kern_ktrace.c revision 256281
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/kern/kern_ktrace.c 255677 2013-09-18 19:26:08Z pjd $");
36
37#include "opt_ktrace.h"
38
39#include <sys/param.h>
40#include <sys/capability.h>
41#include <sys/systm.h>
42#include <sys/fcntl.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/malloc.h>
48#include <sys/mount.h>
49#include <sys/namei.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/unistd.h>
53#include <sys/vnode.h>
54#include <sys/socket.h>
55#include <sys/stat.h>
56#include <sys/ktrace.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/syslog.h>
61#include <sys/sysproto.h>
62
63#include <security/mac/mac_framework.h>
64
65/*
66 * The ktrace facility allows the tracing of certain key events in user space
67 * processes, such as system calls, signal delivery, context switches, and
68 * user generated events using utrace(2).  It works by streaming event
69 * records and data to a vnode associated with the process using the
70 * ktrace(2) system call.  In general, records can be written directly from
71 * the context that generates the event.  One important exception to this is
72 * during a context switch, where sleeping is not permitted.  To handle this
73 * case, trace events are generated using in-kernel ktr_request records, and
74 * then delivered to disk at a convenient moment -- either immediately, the
75 * next traceable event, at system call return, or at process exit.
76 *
77 * When dealing with multiple threads or processes writing to the same event
78 * log, ordering guarantees are weak: specifically, if an event has multiple
79 * records (i.e., system call enter and return), they may be interlaced with
80 * records from another event.  Process and thread ID information is provided
81 * in the record, and user applications can de-interlace events if required.
82 */
83
84static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
85
86#ifdef KTRACE
87
88FEATURE(ktrace, "Kernel support for system-call tracing");
89
90#ifndef KTRACE_REQUEST_POOL
91#define	KTRACE_REQUEST_POOL	100
92#endif
93
94struct ktr_request {
95	struct	ktr_header ktr_header;
96	void	*ktr_buffer;
97	union {
98		struct	ktr_proc_ctor ktr_proc_ctor;
99		struct	ktr_cap_fail ktr_cap_fail;
100		struct	ktr_syscall ktr_syscall;
101		struct	ktr_sysret ktr_sysret;
102		struct	ktr_genio ktr_genio;
103		struct	ktr_psig ktr_psig;
104		struct	ktr_csw ktr_csw;
105		struct	ktr_fault ktr_fault;
106		struct	ktr_faultend ktr_faultend;
107	} ktr_data;
108	STAILQ_ENTRY(ktr_request) ktr_list;
109};
110
111static int data_lengths[] = {
112	0,					/* none */
113	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
114	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
115	0,					/* KTR_NAMEI */
116	sizeof(struct ktr_genio),		/* KTR_GENIO */
117	sizeof(struct ktr_psig),		/* KTR_PSIG */
118	sizeof(struct ktr_csw),			/* KTR_CSW */
119	0,					/* KTR_USER */
120	0,					/* KTR_STRUCT */
121	0,					/* KTR_SYSCTL */
122	sizeof(struct ktr_proc_ctor),		/* KTR_PROCCTOR */
123	0,					/* KTR_PROCDTOR */
124	sizeof(struct ktr_cap_fail),		/* KTR_CAPFAIL */
125	sizeof(struct ktr_fault),		/* KTR_FAULT */
126	sizeof(struct ktr_faultend),		/* KTR_FAULTEND */
127};
128
129static STAILQ_HEAD(, ktr_request) ktr_free;
130
131static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
132
133static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
134TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
135
136static u_int ktr_geniosize = PAGE_SIZE;
137TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
138SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
139    0, "Maximum size of genio event payload");
140
141static int print_message = 1;
142static struct mtx ktrace_mtx;
143static struct sx ktrace_sx;
144
145static void ktrace_init(void *dummy);
146static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
147static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
148static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
149static struct ktr_request *ktr_getrequest(int type);
150static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
151static void ktr_freeproc(struct proc *p, struct ucred **uc,
152    struct vnode **vp);
153static void ktr_freerequest(struct ktr_request *req);
154static void ktr_freerequest_locked(struct ktr_request *req);
155static void ktr_writerequest(struct thread *td, struct ktr_request *req);
156static int ktrcanset(struct thread *,struct proc *);
157static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
158static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
159static void ktrprocctor_entered(struct thread *, struct proc *);
160
161/*
162 * ktrace itself generates events, such as context switches, which we do not
163 * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
164 * whether or not it is in a region where tracing of events should be
165 * suppressed.
166 */
167static void
168ktrace_enter(struct thread *td)
169{
170
171	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
172	td->td_pflags |= TDP_INKTRACE;
173}
174
175static void
176ktrace_exit(struct thread *td)
177{
178
179	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
180	td->td_pflags &= ~TDP_INKTRACE;
181}
182
183static void
184ktrace_assert(struct thread *td)
185{
186
187	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
188}
189
190static void
191ktrace_init(void *dummy)
192{
193	struct ktr_request *req;
194	int i;
195
196	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
197	sx_init(&ktrace_sx, "ktrace_sx");
198	STAILQ_INIT(&ktr_free);
199	for (i = 0; i < ktr_requestpool; i++) {
200		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
201		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
202	}
203}
204SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
205
206static int
207sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
208{
209	struct thread *td;
210	u_int newsize, oldsize, wantsize;
211	int error;
212
213	/* Handle easy read-only case first to avoid warnings from GCC. */
214	if (!req->newptr) {
215		oldsize = ktr_requestpool;
216		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
217	}
218
219	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
220	if (error)
221		return (error);
222	td = curthread;
223	ktrace_enter(td);
224	oldsize = ktr_requestpool;
225	newsize = ktrace_resize_pool(oldsize, wantsize);
226	ktrace_exit(td);
227	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
228	if (error)
229		return (error);
230	if (wantsize > oldsize && newsize < wantsize)
231		return (ENOSPC);
232	return (0);
233}
234SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
235    &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
236    "Pool buffer size for ktrace(1)");
237
238static u_int
239ktrace_resize_pool(u_int oldsize, u_int newsize)
240{
241	STAILQ_HEAD(, ktr_request) ktr_new;
242	struct ktr_request *req;
243	int bound;
244
245	print_message = 1;
246	bound = newsize - oldsize;
247	if (bound == 0)
248		return (ktr_requestpool);
249	if (bound < 0) {
250		mtx_lock(&ktrace_mtx);
251		/* Shrink pool down to newsize if possible. */
252		while (bound++ < 0) {
253			req = STAILQ_FIRST(&ktr_free);
254			if (req == NULL)
255				break;
256			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
257			ktr_requestpool--;
258			free(req, M_KTRACE);
259		}
260	} else {
261		/* Grow pool up to newsize. */
262		STAILQ_INIT(&ktr_new);
263		while (bound-- > 0) {
264			req = malloc(sizeof(struct ktr_request), M_KTRACE,
265			    M_WAITOK);
266			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
267		}
268		mtx_lock(&ktrace_mtx);
269		STAILQ_CONCAT(&ktr_free, &ktr_new);
270		ktr_requestpool += (newsize - oldsize);
271	}
272	mtx_unlock(&ktrace_mtx);
273	return (ktr_requestpool);
274}
275
276/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
277CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
278    (sizeof((struct thread *)NULL)->td_name));
279
280static struct ktr_request *
281ktr_getrequest_entered(struct thread *td, int type)
282{
283	struct ktr_request *req;
284	struct proc *p = td->td_proc;
285	int pm;
286
287	mtx_lock(&ktrace_mtx);
288	if (!KTRCHECK(td, type)) {
289		mtx_unlock(&ktrace_mtx);
290		return (NULL);
291	}
292	req = STAILQ_FIRST(&ktr_free);
293	if (req != NULL) {
294		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
295		req->ktr_header.ktr_type = type;
296		if (p->p_traceflag & KTRFAC_DROP) {
297			req->ktr_header.ktr_type |= KTR_DROP;
298			p->p_traceflag &= ~KTRFAC_DROP;
299		}
300		mtx_unlock(&ktrace_mtx);
301		microtime(&req->ktr_header.ktr_time);
302		req->ktr_header.ktr_pid = p->p_pid;
303		req->ktr_header.ktr_tid = td->td_tid;
304		bcopy(td->td_name, req->ktr_header.ktr_comm,
305		    sizeof(req->ktr_header.ktr_comm));
306		req->ktr_buffer = NULL;
307		req->ktr_header.ktr_len = 0;
308	} else {
309		p->p_traceflag |= KTRFAC_DROP;
310		pm = print_message;
311		print_message = 0;
312		mtx_unlock(&ktrace_mtx);
313		if (pm)
314			printf("Out of ktrace request objects.\n");
315	}
316	return (req);
317}
318
319static struct ktr_request *
320ktr_getrequest(int type)
321{
322	struct thread *td = curthread;
323	struct ktr_request *req;
324
325	ktrace_enter(td);
326	req = ktr_getrequest_entered(td, type);
327	if (req == NULL)
328		ktrace_exit(td);
329
330	return (req);
331}
332
333/*
334 * Some trace generation environments don't permit direct access to VFS,
335 * such as during a context switch where sleeping is not allowed.  Under these
336 * circumstances, queue a request to the thread to be written asynchronously
337 * later.
338 */
339static void
340ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
341{
342
343	mtx_lock(&ktrace_mtx);
344	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
345	mtx_unlock(&ktrace_mtx);
346}
347
348/*
349 * Drain any pending ktrace records from the per-thread queue to disk.  This
350 * is used both internally before committing other records, and also on
351 * system call return.  We drain all the ones we can find at the time when
352 * drain is requested, but don't keep draining after that as those events
353 * may be approximately "after" the current event.
354 */
355static void
356ktr_drain(struct thread *td)
357{
358	struct ktr_request *queued_req;
359	STAILQ_HEAD(, ktr_request) local_queue;
360
361	ktrace_assert(td);
362	sx_assert(&ktrace_sx, SX_XLOCKED);
363
364	STAILQ_INIT(&local_queue);
365
366	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
367		mtx_lock(&ktrace_mtx);
368		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
369		mtx_unlock(&ktrace_mtx);
370
371		while ((queued_req = STAILQ_FIRST(&local_queue))) {
372			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
373			ktr_writerequest(td, queued_req);
374			ktr_freerequest(queued_req);
375		}
376	}
377}
378
379/*
380 * Submit a trace record for immediate commit to disk -- to be used only
381 * where entering VFS is OK.  First drain any pending records that may have
382 * been cached in the thread.
383 */
384static void
385ktr_submitrequest(struct thread *td, struct ktr_request *req)
386{
387
388	ktrace_assert(td);
389
390	sx_xlock(&ktrace_sx);
391	ktr_drain(td);
392	ktr_writerequest(td, req);
393	ktr_freerequest(req);
394	sx_xunlock(&ktrace_sx);
395	ktrace_exit(td);
396}
397
398static void
399ktr_freerequest(struct ktr_request *req)
400{
401
402	mtx_lock(&ktrace_mtx);
403	ktr_freerequest_locked(req);
404	mtx_unlock(&ktrace_mtx);
405}
406
407static void
408ktr_freerequest_locked(struct ktr_request *req)
409{
410
411	mtx_assert(&ktrace_mtx, MA_OWNED);
412	if (req->ktr_buffer != NULL)
413		free(req->ktr_buffer, M_KTRACE);
414	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
415}
416
417/*
418 * Disable tracing for a process and release all associated resources.
419 * The caller is responsible for releasing a reference on the returned
420 * vnode and credentials.
421 */
422static void
423ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
424{
425	struct ktr_request *req;
426
427	PROC_LOCK_ASSERT(p, MA_OWNED);
428	mtx_assert(&ktrace_mtx, MA_OWNED);
429	*uc = p->p_tracecred;
430	p->p_tracecred = NULL;
431	if (vp != NULL)
432		*vp = p->p_tracevp;
433	p->p_tracevp = NULL;
434	p->p_traceflag = 0;
435	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
436		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
437		ktr_freerequest_locked(req);
438	}
439}
440
441void
442ktrsyscall(code, narg, args)
443	int code, narg;
444	register_t args[];
445{
446	struct ktr_request *req;
447	struct ktr_syscall *ktp;
448	size_t buflen;
449	char *buf = NULL;
450
451	buflen = sizeof(register_t) * narg;
452	if (buflen > 0) {
453		buf = malloc(buflen, M_KTRACE, M_WAITOK);
454		bcopy(args, buf, buflen);
455	}
456	req = ktr_getrequest(KTR_SYSCALL);
457	if (req == NULL) {
458		if (buf != NULL)
459			free(buf, M_KTRACE);
460		return;
461	}
462	ktp = &req->ktr_data.ktr_syscall;
463	ktp->ktr_code = code;
464	ktp->ktr_narg = narg;
465	if (buflen > 0) {
466		req->ktr_header.ktr_len = buflen;
467		req->ktr_buffer = buf;
468	}
469	ktr_submitrequest(curthread, req);
470}
471
472void
473ktrsysret(code, error, retval)
474	int code, error;
475	register_t retval;
476{
477	struct ktr_request *req;
478	struct ktr_sysret *ktp;
479
480	req = ktr_getrequest(KTR_SYSRET);
481	if (req == NULL)
482		return;
483	ktp = &req->ktr_data.ktr_sysret;
484	ktp->ktr_code = code;
485	ktp->ktr_error = error;
486	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
487	ktr_submitrequest(curthread, req);
488}
489
490/*
491 * When a setuid process execs, disable tracing.
492 *
493 * XXX: We toss any pending asynchronous records.
494 */
495void
496ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
497{
498
499	PROC_LOCK_ASSERT(p, MA_OWNED);
500	mtx_lock(&ktrace_mtx);
501	ktr_freeproc(p, uc, vp);
502	mtx_unlock(&ktrace_mtx);
503}
504
505/*
506 * When a process exits, drain per-process asynchronous trace records
507 * and disable tracing.
508 */
509void
510ktrprocexit(struct thread *td)
511{
512	struct ktr_request *req;
513	struct proc *p;
514	struct ucred *cred;
515	struct vnode *vp;
516
517	p = td->td_proc;
518	if (p->p_traceflag == 0)
519		return;
520
521	ktrace_enter(td);
522	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
523	if (req != NULL)
524		ktr_enqueuerequest(td, req);
525	sx_xlock(&ktrace_sx);
526	ktr_drain(td);
527	sx_xunlock(&ktrace_sx);
528	PROC_LOCK(p);
529	mtx_lock(&ktrace_mtx);
530	ktr_freeproc(p, &cred, &vp);
531	mtx_unlock(&ktrace_mtx);
532	PROC_UNLOCK(p);
533	if (vp != NULL)
534		vrele(vp);
535	if (cred != NULL)
536		crfree(cred);
537	ktrace_exit(td);
538}
539
540static void
541ktrprocctor_entered(struct thread *td, struct proc *p)
542{
543	struct ktr_proc_ctor *ktp;
544	struct ktr_request *req;
545	struct thread *td2;
546
547	ktrace_assert(td);
548	td2 = FIRST_THREAD_IN_PROC(p);
549	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
550	if (req == NULL)
551		return;
552	ktp = &req->ktr_data.ktr_proc_ctor;
553	ktp->sv_flags = p->p_sysent->sv_flags;
554	ktr_enqueuerequest(td2, req);
555}
556
557void
558ktrprocctor(struct proc *p)
559{
560	struct thread *td = curthread;
561
562	if ((p->p_traceflag & KTRFAC_MASK) == 0)
563		return;
564
565	ktrace_enter(td);
566	ktrprocctor_entered(td, p);
567	ktrace_exit(td);
568}
569
570/*
571 * When a process forks, enable tracing in the new process if needed.
572 */
573void
574ktrprocfork(struct proc *p1, struct proc *p2)
575{
576
577	PROC_LOCK(p1);
578	mtx_lock(&ktrace_mtx);
579	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
580	if (p1->p_traceflag & KTRFAC_INHERIT) {
581		p2->p_traceflag = p1->p_traceflag;
582		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
583			VREF(p2->p_tracevp);
584			KASSERT(p1->p_tracecred != NULL,
585			    ("ktrace vnode with no cred"));
586			p2->p_tracecred = crhold(p1->p_tracecred);
587		}
588	}
589	mtx_unlock(&ktrace_mtx);
590	PROC_UNLOCK(p1);
591
592	ktrprocctor(p2);
593}
594
595/*
596 * When a thread returns, drain any asynchronous records generated by the
597 * system call.
598 */
599void
600ktruserret(struct thread *td)
601{
602
603	ktrace_enter(td);
604	sx_xlock(&ktrace_sx);
605	ktr_drain(td);
606	sx_xunlock(&ktrace_sx);
607	ktrace_exit(td);
608}
609
610void
611ktrnamei(path)
612	char *path;
613{
614	struct ktr_request *req;
615	int namelen;
616	char *buf = NULL;
617
618	namelen = strlen(path);
619	if (namelen > 0) {
620		buf = malloc(namelen, M_KTRACE, M_WAITOK);
621		bcopy(path, buf, namelen);
622	}
623	req = ktr_getrequest(KTR_NAMEI);
624	if (req == NULL) {
625		if (buf != NULL)
626			free(buf, M_KTRACE);
627		return;
628	}
629	if (namelen > 0) {
630		req->ktr_header.ktr_len = namelen;
631		req->ktr_buffer = buf;
632	}
633	ktr_submitrequest(curthread, req);
634}
635
636void
637ktrsysctl(name, namelen)
638	int *name;
639	u_int namelen;
640{
641	struct ktr_request *req;
642	u_int mib[CTL_MAXNAME + 2];
643	char *mibname;
644	size_t mibnamelen;
645	int error;
646
647	/* Lookup name of mib. */
648	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
649	mib[0] = 0;
650	mib[1] = 1;
651	bcopy(name, mib + 2, namelen * sizeof(*name));
652	mibnamelen = 128;
653	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
654	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
655	    NULL, 0, &mibnamelen, 0);
656	if (error) {
657		free(mibname, M_KTRACE);
658		return;
659	}
660	req = ktr_getrequest(KTR_SYSCTL);
661	if (req == NULL) {
662		free(mibname, M_KTRACE);
663		return;
664	}
665	req->ktr_header.ktr_len = mibnamelen;
666	req->ktr_buffer = mibname;
667	ktr_submitrequest(curthread, req);
668}
669
670void
671ktrgenio(fd, rw, uio, error)
672	int fd;
673	enum uio_rw rw;
674	struct uio *uio;
675	int error;
676{
677	struct ktr_request *req;
678	struct ktr_genio *ktg;
679	int datalen;
680	char *buf;
681
682	if (error) {
683		free(uio, M_IOV);
684		return;
685	}
686	uio->uio_offset = 0;
687	uio->uio_rw = UIO_WRITE;
688	datalen = MIN(uio->uio_resid, ktr_geniosize);
689	buf = malloc(datalen, M_KTRACE, M_WAITOK);
690	error = uiomove(buf, datalen, uio);
691	free(uio, M_IOV);
692	if (error) {
693		free(buf, M_KTRACE);
694		return;
695	}
696	req = ktr_getrequest(KTR_GENIO);
697	if (req == NULL) {
698		free(buf, M_KTRACE);
699		return;
700	}
701	ktg = &req->ktr_data.ktr_genio;
702	ktg->ktr_fd = fd;
703	ktg->ktr_rw = rw;
704	req->ktr_header.ktr_len = datalen;
705	req->ktr_buffer = buf;
706	ktr_submitrequest(curthread, req);
707}
708
709void
710ktrpsig(sig, action, mask, code)
711	int sig;
712	sig_t action;
713	sigset_t *mask;
714	int code;
715{
716	struct thread *td = curthread;
717	struct ktr_request *req;
718	struct ktr_psig	*kp;
719
720	req = ktr_getrequest(KTR_PSIG);
721	if (req == NULL)
722		return;
723	kp = &req->ktr_data.ktr_psig;
724	kp->signo = (char)sig;
725	kp->action = action;
726	kp->mask = *mask;
727	kp->code = code;
728	ktr_enqueuerequest(td, req);
729	ktrace_exit(td);
730}
731
732void
733ktrcsw(out, user, wmesg)
734	int out, user;
735	const char *wmesg;
736{
737	struct thread *td = curthread;
738	struct ktr_request *req;
739	struct ktr_csw *kc;
740
741	req = ktr_getrequest(KTR_CSW);
742	if (req == NULL)
743		return;
744	kc = &req->ktr_data.ktr_csw;
745	kc->out = out;
746	kc->user = user;
747	if (wmesg != NULL)
748		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
749	else
750		bzero(kc->wmesg, sizeof(kc->wmesg));
751	ktr_enqueuerequest(td, req);
752	ktrace_exit(td);
753}
754
755void
756ktrstruct(name, data, datalen)
757	const char *name;
758	void *data;
759	size_t datalen;
760{
761	struct ktr_request *req;
762	char *buf = NULL;
763	size_t buflen;
764
765	if (!data)
766		datalen = 0;
767	buflen = strlen(name) + 1 + datalen;
768	buf = malloc(buflen, M_KTRACE, M_WAITOK);
769	strcpy(buf, name);
770	bcopy(data, buf + strlen(name) + 1, datalen);
771	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
772		free(buf, M_KTRACE);
773		return;
774	}
775	req->ktr_buffer = buf;
776	req->ktr_header.ktr_len = buflen;
777	ktr_submitrequest(curthread, req);
778}
779
780void
781ktrcapfail(type, needed, held)
782	enum ktr_cap_fail_type type;
783	const cap_rights_t *needed;
784	const cap_rights_t *held;
785{
786	struct thread *td = curthread;
787	struct ktr_request *req;
788	struct ktr_cap_fail *kcf;
789
790	req = ktr_getrequest(KTR_CAPFAIL);
791	if (req == NULL)
792		return;
793	kcf = &req->ktr_data.ktr_cap_fail;
794	kcf->cap_type = type;
795	if (needed != NULL)
796		kcf->cap_needed = *needed;
797	else
798		cap_rights_init(&kcf->cap_needed);
799	if (held != NULL)
800		kcf->cap_held = *held;
801	else
802		cap_rights_init(&kcf->cap_held);
803	ktr_enqueuerequest(td, req);
804	ktrace_exit(td);
805}
806
807void
808ktrfault(vaddr, type)
809	vm_offset_t vaddr;
810	int type;
811{
812	struct thread *td = curthread;
813	struct ktr_request *req;
814	struct ktr_fault *kf;
815
816	req = ktr_getrequest(KTR_FAULT);
817	if (req == NULL)
818		return;
819	kf = &req->ktr_data.ktr_fault;
820	kf->vaddr = vaddr;
821	kf->type = type;
822	ktr_enqueuerequest(td, req);
823	ktrace_exit(td);
824}
825
826void
827ktrfaultend(result)
828	int result;
829{
830	struct thread *td = curthread;
831	struct ktr_request *req;
832	struct ktr_faultend *kf;
833
834	req = ktr_getrequest(KTR_FAULTEND);
835	if (req == NULL)
836		return;
837	kf = &req->ktr_data.ktr_faultend;
838	kf->result = result;
839	ktr_enqueuerequest(td, req);
840	ktrace_exit(td);
841}
842#endif /* KTRACE */
843
844/* Interface and common routines */
845
846#ifndef _SYS_SYSPROTO_H_
847struct ktrace_args {
848	char	*fname;
849	int	ops;
850	int	facs;
851	int	pid;
852};
853#endif
854/* ARGSUSED */
855int
856sys_ktrace(td, uap)
857	struct thread *td;
858	register struct ktrace_args *uap;
859{
860#ifdef KTRACE
861	register struct vnode *vp = NULL;
862	register struct proc *p;
863	struct pgrp *pg;
864	int facs = uap->facs & ~KTRFAC_ROOT;
865	int ops = KTROP(uap->ops);
866	int descend = uap->ops & KTRFLAG_DESCEND;
867	int nfound, ret = 0;
868	int flags, error = 0;
869	struct nameidata nd;
870	struct ucred *cred;
871
872	/*
873	 * Need something to (un)trace.
874	 */
875	if (ops != KTROP_CLEARFILE && facs == 0)
876		return (EINVAL);
877
878	ktrace_enter(td);
879	if (ops != KTROP_CLEAR) {
880		/*
881		 * an operation which requires a file argument.
882		 */
883		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
884		flags = FREAD | FWRITE | O_NOFOLLOW;
885		error = vn_open(&nd, &flags, 0, NULL);
886		if (error) {
887			ktrace_exit(td);
888			return (error);
889		}
890		NDFREE(&nd, NDF_ONLY_PNBUF);
891		vp = nd.ni_vp;
892		VOP_UNLOCK(vp, 0);
893		if (vp->v_type != VREG) {
894			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
895			ktrace_exit(td);
896			return (EACCES);
897		}
898	}
899	/*
900	 * Clear all uses of the tracefile.
901	 */
902	if (ops == KTROP_CLEARFILE) {
903		int vrele_count;
904
905		vrele_count = 0;
906		sx_slock(&allproc_lock);
907		FOREACH_PROC_IN_SYSTEM(p) {
908			PROC_LOCK(p);
909			if (p->p_tracevp == vp) {
910				if (ktrcanset(td, p)) {
911					mtx_lock(&ktrace_mtx);
912					ktr_freeproc(p, &cred, NULL);
913					mtx_unlock(&ktrace_mtx);
914					vrele_count++;
915					crfree(cred);
916				} else
917					error = EPERM;
918			}
919			PROC_UNLOCK(p);
920		}
921		sx_sunlock(&allproc_lock);
922		if (vrele_count > 0) {
923			while (vrele_count-- > 0)
924				vrele(vp);
925		}
926		goto done;
927	}
928	/*
929	 * do it
930	 */
931	sx_slock(&proctree_lock);
932	if (uap->pid < 0) {
933		/*
934		 * by process group
935		 */
936		pg = pgfind(-uap->pid);
937		if (pg == NULL) {
938			sx_sunlock(&proctree_lock);
939			error = ESRCH;
940			goto done;
941		}
942		/*
943		 * ktrops() may call vrele(). Lock pg_members
944		 * by the proctree_lock rather than pg_mtx.
945		 */
946		PGRP_UNLOCK(pg);
947		nfound = 0;
948		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
949			PROC_LOCK(p);
950			if (p->p_state == PRS_NEW ||
951			    p_cansee(td, p) != 0) {
952				PROC_UNLOCK(p);
953				continue;
954			}
955			nfound++;
956			if (descend)
957				ret |= ktrsetchildren(td, p, ops, facs, vp);
958			else
959				ret |= ktrops(td, p, ops, facs, vp);
960		}
961		if (nfound == 0) {
962			sx_sunlock(&proctree_lock);
963			error = ESRCH;
964			goto done;
965		}
966	} else {
967		/*
968		 * by pid
969		 */
970		p = pfind(uap->pid);
971		if (p == NULL)
972			error = ESRCH;
973		else
974			error = p_cansee(td, p);
975		if (error) {
976			if (p != NULL)
977				PROC_UNLOCK(p);
978			sx_sunlock(&proctree_lock);
979			goto done;
980		}
981		if (descend)
982			ret |= ktrsetchildren(td, p, ops, facs, vp);
983		else
984			ret |= ktrops(td, p, ops, facs, vp);
985	}
986	sx_sunlock(&proctree_lock);
987	if (!ret)
988		error = EPERM;
989done:
990	if (vp != NULL)
991		(void) vn_close(vp, FWRITE, td->td_ucred, td);
992	ktrace_exit(td);
993	return (error);
994#else /* !KTRACE */
995	return (ENOSYS);
996#endif /* KTRACE */
997}
998
999/* ARGSUSED */
1000int
1001sys_utrace(td, uap)
1002	struct thread *td;
1003	register struct utrace_args *uap;
1004{
1005
1006#ifdef KTRACE
1007	struct ktr_request *req;
1008	void *cp;
1009	int error;
1010
1011	if (!KTRPOINT(td, KTR_USER))
1012		return (0);
1013	if (uap->len > KTR_USER_MAXLEN)
1014		return (EINVAL);
1015	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1016	error = copyin(uap->addr, cp, uap->len);
1017	if (error) {
1018		free(cp, M_KTRACE);
1019		return (error);
1020	}
1021	req = ktr_getrequest(KTR_USER);
1022	if (req == NULL) {
1023		free(cp, M_KTRACE);
1024		return (ENOMEM);
1025	}
1026	req->ktr_buffer = cp;
1027	req->ktr_header.ktr_len = uap->len;
1028	ktr_submitrequest(td, req);
1029	return (0);
1030#else /* !KTRACE */
1031	return (ENOSYS);
1032#endif /* KTRACE */
1033}
1034
1035#ifdef KTRACE
1036static int
1037ktrops(td, p, ops, facs, vp)
1038	struct thread *td;
1039	struct proc *p;
1040	int ops, facs;
1041	struct vnode *vp;
1042{
1043	struct vnode *tracevp = NULL;
1044	struct ucred *tracecred = NULL;
1045
1046	PROC_LOCK_ASSERT(p, MA_OWNED);
1047	if (!ktrcanset(td, p)) {
1048		PROC_UNLOCK(p);
1049		return (0);
1050	}
1051	if (p->p_flag & P_WEXIT) {
1052		/* If the process is exiting, just ignore it. */
1053		PROC_UNLOCK(p);
1054		return (1);
1055	}
1056	mtx_lock(&ktrace_mtx);
1057	if (ops == KTROP_SET) {
1058		if (p->p_tracevp != vp) {
1059			/*
1060			 * if trace file already in use, relinquish below
1061			 */
1062			tracevp = p->p_tracevp;
1063			VREF(vp);
1064			p->p_tracevp = vp;
1065		}
1066		if (p->p_tracecred != td->td_ucred) {
1067			tracecred = p->p_tracecred;
1068			p->p_tracecred = crhold(td->td_ucred);
1069		}
1070		p->p_traceflag |= facs;
1071		if (priv_check(td, PRIV_KTRACE) == 0)
1072			p->p_traceflag |= KTRFAC_ROOT;
1073	} else {
1074		/* KTROP_CLEAR */
1075		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1076			/* no more tracing */
1077			ktr_freeproc(p, &tracecred, &tracevp);
1078	}
1079	mtx_unlock(&ktrace_mtx);
1080	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1081		ktrprocctor_entered(td, p);
1082	PROC_UNLOCK(p);
1083	if (tracevp != NULL)
1084		vrele(tracevp);
1085	if (tracecred != NULL)
1086		crfree(tracecred);
1087
1088	return (1);
1089}
1090
1091static int
1092ktrsetchildren(td, top, ops, facs, vp)
1093	struct thread *td;
1094	struct proc *top;
1095	int ops, facs;
1096	struct vnode *vp;
1097{
1098	register struct proc *p;
1099	register int ret = 0;
1100
1101	p = top;
1102	PROC_LOCK_ASSERT(p, MA_OWNED);
1103	sx_assert(&proctree_lock, SX_LOCKED);
1104	for (;;) {
1105		ret |= ktrops(td, p, ops, facs, vp);
1106		/*
1107		 * If this process has children, descend to them next,
1108		 * otherwise do any siblings, and if done with this level,
1109		 * follow back up the tree (but not past top).
1110		 */
1111		if (!LIST_EMPTY(&p->p_children))
1112			p = LIST_FIRST(&p->p_children);
1113		else for (;;) {
1114			if (p == top)
1115				return (ret);
1116			if (LIST_NEXT(p, p_sibling)) {
1117				p = LIST_NEXT(p, p_sibling);
1118				break;
1119			}
1120			p = p->p_pptr;
1121		}
1122		PROC_LOCK(p);
1123	}
1124	/*NOTREACHED*/
1125}
1126
1127static void
1128ktr_writerequest(struct thread *td, struct ktr_request *req)
1129{
1130	struct ktr_header *kth;
1131	struct vnode *vp;
1132	struct proc *p;
1133	struct ucred *cred;
1134	struct uio auio;
1135	struct iovec aiov[3];
1136	struct mount *mp;
1137	int datalen, buflen, vrele_count;
1138	int error;
1139
1140	/*
1141	 * We hold the vnode and credential for use in I/O in case ktrace is
1142	 * disabled on the process as we write out the request.
1143	 *
1144	 * XXXRW: This is not ideal: we could end up performing a write after
1145	 * the vnode has been closed.
1146	 */
1147	mtx_lock(&ktrace_mtx);
1148	vp = td->td_proc->p_tracevp;
1149	cred = td->td_proc->p_tracecred;
1150
1151	/*
1152	 * If vp is NULL, the vp has been cleared out from under this
1153	 * request, so just drop it.  Make sure the credential and vnode are
1154	 * in sync: we should have both or neither.
1155	 */
1156	if (vp == NULL) {
1157		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1158		mtx_unlock(&ktrace_mtx);
1159		return;
1160	}
1161	VREF(vp);
1162	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1163	crhold(cred);
1164	mtx_unlock(&ktrace_mtx);
1165
1166	kth = &req->ktr_header;
1167	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
1168	    sizeof(data_lengths) / sizeof(data_lengths[0]),
1169	    ("data_lengths array overflow"));
1170	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1171	buflen = kth->ktr_len;
1172	auio.uio_iov = &aiov[0];
1173	auio.uio_offset = 0;
1174	auio.uio_segflg = UIO_SYSSPACE;
1175	auio.uio_rw = UIO_WRITE;
1176	aiov[0].iov_base = (caddr_t)kth;
1177	aiov[0].iov_len = sizeof(struct ktr_header);
1178	auio.uio_resid = sizeof(struct ktr_header);
1179	auio.uio_iovcnt = 1;
1180	auio.uio_td = td;
1181	if (datalen != 0) {
1182		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1183		aiov[1].iov_len = datalen;
1184		auio.uio_resid += datalen;
1185		auio.uio_iovcnt++;
1186		kth->ktr_len += datalen;
1187	}
1188	if (buflen != 0) {
1189		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1190		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1191		aiov[auio.uio_iovcnt].iov_len = buflen;
1192		auio.uio_resid += buflen;
1193		auio.uio_iovcnt++;
1194	}
1195
1196	vn_start_write(vp, &mp, V_WAIT);
1197	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1198#ifdef MAC
1199	error = mac_vnode_check_write(cred, NOCRED, vp);
1200	if (error == 0)
1201#endif
1202		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1203	VOP_UNLOCK(vp, 0);
1204	vn_finished_write(mp);
1205	crfree(cred);
1206	if (!error) {
1207		vrele(vp);
1208		return;
1209	}
1210
1211	/*
1212	 * If error encountered, give up tracing on this vnode.  We defer
1213	 * all the vrele()'s on the vnode until after we are finished walking
1214	 * the various lists to avoid needlessly holding locks.
1215	 * NB: at this point we still hold the vnode reference that must
1216	 * not go away as we need the valid vnode to compare with. Thus let
1217	 * vrele_count start at 1 and the reference will be freed
1218	 * by the loop at the end after our last use of vp.
1219	 */
1220	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1221	    error);
1222	vrele_count = 1;
1223	/*
1224	 * First, clear this vnode from being used by any processes in the
1225	 * system.
1226	 * XXX - If one process gets an EPERM writing to the vnode, should
1227	 * we really do this?  Other processes might have suitable
1228	 * credentials for the operation.
1229	 */
1230	cred = NULL;
1231	sx_slock(&allproc_lock);
1232	FOREACH_PROC_IN_SYSTEM(p) {
1233		PROC_LOCK(p);
1234		if (p->p_tracevp == vp) {
1235			mtx_lock(&ktrace_mtx);
1236			ktr_freeproc(p, &cred, NULL);
1237			mtx_unlock(&ktrace_mtx);
1238			vrele_count++;
1239		}
1240		PROC_UNLOCK(p);
1241		if (cred != NULL) {
1242			crfree(cred);
1243			cred = NULL;
1244		}
1245	}
1246	sx_sunlock(&allproc_lock);
1247
1248	while (vrele_count-- > 0)
1249		vrele(vp);
1250}
1251
1252/*
1253 * Return true if caller has permission to set the ktracing state
1254 * of target.  Essentially, the target can't possess any
1255 * more permissions than the caller.  KTRFAC_ROOT signifies that
1256 * root previously set the tracing status on the target process, and
1257 * so, only root may further change it.
1258 */
1259static int
1260ktrcanset(td, targetp)
1261	struct thread *td;
1262	struct proc *targetp;
1263{
1264
1265	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1266	if (targetp->p_traceflag & KTRFAC_ROOT &&
1267	    priv_check(td, PRIV_KTRACE))
1268		return (0);
1269
1270	if (p_candebug(td, targetp) != 0)
1271		return (0);
1272
1273	return (1);
1274}
1275
1276#endif /* KTRACE */
1277