873Smarks	ntp_gettime1(&ntv);
269146722Srwatson	mtx_unlock(&Giant);
270137873Smarks
271165969Simp	td->td_retval[0] = ntv.time_state;
272137873Smarks	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
273137873Smarks}
274137873Smarks
275137873Smarksstatic int
276137873Smarksntp_sysctl(SYSCTL_HANDLER_ARGS)
277137873Smarks{
278137873Smarks	struct ntptimeval ntv;	/* temporary structure */
279137873Smarks
280137873Smarks	ntp_gettime1(&ntv);
281137873Smarks
282137873Smarks	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
283137873Smarks}
284137873Smarks
28544574SphkSYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
28644574SphkSYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
28712623Sphk	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
28812279Sphk
28950663Sphk#ifdef PPS_SYNC
29050656SphkSYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
29155413SphkSYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
29265673SphkSYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
29356458Sphk
29456458SphkSYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
29556458SphkSYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
29650663Sphk#endif
2972858Swollman/*
2982858Swollman * ntp_adjtime() - NTP daemon application interface
29944574Sphk *
30065432Sphk * See the timex.h header file for synopsis and API description. Note
30165432Sphk * that the timex.constant structure member has a dual purpose to set
30265432Sphk * the time constant and to set the TAI offset.
3032858Swollman */
30412221Sbde#ifndef _SYS_SYSPROTO_H_
3052858Swollmanstruct ntp_adjtime_args {
30644574Sphk	struct timex *tp;
3072858Swollman};
30812221Sbde#endif
3092858Swollman
31082717Sdillon/*
31182717Sdillon * MPSAFE
31282717Sdillon */
3132858Swollmanint
31483366Sjulianntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
3152858Swollman{
31644574Sphk	struct timex ntv;	/* temporary structure */
31745294Sphk	long freq;		/* frequency ns/s) */
31844574Sphk	int modes;		/* mode bits from structure */
31944574Sphk	int s;			/* caller priority */
3202858Swollman	int error;
3212858Swollman
3222858Swollman	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
3232858Swollman	if (error)
32444574Sphk		return(error);
3252858Swollman
3262858Swollman	/*
3272858Swollman	 * Update selected clock variables - only the superuser can
3282858Swollman	 * change anything. Note that there is no error checking here on
3292858Swollman	 * the assumption the superuser should know what it is doing.
33065432Sphk	 * Note that either the time constant or TAI offset are loaded
33175540Sjhay	 * from the ntv.constant member, depending on the mode bits. If
33275540Sjhay	 * the STA_PLL bit in the status word is cleared, the state and
33375540Sjhay	 * status words are reset to the initial values at boot.
3342858Swollman	 */
33582717Sdillon	mtx_lock(&Giant);
3362858Swollman	modes = ntv.modes;
33744776Sphk	if (modes)
338164033Srwatson		error = priv_check(td, PRIV_NTP_ADJTIME);
33944574Sphk	if (error)
34082717Sdillon		goto done2;
3412858Swollman	s = splclock();
3422858Swollman	if (modes & MOD_MAXERROR)
3432858Swollman		time_maxerror = ntv.maxerror;
3442858Swollman	if (modes & MOD_ESTERROR)
3452858Swollman		time_esterror = ntv.esterror;
3462858Swollman	if (modes & MOD_STATUS) {
34775540Sjhay		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
34875540Sjhay			time_state = TIME_OK;
34975540Sjhay			time_status = STA_UNSYNC;
35075540Sjhay#ifdef PPS_SYNC
35175540Sjhay			pps_shift = PPS_FAVG;
35275540Sjhay#endif /* PPS_SYNC */
35375540Sjhay		}
3542858Swollman		time_status &= STA_RONLY;
3552858Swollman		time_status |= ntv.status & ~STA_RONLY;
3562858Swollman	}
35745294Sphk	if (modes & MOD_TIMECONST) {
35845294Sphk		if (ntv.constant < 0)
35945294Sphk			time_constant = 0;
36045294Sphk		else if (ntv.constant > MAXTC)
36145294Sphk			time_constant = MAXTC;
36245294Sphk		else
36345294Sphk			time_constant = ntv.constant;
36445294Sphk	}
36565432Sphk	if (modes & MOD_TAI) {
36665432Sphk		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
36765432Sphk			time_tai = ntv.constant;
36865432Sphk	}
36950656Sphk#ifdef PPS_SYNC
37050656Sphk	if (modes & MOD_PPSMAX) {
37150656Sphk		if (ntv.shift < PPS_FAVG)
37250656Sphk			pps_shiftmax = PPS_FAVG;
37350656Sphk		else if (ntv.shift > PPS_FAVGMAX)
37450656Sphk			pps_shiftmax = PPS_FAVGMAX;
37550656Sphk		else
37650656Sphk			pps_shiftmax = ntv.shift;
37750656Sphk	}
37850656Sphk#endif /* PPS_SYNC */
37944574Sphk	if (modes & MOD_NANO)
38044574Sphk		time_status |= STA_NANO;
38144574Sphk	if (modes & MOD_MICRO)
38244574Sphk		time_status &= ~STA_NANO;
38344574Sphk	if (modes & MOD_CLKB)
38444574Sphk		time_status |= STA_CLK;
38544574Sphk	if (modes & MOD_CLKA)
38644574Sphk		time_status &= ~STA_CLK;
38775540Sjhay	if (modes & MOD_FREQUENCY) {
38875540Sjhay		freq = (ntv.freq * 1000LL) >> 16;
38975540Sjhay		if (freq > MAXFREQ)
39075540Sjhay			L_LINT(time_freq, MAXFREQ);
39175540Sjhay		else if (freq < -MAXFREQ)
39275540Sjhay			L_LINT(time_freq, -MAXFREQ);
393126974Sphk		else {
394126974Sphk			/*
395126974Sphk			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
396126974Sphk			 * time_freq is [ns/s * 2^32]
397126974Sphk			 */
398126974Sphk			time_freq = ntv.freq * 1000LL * 65536LL;
399126974Sphk		}
40075540Sjhay#ifdef PPS_SYNC
40175540Sjhay		pps_freq = time_freq;
40275540Sjhay#endif /* PPS_SYNC */
40375540Sjhay	}
404124937Sphk	if (modes & MOD_OFFSET) {
405124937Sphk		if (time_status & STA_NANO)
406124937Sphk			hardupdate(ntv.offset);
407124937Sphk		else
408124937Sphk			hardupdate(ntv.offset * 1000);
409124937Sphk	}
4102858Swollman
4112858Swollman	/*
41265432Sphk	 * Retrieve all clock variables. Note that the TAI offset is
41365432Sphk	 * returned only by ntp_gettime();
4142858Swollman	 */
41544574Sphk	if (time_status & STA_NANO)
41694740Sphk		ntv.offset = L_GINT(time_offset);
4172858Swollman	else
41894740Sphk		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
41945295Sphk	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
4202858Swollman	ntv.maxerror = time_maxerror;
4212858Swollman	ntv.esterror = time_esterror;
4222858Swollman	ntv.status = time_status;
42345294Sphk	ntv.constant = time_constant;
42444574Sphk	if (time_status & STA_NANO)
42544574Sphk		ntv.precision = time_precision;
42644574Sphk	else
42744574Sphk		ntv.precision = time_precision / 1000;
42844574Sphk	ntv.tolerance = MAXFREQ * SCALE_PPM;
4292858Swollman#ifdef PPS_SYNC
4302858Swollman	ntv.shift = pps_shift;
43145295Sphk	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
43244574Sphk	if (time_status & STA_NANO)
43344574Sphk		ntv.jitter = pps_jitter;
43444574Sphk	else
43544574Sphk		ntv.jitter = pps_jitter / 1000;
4362858Swollman	ntv.stabil = pps_stabil;
4372858Swollman	ntv.calcnt = pps_calcnt;
4382858Swollman	ntv.errcnt = pps_errcnt;
4392858Swollman	ntv.jitcnt = pps_jitcnt;
4402858Swollman	ntv.stbcnt = pps_stbcnt;
4412858Swollman#endif /* PPS_SYNC */
44244574Sphk	splx(s);
4432858Swollman
4442858Swollman	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
44544574Sphk	if (error)
44682717Sdillon		goto done2;
44744574Sphk
44844574Sphk	/*
44944574Sphk	 * Status word error decode. See comments in
45044574Sphk	 * ntp_gettime() routine.
45144574Sphk	 */
45244574Sphk	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
45344574Sphk	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
45444574Sphk	    !(time_status & STA_PPSSIGNAL)) ||
45544574Sphk	    (time_status & STA_PPSTIME &&
45644574Sphk	    time_status & STA_PPSJITTER) ||
45744574Sphk	    (time_status & STA_PPSFREQ &&
45882717Sdillon	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
45983366Sjulian		td->td_retval[0] = TIME_ERROR;
46082717Sdillon	} else {
46183366Sjulian		td->td_retval[0] = time_state;
46282717Sdillon	}
46382717Sdillondone2:
46482717Sdillon	mtx_unlock(&Giant);
46545302Sphk	return (error);
46644574Sphk}
46744574Sphk
46844574Sphk/*
46944574Sphk * second_overflow() - called after ntp_tick_adjust()
47044574Sphk *
47144574Sphk * This routine is ordinarily called immediately following the above
47244574Sphk * routine ntp_tick_adjust(). While these two routines are normally
47344574Sphk * combined, they are separated here only for the purposes of
47444574Sphk * simulation.
47544574Sphk */
47644574Sphkvoid
47795529Sphkntp_update_second(int64_t *adjustment, time_t *newsec)
47844574Sphk{
47994754Sphk	int tickrate;
48065432Sphk	l_fp ftemp;		/* 32/64-bit temporary */
48144574Sphk
48250656Sphk	/*
48350656Sphk	 * On rollover of the second both the nanosecond and microsecond
48450656Sphk	 * clocks are updated and the state machine cranked as
48550656Sphk	 * necessary. The phase adjustment to be used for the next
48650656Sphk	 * second is calculated and the maximum error is increased by
48750656Sphk	 * the tolerance.
48850656Sphk	 */
48944574Sphk	time_maxerror += MAXFREQ / 1000;
49044574Sphk
49144574Sphk	/*
49244574Sphk	 * Leap second processing. If in leap-insert state at
49344574Sphk	 * the end of the day, the system clock is set back one
49444574Sphk	 * second; if in leap-delete state, the system clock is
49544574Sphk	 * set ahead one second. The nano_time() routine or
49644574Sphk	 * external clock driver will insure that reported time
49744574Sphk	 * is always monotonic.
49844574Sphk	 */
49944574Sphk	switch (time_state) {
50044574Sphk
5012858Swollman		/*
50244574Sphk		 * No warning.
5032858Swollman		 */
50444574Sphk		case TIME_OK:
50544574Sphk		if (time_status & STA_INS)
50644574Sphk			time_state = TIME_INS;
50744574Sphk		else if (time_status & STA_DEL)
50844574Sphk			time_state = TIME_DEL;
50944574Sphk		break;
51044574Sphk
51144574Sphk		/*
51244574Sphk		 * Insert second 23:59:60 following second
51344574Sphk		 * 23:59:59.
51444574Sphk		 */
51544574Sphk		case TIME_INS:
51644574Sphk		if (!(time_status & STA_INS))
51744574Sphk			time_state = TIME_OK;
51844574Sphk		else if ((*newsec) % 86400 == 0) {
51944574Sphk			(*newsec)--;
52044574Sphk			time_state = TIME_OOP;
521116838Simp			time_tai++;
52244574Sphk		}
52344574Sphk		break;
52444574Sphk
52544574Sphk		/*
52644574Sphk		 * Delete second 23:59:59.
52744574Sphk		 */
52844574Sphk		case TIME_DEL:
52944574Sphk		if (!(time_status & STA_DEL))
53044574Sphk			time_state = TIME_OK;
53144574Sphk		else if (((*newsec) + 1) % 86400 == 0) {
53244574Sphk			(*newsec)++;
53365432Sphk			time_tai--;
53444574Sphk			time_state = TIME_WAIT;
53544574Sphk		}
53644574Sphk		break;
53744574Sphk
53844574Sphk		/*
53944574Sphk		 * Insert second in progress.
54044574Sphk		 */
54144574Sphk		case TIME_OOP:
54265432Sphk			time_state = TIME_WAIT;
54344574Sphk		break;
54444574Sphk
54544574Sphk		/*
54644574Sphk		 * Wait for status bits to clear.
54744574Sphk		 */
54844574Sphk		case TIME_WAIT:
54944574Sphk		if (!(time_status & (STA_INS | STA_DEL)))
55044574Sphk			time_state = TIME_OK;
5512858Swollman	}
55244574Sphk
55344574Sphk	/*
55450656Sphk	 * Compute the total time adjustment for the next second
55550656Sphk	 * in ns. The offset is reduced by a factor depending on
55650656Sphk	 * whether the PPS signal is operating. Note that the
55750656Sphk	 * value is in effect scaled by the clock frequency,
55850656Sphk	 * since the adjustment is added at each tick interrupt.
55944574Sphk	 */
56065432Sphk	ftemp = time_offset;
56144574Sphk#ifdef PPS_SYNC
56265432Sphk	/* XXX even if PPS signal dies we should finish adjustment ? */
56365432Sphk	if (time_status & STA_PPSTIME && time_status &
56465673Sphk	    STA_PPSSIGNAL)
56565432Sphk		L_RSHIFT(ftemp, pps_shift);
56665432Sphk	else
56765432Sphk		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
56844574Sphk#else
56965432Sphk		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
57044574Sphk#endif /* PPS_SYNC */
57165432Sphk	time_adj = ftemp;
57265432Sphk	L_SUB(time_offset, ftemp);
57344574Sphk	L_ADD(time_adj, time_freq);
57494754Sphk
57594754Sphk	/*
57694754Sphk	 * Apply any correction from adjtime(2).  If more than one second
57794754Sphk	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
57894754Sphk	 * until the last second is slewed the final < 500 usecs.
57994754Sphk	 */
58094754Sphk	if (time_adjtime != 0) {
58194754Sphk		if (time_adjtime > 1000000)
58294754Sphk			tickrate = 5000;
58394754Sphk		else if (time_adjtime < -1000000)
58494754Sphk			tickrate = -5000;
58594754Sphk		else if (time_adjtime > 500)
58694754Sphk			tickrate = 500;
58794754Sphk		else if (time_adjtime < -500)
58894754Sphk			tickrate = -500;
589126974Sphk		else
59094754Sphk			tickrate = time_adjtime;
59194754Sphk		time_adjtime -= tickrate;
59294754Sphk		L_LINT(ftemp, tickrate * 1000);
59394754Sphk		L_ADD(time_adj, ftemp);
59494754Sphk	}
59595529Sphk	*adjustment = time_adj;
59694754Sphk
59744574Sphk#ifdef PPS_SYNC
59844574Sphk	if (pps_valid > 0)
59944574Sphk		pps_valid--;
60044574Sphk	else
60175540Sjhay		time_status &= ~STA_PPSSIGNAL;
60244574Sphk#endif /* PPS_SYNC */
6032858Swollman}
6042858Swollman
60544574Sphk/*
60644574Sphk * ntp_init() - initialize variables and structures
60744574Sphk *
60844574Sphk * This routine must be called after the kernel variables hz and tick
60944574Sphk * are set or changed and before the next tick interrupt. In this
61044574Sphk * particular implementation, these values are assumed set elsewhere in
61144574Sphk * the kernel. The design allows the clock frequency and tick interval
61244574Sphk * to be changed while the system is running. So, this routine should
61344574Sphk * probably be integrated with the code that does that.
61444574Sphk */
61544574Sphkstatic void
61644574Sphkntp_init()
61744574Sphk{
61844574Sphk
61944574Sphk	/*
62044574Sphk	 * The following variables are initialized only at startup. Only
62144574Sphk	 * those structures not cleared by the compiler need to be
62244574Sphk	 * initialized, and these only in the simulator. In the actual
62344574Sphk	 * kernel, any nonzero values here will quickly evaporate.
62444574Sphk	 */
62544574Sphk	L_CLR(time_offset);
62644574Sphk	L_CLR(time_freq);
62732513Sphk#ifdef PPS_SYNC
62850656Sphk	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
62950656Sphk	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
63050656Sphk	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
63144794Sphk	pps_fcount = 0;
63244574Sphk	L_CLR(pps_freq);
63344574Sphk#endif /* PPS_SYNC */
63444574Sphk}
6352858Swollman
636108755SpeterSYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
63732513Sphk
63844574Sphk/*
63944574Sphk * hardupdate() - local clock update
64044574Sphk *
64144574Sphk * This routine is called by ntp_adjtime() to update the local clock
64244574Sphk * phase and frequency. The implementation is of an adaptive-parameter,
64344574Sphk * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
64444574Sphk * time and frequency offset estimates for each call. If the kernel PPS
64544574Sphk * discipline code is configured (PPS_SYNC), the PPS signal itself
64644574Sphk * determines the new time offset, instead of the calling argument.
64744574Sphk * Presumably, calls to ntp_adjtime() occur only when the caller
64844574Sphk * believes the local clock is valid within some bound (+-128 ms with
64944574Sphk * NTP). If the caller's time is far different than the PPS time, an
65044574Sphk * argument will ensue, and it's not clear who will lose.
65144574Sphk *
65244574Sphk * For uncompensated quartz crystal oscillators and nominal update
65344574Sphk * intervals less than 256 s, operation should be in phase-lock mode,
65444574Sphk * where the loop is disciplined to phase. For update intervals greater
65544574Sphk * than 1024 s, operation should be in frequency-lock mode, where the
65644574Sphk * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
65744574Sphk * is selected by the STA_MODE status bit.
65844574Sphk */
65944574Sphkstatic void
66044574Sphkhardupdate(offset)
66144574Sphk	long offset;		/* clock offset (ns) */
66244574Sphk{
66365432Sphk	long mtemp;
66444574Sphk	l_fp ftemp;
66532513Sphk
66644574Sphk	/*
66744574Sphk	 * Select how the phase is to be controlled and from which
66844574Sphk	 * source. If the PPS signal is present and enabled to
66944574Sphk	 * discipline the time, the PPS offset is used; otherwise, the
67044574Sphk	 * argument offset is used.
67144574Sphk	 */
67250656Sphk	if (!(time_status & STA_PLL))
67350656Sphk		return;
67465432Sphk	if (!(time_status & STA_PPSTIME && time_status &
67565432Sphk	    STA_PPSSIGNAL)) {
67665432Sphk		if (offset > MAXPHASE)
67765432Sphk			time_monitor = MAXPHASE;
67865432Sphk		else if (offset < -MAXPHASE)
67965432Sphk			time_monitor = -MAXPHASE;
68065432Sphk		else
68165432Sphk			time_monitor = offset;
68265432Sphk		L_LINT(time_offset, time_monitor);
68365432Sphk	}
68432513Sphk
68544574Sphk	/*
68644574Sphk	 * Select how the frequency is to be controlled and in which
68744574Sphk	 * mode (PLL or FLL). If the PPS signal is present and enabled
68844574Sphk	 * to discipline the frequency, the PPS frequency is used;
68944574Sphk	 * otherwise, the argument offset is used to compute it.
69044574Sphk	 */
69144574Sphk	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
69244574Sphk		time_reftime = time_second;
69344574Sphk		return;
69444574Sphk	}
69544574Sphk	if (time_status & STA_FREQHOLD || time_reftime == 0)
69644574Sphk		time_reftime = time_second;
69744574Sphk	mtemp = time_second - time_reftime;
69865432Sphk	L_LINT(ftemp, time_monitor);
69950656Sphk	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
70050656Sphk	L_MPY(ftemp, mtemp);
70150656Sphk	L_ADD(time_freq, ftemp);
70250656Sphk	time_status &= ~STA_MODE;
70365432Sphk	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
70465432Sphk	    MAXSEC)) {
70565432Sphk		L_LINT(ftemp, (time_monitor << 4) / mtemp);
70644574Sphk		L_RSHIFT(ftemp, SHIFT_FLL + 4);
70744574Sphk		L_ADD(time_freq, ftemp);
70844574Sphk		time_status |= STA_MODE;
70944574Sphk	}
71044574Sphk	time_reftime = time_second;
71144574Sphk	if (L_GINT(time_freq) > MAXFREQ)
71244574Sphk		L_LINT(time_freq, MAXFREQ);
71344574Sphk	else if (L_GINT(time_freq) < -MAXFREQ)
71444574Sphk		L_LINT(time_freq, -MAXFREQ);
71544574Sphk}
71644574Sphk
71744574Sphk#ifdef PPS_SYNC
71832513Sphk/*
71932513Sphk * hardpps() - discipline CPU clock oscillator to external PPS signal
72032513Sphk *
72132513Sphk * This routine is called at each PPS interrupt in order to discipline
72265432Sphk * the CPU clock oscillator to the PPS signal. There are two independent
72365432Sphk * first-order feedback loops, one for the phase, the other for the
72465432Sphk * frequency. The phase loop measures and grooms the PPS phase offset
72565432Sphk * and leaves it in a handy spot for the seconds overflow routine. The
72665432Sphk * frequency loop averages successive PPS phase differences and
72765432Sphk * calculates the PPS frequency offset, which is also processed by the
72865432Sphk * seconds overflow routine. The code requires the caller to capture the
72965432Sphk * time and architecture-dependent hardware counter values in
73065432Sphk * nanoseconds at the on-time PPS signal transition.
73132513Sphk *
73244574Sphk * Note that, on some Unix systems this routine runs at an interrupt
73332513Sphk * priority level higher than the timer interrupt routine hardclock().
73432513Sphk * Therefore, the variables used are distinct from the hardclock()
73544574Sphk * variables, except for the actual time and frequency variables, which
73644574Sphk * are determined by this routine and updated atomically.
73732513Sphk */
73832513Sphkvoid
73944574Sphkhardpps(tsp, nsec)
74044574Sphk	struct timespec *tsp;	/* time at PPS */
74144574Sphk	long nsec;		/* hardware counter at PPS */
74232513Sphk{
74365432Sphk	long u_sec, u_nsec, v_nsec; /* temps */
74444574Sphk	l_fp ftemp;
74532513Sphk
74632513Sphk	/*
74765432Sphk	 * The signal is first processed by a range gate and frequency
74865432Sphk	 * discriminator. The range gate rejects noise spikes outside
74965432Sphk	 * the range +-500 us. The frequency discriminator rejects input
75065432Sphk	 * signals with apparent frequency outside the range 1 +-500
75165432Sphk	 * PPM. If two hits occur in the same second, we ignore the
75265432Sphk	 * later hit; if not and a hit occurs outside the range gate,
75365432Sphk	 * keep the later hit for later comparison, but do not process
75465432Sphk	 * it.
75532513Sphk	 */
75644574Sphk	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
75744574Sphk	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
75844574Sphk	pps_valid = PPS_VALID;
75944574Sphk	u_sec = tsp->tv_sec;
76044574Sphk	u_nsec = tsp->tv_nsec;
76144574Sphk	if (u_nsec >= (NANOSECOND >> 1)) {
76244574Sphk		u_nsec -= NANOSECOND;
76344574Sphk		u_sec++;
76444574Sphk	}
76550656Sphk	v_nsec = u_nsec - pps_tf[0].tv_nsec;
76675540Sjhay	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
76775540Sjhay	    MAXFREQ)
76844574Sphk		return;
76944574Sphk	pps_tf[2] = pps_tf[1];
77044574Sphk	pps_tf[1] = pps_tf[0];
77150656Sphk	pps_tf[0].tv_sec = u_sec;
77250656Sphk	pps_tf[0].tv_nsec = u_nsec;
77332513Sphk
77432513Sphk	/*
77544574Sphk	 * Compute the difference between the current and previous
77644574Sphk	 * counter values. If the difference exceeds 0.5 s, assume it
77744574Sphk	 * has wrapped around, so correct 1.0 s. If the result exceeds
77844574Sphk	 * the tick interval, the sample point has crossed a tick
77944574Sphk	 * boundary during the last second, so correct the tick. Very
78044574Sphk	 * intricate.
78144574Sphk	 */
78244666Sphk	u_nsec = nsec;
78344574Sphk	if (u_nsec > (NANOSECOND >> 1))
78444574Sphk		u_nsec -= NANOSECOND;
78544574Sphk	else if (u_nsec < -(NANOSECOND >> 1))
78644574Sphk		u_nsec += NANOSECOND;
78744794Sphk	pps_fcount += u_nsec;
78875540Sjhay	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
78944574Sphk		return;
79044574Sphk	time_status &= ~STA_PPSJITTER;
79144574Sphk
79244574Sphk	/*
79344574Sphk	 * A three-stage median filter is used to help denoise the PPS
79432513Sphk	 * time. The median sample becomes the time offset estimate; the
79532513Sphk	 * difference between the other two samples becomes the time
79632513Sphk	 * dispersion (jitter) estimate.
79732513Sphk	 */
79850656Sphk	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
79950656Sphk		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
80050656Sphk			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
80150656Sphk			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
80250656Sphk		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
80350656Sphk			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
80450656Sphk			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
80544574Sphk		} else {
80650656Sphk			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
80750656Sphk			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
80844574Sphk		}
80944574Sphk	} else {
81050656Sphk		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
81150656Sphk			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
81250656Sphk			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
81365673Sphk		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
81450656Sphk			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
81550656Sphk			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
81644574Sphk		} else {
81750656Sphk			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
81850656Sphk			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
81944574Sphk		}
82044574Sphk	}
82132513Sphk
82232513Sphk	/*
82365673Sphk	 * Nominal jitter is due to PPS signal noise and interrupt
82465432Sphk	 * latency. If it exceeds the popcorn threshold, the sample is
82565432Sphk	 * discarded. otherwise, if so enabled, the time offset is
82665432Sphk	 * updated. We can tolerate a modest loss of data here without
82765432Sphk	 * much degrading time accuracy.
82832513Sphk	 */
82950656Sphk	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
83044574Sphk		time_status |= STA_PPSJITTER;
83144574Sphk		pps_jitcnt++;
83244574Sphk	} else if (time_status & STA_PPSTIME) {
83365432Sphk		time_monitor = -v_nsec;
83465432Sphk		L_LINT(time_offset, time_monitor);
83532513Sphk	}
83644574Sphk	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
83750656Sphk	u_sec = pps_tf[0].tv_sec - pps_lastsec;
83844574Sphk	if (u_sec < (1 << pps_shift))
83944574Sphk		return;
84044574Sphk
84132513Sphk	/*
84244574Sphk	 * At the end of the calibration interval the difference between
84344574Sphk	 * the first and last counter values becomes the scaled
84444574Sphk	 * frequency. It will later be divided by the length of the
84544574Sphk	 * interval to determine the frequency update. If the frequency
84644574Sphk	 * exceeds a sanity threshold, or if the actual calibration
84744574Sphk	 * interval is not equal to the expected length, the data are
84844574Sphk	 * discarded. We can tolerate a modest loss of data here without
84965432Sphk	 * much degrading frequency accuracy.
85032513Sphk	 */
85144574Sphk	pps_calcnt++;
85244794Sphk	v_nsec = -pps_fcount;
85350656Sphk	pps_lastsec = pps_tf[0].tv_sec;
85444794Sphk	pps_fcount = 0;
85544574Sphk	u_nsec = MAXFREQ << pps_shift;
85644574Sphk	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
85744574Sphk	    pps_shift)) {
85844574Sphk		time_status |= STA_PPSERROR;
85932513Sphk		pps_errcnt++;
86032513Sphk		return;
86132513Sphk	}
86232513Sphk
86332513Sphk	/*
86450656Sphk	 * Here the raw frequency offset and wander (stability) is
86550656Sphk	 * calculated. If the wander is less than the wander threshold
86650656Sphk	 * for four consecutive averaging intervals, the interval is
86750656Sphk	 * doubled; if it is greater than the threshold for four
86850656Sphk	 * consecutive intervals, the interval is halved. The scaled
86950656Sphk	 * frequency offset is converted to frequency offset. The
87050656Sphk	 * stability metric is calculated as the average of recent
87150656Sphk	 * frequency changes, but is used only for performance
87244574Sphk	 * monitoring.
87332513Sphk	 */
87444574Sphk	L_LINT(ftemp, v_nsec);
87544574Sphk	L_RSHIFT(ftemp, pps_shift);
87644574Sphk	L_SUB(ftemp, pps_freq);
87744574Sphk	u_nsec = L_GINT(ftemp);
87850656Sphk	if (u_nsec > PPS_MAXWANDER) {
87950656Sphk		L_LINT(ftemp, PPS_MAXWANDER);
88044574Sphk		pps_intcnt--;
88144574Sphk		time_status |= STA_PPSWANDER;
88232513Sphk		pps_stbcnt++;
88350656Sphk	} else if (u_nsec < -PPS_MAXWANDER) {
88450656Sphk		L_LINT(ftemp, -PPS_MAXWANDER);
88544574Sphk		pps_intcnt--;
88632513Sphk		time_status |= STA_PPSWANDER;
88744574Sphk		pps_stbcnt++;
88844574Sphk	} else {
88944574Sphk		pps_intcnt++;
89032513Sphk	}
89165432Sphk	if (pps_intcnt >= 4) {
89244574Sphk		pps_intcnt = 4;
89350656Sphk		if (pps_shift < pps_shiftmax) {
89444574Sphk			pps_shift++;
89544574Sphk			pps_intcnt = 0;
89632513Sphk		}
89765432Sphk	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
89844574Sphk		pps_intcnt = -4;
89944574Sphk		if (pps_shift > PPS_FAVG) {
90044574Sphk			pps_shift--;
90144574Sphk			pps_intcnt = 0;
90244574Sphk		}
90332513Sphk	}
90444574Sphk	if (u_nsec < 0)
90544574Sphk		u_nsec = -u_nsec;
90644574Sphk	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
90732513Sphk
90832513Sphk	/*
90950656Sphk	 * The PPS frequency is recalculated and clamped to the maximum
91050656Sphk	 * MAXFREQ. If enabled, the system clock frequency is updated as
91150656Sphk	 * well.
91232513Sphk	 */
91344574Sphk	L_ADD(pps_freq, ftemp);
91444574Sphk	u_nsec = L_GINT(pps_freq);
91544574Sphk	if (u_nsec > MAXFREQ)
91644574Sphk		L_LINT(pps_freq, MAXFREQ);
91744574Sphk	else if (u_nsec < -MAXFREQ)
91844574Sphk		L_LINT(pps_freq, -MAXFREQ);
91965432Sphk	if (time_status & STA_PPSFREQ)
92044574Sphk		time_freq = pps_freq;
92132513Sphk}
92232513Sphk#endif /* PPS_SYNC */
92394754Sphk
92494754Sphk#ifndef _SYS_SYSPROTO_H_
92594754Sphkstruct adjtime_args {
92694754Sphk	struct timeval *delta;
92794754Sphk	struct timeval *olddelta;
92894754Sphk};
92994754Sphk#endif
93094754Sphk/*
93194754Sphk * MPSAFE
93294754Sphk */
93394754Sphk/* ARGSUSED */
93494754Sphkint
93594754Sphkadjtime(struct thread *td, struct adjtime_args *uap)
93694754Sphk{
937144445Sjhb	struct timeval delta, olddelta, *deltap;
938144445Sjhb	int error;
939144445Sjhb
940144445Sjhb	if (uap->delta) {
941144445Sjhb		error = copyin(uap->delta, &delta, sizeof(delta));
942144445Sjhb		if (error)
943144445Sjhb			return (error);
944144445Sjhb		deltap = &delta;
945144445Sjhb	} else
946144445Sjhb		deltap = NULL;
947144445Sjhb	error = kern_adjtime(td, deltap, &olddelta);
948144445Sjhb	if (uap->olddelta && error == 0)
949144445Sjhb		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950144445Sjhb	return (error);
951144445Sjhb}
952144445Sjhb
953144445Sjhbint
954144445Sjhbkern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955144445Sjhb{
95694754Sphk	struct timeval atv;
95794754Sphk	int error;
95894754Sphk
959164033Srwatson	if ((error = priv_check(td, PRIV_ADJTIME)))
96095036Sphk		return (error);
96195036Sphk
96294754Sphk	mtx_lock(&Giant);
963144445Sjhb	if (olddelta) {
96494754Sphk		atv.tv_sec = time_adjtime / 1000000;
96594754Sphk		atv.tv_usec = time_adjtime % 1000000;
96694754Sphk		if (atv.tv_usec < 0) {
96794754Sphk			atv.tv_usec += 1000000;
96894754Sphk			atv.tv_sec--;
96994754Sphk		}
970144445Sjhb		*olddelta = atv;
97194754Sphk	}
972144445Sjhb	if (delta)
973144445Sjhb		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
974144445Sjhb		    delta->tv_usec;
97594754Sphk	mtx_unlock(&Giant);
97694754Sphk	return (error);
97794754Sphk}
97894754Sphk
979