kern_ktrace.c revision 234494
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/kern_ktrace.c 234494 2012-04-20 15:32:36Z jhb $");
36
37#include "opt_ktrace.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/fcntl.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/namei.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/unistd.h>
52#include <sys/vnode.h>
53#include <sys/socket.h>
54#include <sys/stat.h>
55#include <sys/ktrace.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysent.h>
59#include <sys/syslog.h>
60#include <sys/sysproto.h>
61
62#include <security/mac/mac_framework.h>
63
64/*
65 * The ktrace facility allows the tracing of certain key events in user space
66 * processes, such as system calls, signal delivery, context switches, and
67 * user generated events using utrace(2).  It works by streaming event
68 * records and data to a vnode associated with the process using the
69 * ktrace(2) system call.  In general, records can be written directly from
70 * the context that generates the event.  One important exception to this is
71 * during a context switch, where sleeping is not permitted.  To handle this
72 * case, trace events are generated using in-kernel ktr_request records, and
73 * then delivered to disk at a convenient moment -- either immediately, the
74 * next traceable event, at system call return, or at process exit.
75 *
76 * When dealing with multiple threads or processes writing to the same event
77 * log, ordering guarantees are weak: specifically, if an event has multiple
78 * records (i.e., system call enter and return), they may be interlaced with
79 * records from another event.  Process and thread ID information is provided
80 * in the record, and user applications can de-interlace events if required.
81 */
82
83static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84
85#ifdef KTRACE
86
87FEATURE(ktrace, "Kernel support for system-call tracing");
88
89#ifndef KTRACE_REQUEST_POOL
90#define	KTRACE_REQUEST_POOL	100
91#endif
92
93struct ktr_request {
94	struct	ktr_header ktr_header;
95	void	*ktr_buffer;
96	union {
97		struct	ktr_proc_ctor ktr_proc_ctor;
98		struct	ktr_cap_fail ktr_cap_fail;
99		struct	ktr_syscall ktr_syscall;
100		struct	ktr_sysret ktr_sysret;
101		struct	ktr_genio ktr_genio;
102		struct	ktr_psig ktr_psig;
103		struct	ktr_csw ktr_csw;
104		struct	ktr_fault ktr_fault;
105		struct	ktr_faultend ktr_faultend;
106	} ktr_data;
107	STAILQ_ENTRY(ktr_request) ktr_list;
108};
109
110static int data_lengths[] = {
111	0,					/* none */
112	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
113	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
114	0,					/* KTR_NAMEI */
115	sizeof(struct ktr_genio),		/* KTR_GENIO */
116	sizeof(struct ktr_psig),		/* KTR_PSIG */
117	sizeof(struct ktr_csw),			/* KTR_CSW */
118	0,					/* KTR_USER */
119	0,					/* KTR_STRUCT */
120	0,					/* KTR_SYSCTL */
121	sizeof(struct ktr_proc_ctor),		/* KTR_PROCCTOR */
122	0,					/* KTR_PROCDTOR */
123	sizeof(struct ktr_cap_fail),		/* KTR_CAPFAIL */
124	sizeof(struct ktr_fault),		/* KTR_FAULT */
125	sizeof(struct ktr_faultend),		/* KTR_FAULTEND */
126};
127
128static STAILQ_HEAD(, ktr_request) ktr_free;
129
130static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
131
132static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
133TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
134
135static u_int ktr_geniosize = PAGE_SIZE;
136TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
137SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
138    0, "Maximum size of genio event payload");
139
140static int print_message = 1;
141static struct mtx ktrace_mtx;
142static struct sx ktrace_sx;
143
144static void ktrace_init(void *dummy);
145static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
146static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
147static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
148static struct ktr_request *ktr_getrequest(int type);
149static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
150static void ktr_freeproc(struct proc *p, struct ucred **uc,
151    struct vnode **vp);
152static void ktr_freerequest(struct ktr_request *req);
153static void ktr_freerequest_locked(struct ktr_request *req);
154static void ktr_writerequest(struct thread *td, struct ktr_request *req);
155static int ktrcanset(struct thread *,struct proc *);
156static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
157static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
158static void ktrprocctor_entered(struct thread *, struct proc *);
159
160/*
161 * ktrace itself generates events, such as context switches, which we do not
162 * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
163 * whether or not it is in a region where tracing of events should be
164 * suppressed.
165 */
166static void
167ktrace_enter(struct thread *td)
168{
169
170	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
171	td->td_pflags |= TDP_INKTRACE;
172}
173
174static void
175ktrace_exit(struct thread *td)
176{
177
178	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
179	td->td_pflags &= ~TDP_INKTRACE;
180}
181
182static void
183ktrace_assert(struct thread *td)
184{
185
186	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
187}
188
189static void
190ktrace_init(void *dummy)
191{
192	struct ktr_request *req;
193	int i;
194
195	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
196	sx_init(&ktrace_sx, "ktrace_sx");
197	STAILQ_INIT(&ktr_free);
198	for (i = 0; i < ktr_requestpool; i++) {
199		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
200		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
201	}
202}
203SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
204
205static int
206sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
207{
208	struct thread *td;
209	u_int newsize, oldsize, wantsize;
210	int error;
211
212	/* Handle easy read-only case first to avoid warnings from GCC. */
213	if (!req->newptr) {
214		oldsize = ktr_requestpool;
215		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
216	}
217
218	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
219	if (error)
220		return (error);
221	td = curthread;
222	ktrace_enter(td);
223	oldsize = ktr_requestpool;
224	newsize = ktrace_resize_pool(oldsize, wantsize);
225	ktrace_exit(td);
226	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
227	if (error)
228		return (error);
229	if (wantsize > oldsize && newsize < wantsize)
230		return (ENOSPC);
231	return (0);
232}
233SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
234    &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
235    "Pool buffer size for ktrace(1)");
236
237static u_int
238ktrace_resize_pool(u_int oldsize, u_int newsize)
239{
240	STAILQ_HEAD(, ktr_request) ktr_new;
241	struct ktr_request *req;
242	int bound;
243
244	print_message = 1;
245	bound = newsize - oldsize;
246	if (bound == 0)
247		return (ktr_requestpool);
248	if (bound < 0) {
249		mtx_lock(&ktrace_mtx);
250		/* Shrink pool down to newsize if possible. */
251		while (bound++ < 0) {
252			req = STAILQ_FIRST(&ktr_free);
253			if (req == NULL)
254				break;
255			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
256			ktr_requestpool--;
257			free(req, M_KTRACE);
258		}
259	} else {
260		/* Grow pool up to newsize. */
261		STAILQ_INIT(&ktr_new);
262		while (bound-- > 0) {
263			req = malloc(sizeof(struct ktr_request), M_KTRACE,
264			    M_WAITOK);
265			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
266		}
267		mtx_lock(&ktrace_mtx);
268		STAILQ_CONCAT(&ktr_free, &ktr_new);
269		ktr_requestpool += (newsize - oldsize);
270	}
271	mtx_unlock(&ktrace_mtx);
272	return (ktr_requestpool);
273}
274
275/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
276CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
277    (sizeof((struct thread *)NULL)->td_name));
278
279static struct ktr_request *
280ktr_getrequest_entered(struct thread *td, int type)
281{
282	struct ktr_request *req;
283	struct proc *p = td->td_proc;
284	int pm;
285
286	mtx_lock(&ktrace_mtx);
287	if (!KTRCHECK(td, type)) {
288		mtx_unlock(&ktrace_mtx);
289		return (NULL);
290	}
291	req = STAILQ_FIRST(&ktr_free);
292	if (req != NULL) {
293		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
294		req->ktr_header.ktr_type = type;
295		if (p->p_traceflag & KTRFAC_DROP) {
296			req->ktr_header.ktr_type |= KTR_DROP;
297			p->p_traceflag &= ~KTRFAC_DROP;
298		}
299		mtx_unlock(&ktrace_mtx);
300		microtime(&req->ktr_header.ktr_time);
301		req->ktr_header.ktr_pid = p->p_pid;
302		req->ktr_header.ktr_tid = td->td_tid;
303		bcopy(td->td_name, req->ktr_header.ktr_comm,
304		    sizeof(req->ktr_header.ktr_comm));
305		req->ktr_buffer = NULL;
306		req->ktr_header.ktr_len = 0;
307	} else {
308		p->p_traceflag |= KTRFAC_DROP;
309		pm = print_message;
310		print_message = 0;
311		mtx_unlock(&ktrace_mtx);
312		if (pm)
313			printf("Out of ktrace request objects.\n");
314	}
315	return (req);
316}
317
318static struct ktr_request *
319ktr_getrequest(int type)
320{
321	struct thread *td = curthread;
322	struct ktr_request *req;
323
324	ktrace_enter(td);
325	req = ktr_getrequest_entered(td, type);
326	if (req == NULL)
327		ktrace_exit(td);
328
329	return (req);
330}
331
332/*
333 * Some trace generation environments don't permit direct access to VFS,
334 * such as during a context switch where sleeping is not allowed.  Under these
335 * circumstances, queue a request to the thread to be written asynchronously
336 * later.
337 */
338static void
339ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
340{
341
342	mtx_lock(&ktrace_mtx);
343	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
344	mtx_unlock(&ktrace_mtx);
345}
346
347/*
348 * Drain any pending ktrace records from the per-thread queue to disk.  This
349 * is used both internally before committing other records, and also on
350 * system call return.  We drain all the ones we can find at the time when
351 * drain is requested, but don't keep draining after that as those events
352 * may be approximately "after" the current event.
353 */
354static void
355ktr_drain(struct thread *td)
356{
357	struct ktr_request *queued_req;
358	STAILQ_HEAD(, ktr_request) local_queue;
359
360	ktrace_assert(td);
361	sx_assert(&ktrace_sx, SX_XLOCKED);
362
363	STAILQ_INIT(&local_queue);
364
365	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
366		mtx_lock(&ktrace_mtx);
367		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
368		mtx_unlock(&ktrace_mtx);
369
370		while ((queued_req = STAILQ_FIRST(&local_queue))) {
371			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
372			ktr_writerequest(td, queued_req);
373			ktr_freerequest(queued_req);
374		}
375	}
376}
377
378/*
379 * Submit a trace record for immediate commit to disk -- to be used only
380 * where entering VFS is OK.  First drain any pending records that may have
381 * been cached in the thread.
382 */
383static void
384ktr_submitrequest(struct thread *td, struct ktr_request *req)
385{
386
387	ktrace_assert(td);
388
389	sx_xlock(&ktrace_sx);
390	ktr_drain(td);
391	ktr_writerequest(td, req);
392	ktr_freerequest(req);
393	sx_xunlock(&ktrace_sx);
394	ktrace_exit(td);
395}
396
397static void
398ktr_freerequest(struct ktr_request *req)
399{
400
401	mtx_lock(&ktrace_mtx);
402	ktr_freerequest_locked(req);
403	mtx_unlock(&ktrace_mtx);
404}
405
406static void
407ktr_freerequest_locked(struct ktr_request *req)
408{
409
410	mtx_assert(&ktrace_mtx, MA_OWNED);
411	if (req->ktr_buffer != NULL)
412		free(req->ktr_buffer, M_KTRACE);
413	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
414}
415
416/*
417 * Disable tracing for a process and release all associated resources.
418 * The caller is responsible for releasing a reference on the returned
419 * vnode and credentials.
420 */
421static void
422ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
423{
424	struct ktr_request *req;
425
426	PROC_LOCK_ASSERT(p, MA_OWNED);
427	mtx_assert(&ktrace_mtx, MA_OWNED);
428	*uc = p->p_tracecred;
429	p->p_tracecred = NULL;
430	if (vp != NULL)
431		*vp = p->p_tracevp;
432	p->p_tracevp = NULL;
433	p->p_traceflag = 0;
434	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
435		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
436		ktr_freerequest_locked(req);
437	}
438}
439
440void
441ktrsyscall(code, narg, args)
442	int code, narg;
443	register_t args[];
444{
445	struct ktr_request *req;
446	struct ktr_syscall *ktp;
447	size_t buflen;
448	char *buf = NULL;
449
450	buflen = sizeof(register_t) * narg;
451	if (buflen > 0) {
452		buf = malloc(buflen, M_KTRACE, M_WAITOK);
453		bcopy(args, buf, buflen);
454	}
455	req = ktr_getrequest(KTR_SYSCALL);
456	if (req == NULL) {
457		if (buf != NULL)
458			free(buf, M_KTRACE);
459		return;
460	}
461	ktp = &req->ktr_data.ktr_syscall;
462	ktp->ktr_code = code;
463	ktp->ktr_narg = narg;
464	if (buflen > 0) {
465		req->ktr_header.ktr_len = buflen;
466		req->ktr_buffer = buf;
467	}
468	ktr_submitrequest(curthread, req);
469}
470
471void
472ktrsysret(code, error, retval)
473	int code, error;
474	register_t retval;
475{
476	struct ktr_request *req;
477	struct ktr_sysret *ktp;
478
479	req = ktr_getrequest(KTR_SYSRET);
480	if (req == NULL)
481		return;
482	ktp = &req->ktr_data.ktr_sysret;
483	ktp->ktr_code = code;
484	ktp->ktr_error = error;
485	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
486	ktr_submitrequest(curthread, req);
487}
488
489/*
490 * When a setuid process execs, disable tracing.
491 *
492 * XXX: We toss any pending asynchronous records.
493 */
494void
495ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
496{
497
498	PROC_LOCK_ASSERT(p, MA_OWNED);
499	mtx_lock(&ktrace_mtx);
500	ktr_freeproc(p, uc, vp);
501	mtx_unlock(&ktrace_mtx);
502}
503
504/*
505 * When a process exits, drain per-process asynchronous trace records
506 * and disable tracing.
507 */
508void
509ktrprocexit(struct thread *td)
510{
511	struct ktr_request *req;
512	struct proc *p;
513	struct ucred *cred;
514	struct vnode *vp;
515	int vfslocked;
516
517	p = td->td_proc;
518	if (p->p_traceflag == 0)
519		return;
520
521	ktrace_enter(td);
522	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
523	if (req != NULL)
524		ktr_enqueuerequest(td, req);
525	sx_xlock(&ktrace_sx);
526	ktr_drain(td);
527	sx_xunlock(&ktrace_sx);
528	PROC_LOCK(p);
529	mtx_lock(&ktrace_mtx);
530	ktr_freeproc(p, &cred, &vp);
531	mtx_unlock(&ktrace_mtx);
532	PROC_UNLOCK(p);
533	if (vp != NULL) {
534		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
535		vrele(vp);
536		VFS_UNLOCK_GIANT(vfslocked);
537	}
538	if (cred != NULL)
539		crfree(cred);
540	ktrace_exit(td);
541}
542
543static void
544ktrprocctor_entered(struct thread *td, struct proc *p)
545{
546	struct ktr_proc_ctor *ktp;
547	struct ktr_request *req;
548	struct thread *td2;
549
550	ktrace_assert(td);
551	td2 = FIRST_THREAD_IN_PROC(p);
552	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
553	if (req == NULL)
554		return;
555	ktp = &req->ktr_data.ktr_proc_ctor;
556	ktp->sv_flags = p->p_sysent->sv_flags;
557	ktr_enqueuerequest(td2, req);
558}
559
560void
561ktrprocctor(struct proc *p)
562{
563	struct thread *td = curthread;
564
565	if ((p->p_traceflag & KTRFAC_MASK) == 0)
566		return;
567
568	ktrace_enter(td);
569	ktrprocctor_entered(td, p);
570	ktrace_exit(td);
571}
572
573/*
574 * When a process forks, enable tracing in the new process if needed.
575 */
576void
577ktrprocfork(struct proc *p1, struct proc *p2)
578{
579
580	PROC_LOCK(p1);
581	mtx_lock(&ktrace_mtx);
582	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
583	if (p1->p_traceflag & KTRFAC_INHERIT) {
584		p2->p_traceflag = p1->p_traceflag;
585		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
586			VREF(p2->p_tracevp);
587			KASSERT(p1->p_tracecred != NULL,
588			    ("ktrace vnode with no cred"));
589			p2->p_tracecred = crhold(p1->p_tracecred);
590		}
591	}
592	mtx_unlock(&ktrace_mtx);
593	PROC_UNLOCK(p1);
594
595	ktrprocctor(p2);
596}
597
598/*
599 * When a thread returns, drain any asynchronous records generated by the
600 * system call.
601 */
602void
603ktruserret(struct thread *td)
604{
605
606	ktrace_enter(td);
607	sx_xlock(&ktrace_sx);
608	ktr_drain(td);
609	sx_xunlock(&ktrace_sx);
610	ktrace_exit(td);
611}
612
613void
614ktrnamei(path)
615	char *path;
616{
617	struct ktr_request *req;
618	int namelen;
619	char *buf = NULL;
620
621	namelen = strlen(path);
622	if (namelen > 0) {
623		buf = malloc(namelen, M_KTRACE, M_WAITOK);
624		bcopy(path, buf, namelen);
625	}
626	req = ktr_getrequest(KTR_NAMEI);
627	if (req == NULL) {
628		if (buf != NULL)
629			free(buf, M_KTRACE);
630		return;
631	}
632	if (namelen > 0) {
633		req->ktr_header.ktr_len = namelen;
634		req->ktr_buffer = buf;
635	}
636	ktr_submitrequest(curthread, req);
637}
638
639void
640ktrsysctl(name, namelen)
641	int *name;
642	u_int namelen;
643{
644	struct ktr_request *req;
645	u_int mib[CTL_MAXNAME + 2];
646	char *mibname;
647	size_t mibnamelen;
648	int error;
649
650	/* Lookup name of mib. */
651	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
652	mib[0] = 0;
653	mib[1] = 1;
654	bcopy(name, mib + 2, namelen * sizeof(*name));
655	mibnamelen = 128;
656	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
657	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
658	    NULL, 0, &mibnamelen, 0);
659	if (error) {
660		free(mibname, M_KTRACE);
661		return;
662	}
663	req = ktr_getrequest(KTR_SYSCTL);
664	if (req == NULL) {
665		free(mibname, M_KTRACE);
666		return;
667	}
668	req->ktr_header.ktr_len = mibnamelen;
669	req->ktr_buffer = mibname;
670	ktr_submitrequest(curthread, req);
671}
672
673void
674ktrgenio(fd, rw, uio, error)
675	int fd;
676	enum uio_rw rw;
677	struct uio *uio;
678	int error;
679{
680	struct ktr_request *req;
681	struct ktr_genio *ktg;
682	int datalen;
683	char *buf;
684
685	if (error) {
686		free(uio, M_IOV);
687		return;
688	}
689	uio->uio_offset = 0;
690	uio->uio_rw = UIO_WRITE;
691	datalen = MIN(uio->uio_resid, ktr_geniosize);
692	buf = malloc(datalen, M_KTRACE, M_WAITOK);
693	error = uiomove(buf, datalen, uio);
694	free(uio, M_IOV);
695	if (error) {
696		free(buf, M_KTRACE);
697		return;
698	}
699	req = ktr_getrequest(KTR_GENIO);
700	if (req == NULL) {
701		free(buf, M_KTRACE);
702		return;
703	}
704	ktg = &req->ktr_data.ktr_genio;
705	ktg->ktr_fd = fd;
706	ktg->ktr_rw = rw;
707	req->ktr_header.ktr_len = datalen;
708	req->ktr_buffer = buf;
709	ktr_submitrequest(curthread, req);
710}
711
712void
713ktrpsig(sig, action, mask, code)
714	int sig;
715	sig_t action;
716	sigset_t *mask;
717	int code;
718{
719	struct thread *td = curthread;
720	struct ktr_request *req;
721	struct ktr_psig	*kp;
722
723	req = ktr_getrequest(KTR_PSIG);
724	if (req == NULL)
725		return;
726	kp = &req->ktr_data.ktr_psig;
727	kp->signo = (char)sig;
728	kp->action = action;
729	kp->mask = *mask;
730	kp->code = code;
731	ktr_enqueuerequest(td, req);
732	ktrace_exit(td);
733}
734
735void
736ktrcsw(out, user, wmesg)
737	int out, user;
738	const char *wmesg;
739{
740	struct thread *td = curthread;
741	struct ktr_request *req;
742	struct ktr_csw *kc;
743
744	req = ktr_getrequest(KTR_CSW);
745	if (req == NULL)
746		return;
747	kc = &req->ktr_data.ktr_csw;
748	kc->out = out;
749	kc->user = user;
750	if (wmesg != NULL)
751		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
752	else
753		bzero(kc->wmesg, sizeof(kc->wmesg));
754	ktr_enqueuerequest(td, req);
755	ktrace_exit(td);
756}
757
758void
759ktrstruct(name, data, datalen)
760	const char *name;
761	void *data;
762	size_t datalen;
763{
764	struct ktr_request *req;
765	char *buf = NULL;
766	size_t buflen;
767
768	if (!data)
769		datalen = 0;
770	buflen = strlen(name) + 1 + datalen;
771	buf = malloc(buflen, M_KTRACE, M_WAITOK);
772	strcpy(buf, name);
773	bcopy(data, buf + strlen(name) + 1, datalen);
774	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
775		free(buf, M_KTRACE);
776		return;
777	}
778	req->ktr_buffer = buf;
779	req->ktr_header.ktr_len = buflen;
780	ktr_submitrequest(curthread, req);
781}
782
783void
784ktrcapfail(type, needed, held)
785	enum ktr_cap_fail_type type;
786	cap_rights_t needed;
787	cap_rights_t held;
788{
789	struct thread *td = curthread;
790	struct ktr_request *req;
791	struct ktr_cap_fail *kcf;
792
793	req = ktr_getrequest(KTR_CAPFAIL);
794	if (req == NULL)
795		return;
796	kcf = &req->ktr_data.ktr_cap_fail;
797	kcf->cap_type = type;
798	kcf->cap_needed = needed;
799	kcf->cap_held = held;
800	ktr_enqueuerequest(td, req);
801	ktrace_exit(td);
802}
803
804void
805ktrfault(vaddr, type)
806	vm_offset_t vaddr;
807	int type;
808{
809	struct thread *td = curthread;
810	struct ktr_request *req;
811	struct ktr_fault *kf;
812
813	req = ktr_getrequest(KTR_FAULT);
814	if (req == NULL)
815		return;
816	kf = &req->ktr_data.ktr_fault;
817	kf->vaddr = vaddr;
818	kf->type = type;
819	ktr_enqueuerequest(td, req);
820	ktrace_exit(td);
821}
822
823void
824ktrfaultend(result)
825	int result;
826{
827	struct thread *td = curthread;
828	struct ktr_request *req;
829	struct ktr_faultend *kf;
830
831	req = ktr_getrequest(KTR_FAULTEND);
832	if (req == NULL)
833		return;
834	kf = &req->ktr_data.ktr_faultend;
835	kf->result = result;
836	ktr_enqueuerequest(td, req);
837	ktrace_exit(td);
838}
839#endif /* KTRACE */
840
841/* Interface and common routines */
842
843#ifndef _SYS_SYSPROTO_H_
844struct ktrace_args {
845	char	*fname;
846	int	ops;
847	int	facs;
848	int	pid;
849};
850#endif
851/* ARGSUSED */
852int
853sys_ktrace(td, uap)
854	struct thread *td;
855	register struct ktrace_args *uap;
856{
857#ifdef KTRACE
858	register struct vnode *vp = NULL;
859	register struct proc *p;
860	struct pgrp *pg;
861	int facs = uap->facs & ~KTRFAC_ROOT;
862	int ops = KTROP(uap->ops);
863	int descend = uap->ops & KTRFLAG_DESCEND;
864	int nfound, ret = 0;
865	int flags, error = 0, vfslocked;
866	struct nameidata nd;
867	struct ucred *cred;
868
869	/*
870	 * Need something to (un)trace.
871	 */
872	if (ops != KTROP_CLEARFILE && facs == 0)
873		return (EINVAL);
874
875	ktrace_enter(td);
876	if (ops != KTROP_CLEAR) {
877		/*
878		 * an operation which requires a file argument.
879		 */
880		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
881		    uap->fname, td);
882		flags = FREAD | FWRITE | O_NOFOLLOW;
883		error = vn_open(&nd, &flags, 0, NULL);
884		if (error) {
885			ktrace_exit(td);
886			return (error);
887		}
888		vfslocked = NDHASGIANT(&nd);
889		NDFREE(&nd, NDF_ONLY_PNBUF);
890		vp = nd.ni_vp;
891		VOP_UNLOCK(vp, 0);
892		if (vp->v_type != VREG) {
893			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
894			VFS_UNLOCK_GIANT(vfslocked);
895			ktrace_exit(td);
896			return (EACCES);
897		}
898		VFS_UNLOCK_GIANT(vfslocked);
899	}
900	/*
901	 * Clear all uses of the tracefile.
902	 */
903	if (ops == KTROP_CLEARFILE) {
904		int vrele_count;
905
906		vrele_count = 0;
907		sx_slock(&allproc_lock);
908		FOREACH_PROC_IN_SYSTEM(p) {
909			PROC_LOCK(p);
910			if (p->p_tracevp == vp) {
911				if (ktrcanset(td, p)) {
912					mtx_lock(&ktrace_mtx);
913					ktr_freeproc(p, &cred, NULL);
914					mtx_unlock(&ktrace_mtx);
915					vrele_count++;
916					crfree(cred);
917				} else
918					error = EPERM;
919			}
920			PROC_UNLOCK(p);
921		}
922		sx_sunlock(&allproc_lock);
923		if (vrele_count > 0) {
924			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
925			while (vrele_count-- > 0)
926				vrele(vp);
927			VFS_UNLOCK_GIANT(vfslocked);
928		}
929		goto done;
930	}
931	/*
932	 * do it
933	 */
934	sx_slock(&proctree_lock);
935	if (uap->pid < 0) {
936		/*
937		 * by process group
938		 */
939		pg = pgfind(-uap->pid);
940		if (pg == NULL) {
941			sx_sunlock(&proctree_lock);
942			error = ESRCH;
943			goto done;
944		}
945		/*
946		 * ktrops() may call vrele(). Lock pg_members
947		 * by the proctree_lock rather than pg_mtx.
948		 */
949		PGRP_UNLOCK(pg);
950		nfound = 0;
951		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
952			PROC_LOCK(p);
953			if (p->p_state == PRS_NEW ||
954			    p_cansee(td, p) != 0) {
955				PROC_UNLOCK(p);
956				continue;
957			}
958			nfound++;
959			if (descend)
960				ret |= ktrsetchildren(td, p, ops, facs, vp);
961			else
962				ret |= ktrops(td, p, ops, facs, vp);
963		}
964		if (nfound == 0) {
965			sx_sunlock(&proctree_lock);
966			error = ESRCH;
967			goto done;
968		}
969	} else {
970		/*
971		 * by pid
972		 */
973		p = pfind(uap->pid);
974		if (p == NULL)
975			error = ESRCH;
976		else
977			error = p_cansee(td, p);
978		if (error) {
979			if (p != NULL)
980				PROC_UNLOCK(p);
981			sx_sunlock(&proctree_lock);
982			goto done;
983		}
984		if (descend)
985			ret |= ktrsetchildren(td, p, ops, facs, vp);
986		else
987			ret |= ktrops(td, p, ops, facs, vp);
988	}
989	sx_sunlock(&proctree_lock);
990	if (!ret)
991		error = EPERM;
992done:
993	if (vp != NULL) {
994		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
995		(void) vn_close(vp, FWRITE, td->td_ucred, td);
996		VFS_UNLOCK_GIANT(vfslocked);
997	}
998	ktrace_exit(td);
999	return (error);
1000#else /* !KTRACE */
1001	return (ENOSYS);
1002#endif /* KTRACE */
1003}
1004
1005/* ARGSUSED */
1006int
1007sys_utrace(td, uap)
1008	struct thread *td;
1009	register struct utrace_args *uap;
1010{
1011
1012#ifdef KTRACE
1013	struct ktr_request *req;
1014	void *cp;
1015	int error;
1016
1017	if (!KTRPOINT(td, KTR_USER))
1018		return (0);
1019	if (uap->len > KTR_USER_MAXLEN)
1020		return (EINVAL);
1021	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1022	error = copyin(uap->addr, cp, uap->len);
1023	if (error) {
1024		free(cp, M_KTRACE);
1025		return (error);
1026	}
1027	req = ktr_getrequest(KTR_USER);
1028	if (req == NULL) {
1029		free(cp, M_KTRACE);
1030		return (ENOMEM);
1031	}
1032	req->ktr_buffer = cp;
1033	req->ktr_header.ktr_len = uap->len;
1034	ktr_submitrequest(td, req);
1035	return (0);
1036#else /* !KTRACE */
1037	return (ENOSYS);
1038#endif /* KTRACE */
1039}
1040
1041#ifdef KTRACE
1042static int
1043ktrops(td, p, ops, facs, vp)
1044	struct thread *td;
1045	struct proc *p;
1046	int ops, facs;
1047	struct vnode *vp;
1048{
1049	struct vnode *tracevp = NULL;
1050	struct ucred *tracecred = NULL;
1051
1052	PROC_LOCK_ASSERT(p, MA_OWNED);
1053	if (!ktrcanset(td, p)) {
1054		PROC_UNLOCK(p);
1055		return (0);
1056	}
1057	if (p->p_flag & P_WEXIT) {
1058		/* If the process is exiting, just ignore it. */
1059		PROC_UNLOCK(p);
1060		return (1);
1061	}
1062	mtx_lock(&ktrace_mtx);
1063	if (ops == KTROP_SET) {
1064		if (p->p_tracevp != vp) {
1065			/*
1066			 * if trace file already in use, relinquish below
1067			 */
1068			tracevp = p->p_tracevp;
1069			VREF(vp);
1070			p->p_tracevp = vp;
1071		}
1072		if (p->p_tracecred != td->td_ucred) {
1073			tracecred = p->p_tracecred;
1074			p->p_tracecred = crhold(td->td_ucred);
1075		}
1076		p->p_traceflag |= facs;
1077		if (priv_check(td, PRIV_KTRACE) == 0)
1078			p->p_traceflag |= KTRFAC_ROOT;
1079	} else {
1080		/* KTROP_CLEAR */
1081		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1082			/* no more tracing */
1083			ktr_freeproc(p, &tracecred, &tracevp);
1084	}
1085	mtx_unlock(&ktrace_mtx);
1086	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1087		ktrprocctor_entered(td, p);
1088	PROC_UNLOCK(p);
1089	if (tracevp != NULL) {
1090		int vfslocked;
1091
1092		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
1093		vrele(tracevp);
1094		VFS_UNLOCK_GIANT(vfslocked);
1095	}
1096	if (tracecred != NULL)
1097		crfree(tracecred);
1098
1099	return (1);
1100}
1101
1102static int
1103ktrsetchildren(td, top, ops, facs, vp)
1104	struct thread *td;
1105	struct proc *top;
1106	int ops, facs;
1107	struct vnode *vp;
1108{
1109	register struct proc *p;
1110	register int ret = 0;
1111
1112	p = top;
1113	PROC_LOCK_ASSERT(p, MA_OWNED);
1114	sx_assert(&proctree_lock, SX_LOCKED);
1115	for (;;) {
1116		ret |= ktrops(td, p, ops, facs, vp);
1117		/*
1118		 * If this process has children, descend to them next,
1119		 * otherwise do any siblings, and if done with this level,
1120		 * follow back up the tree (but not past top).
1121		 */
1122		if (!LIST_EMPTY(&p->p_children))
1123			p = LIST_FIRST(&p->p_children);
1124		else for (;;) {
1125			if (p == top)
1126				return (ret);
1127			if (LIST_NEXT(p, p_sibling)) {
1128				p = LIST_NEXT(p, p_sibling);
1129				break;
1130			}
1131			p = p->p_pptr;
1132		}
1133		PROC_LOCK(p);
1134	}
1135	/*NOTREACHED*/
1136}
1137
1138static void
1139ktr_writerequest(struct thread *td, struct ktr_request *req)
1140{
1141	struct ktr_header *kth;
1142	struct vnode *vp;
1143	struct proc *p;
1144	struct ucred *cred;
1145	struct uio auio;
1146	struct iovec aiov[3];
1147	struct mount *mp;
1148	int datalen, buflen, vrele_count;
1149	int error, vfslocked;
1150
1151	/*
1152	 * We hold the vnode and credential for use in I/O in case ktrace is
1153	 * disabled on the process as we write out the request.
1154	 *
1155	 * XXXRW: This is not ideal: we could end up performing a write after
1156	 * the vnode has been closed.
1157	 */
1158	mtx_lock(&ktrace_mtx);
1159	vp = td->td_proc->p_tracevp;
1160	cred = td->td_proc->p_tracecred;
1161
1162	/*
1163	 * If vp is NULL, the vp has been cleared out from under this
1164	 * request, so just drop it.  Make sure the credential and vnode are
1165	 * in sync: we should have both or neither.
1166	 */
1167	if (vp == NULL) {
1168		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1169		mtx_unlock(&ktrace_mtx);
1170		return;
1171	}
1172	VREF(vp);
1173	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1174	crhold(cred);
1175	mtx_unlock(&ktrace_mtx);
1176
1177	kth = &req->ktr_header;
1178	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
1179	    sizeof(data_lengths) / sizeof(data_lengths[0]),
1180	    ("data_lengths array overflow"));
1181	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1182	buflen = kth->ktr_len;
1183	auio.uio_iov = &aiov[0];
1184	auio.uio_offset = 0;
1185	auio.uio_segflg = UIO_SYSSPACE;
1186	auio.uio_rw = UIO_WRITE;
1187	aiov[0].iov_base = (caddr_t)kth;
1188	aiov[0].iov_len = sizeof(struct ktr_header);
1189	auio.uio_resid = sizeof(struct ktr_header);
1190	auio.uio_iovcnt = 1;
1191	auio.uio_td = td;
1192	if (datalen != 0) {
1193		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1194		aiov[1].iov_len = datalen;
1195		auio.uio_resid += datalen;
1196		auio.uio_iovcnt++;
1197		kth->ktr_len += datalen;
1198	}
1199	if (buflen != 0) {
1200		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1201		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1202		aiov[auio.uio_iovcnt].iov_len = buflen;
1203		auio.uio_resid += buflen;
1204		auio.uio_iovcnt++;
1205	}
1206
1207	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1208	vn_start_write(vp, &mp, V_WAIT);
1209	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1210#ifdef MAC
1211	error = mac_vnode_check_write(cred, NOCRED, vp);
1212	if (error == 0)
1213#endif
1214		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1215	VOP_UNLOCK(vp, 0);
1216	vn_finished_write(mp);
1217	crfree(cred);
1218	if (!error) {
1219		vrele(vp);
1220		VFS_UNLOCK_GIANT(vfslocked);
1221		return;
1222	}
1223	VFS_UNLOCK_GIANT(vfslocked);
1224
1225	/*
1226	 * If error encountered, give up tracing on this vnode.  We defer
1227	 * all the vrele()'s on the vnode until after we are finished walking
1228	 * the various lists to avoid needlessly holding locks.
1229	 * NB: at this point we still hold the vnode reference that must
1230	 * not go away as we need the valid vnode to compare with. Thus let
1231	 * vrele_count start at 1 and the reference will be freed
1232	 * by the loop at the end after our last use of vp.
1233	 */
1234	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1235	    error);
1236	vrele_count = 1;
1237	/*
1238	 * First, clear this vnode from being used by any processes in the
1239	 * system.
1240	 * XXX - If one process gets an EPERM writing to the vnode, should
1241	 * we really do this?  Other processes might have suitable
1242	 * credentials for the operation.
1243	 */
1244	cred = NULL;
1245	sx_slock(&allproc_lock);
1246	FOREACH_PROC_IN_SYSTEM(p) {
1247		PROC_LOCK(p);
1248		if (p->p_tracevp == vp) {
1249			mtx_lock(&ktrace_mtx);
1250			ktr_freeproc(p, &cred, NULL);
1251			mtx_unlock(&ktrace_mtx);
1252			vrele_count++;
1253		}
1254		PROC_UNLOCK(p);
1255		if (cred != NULL) {
1256			crfree(cred);
1257			cred = NULL;
1258		}
1259	}
1260	sx_sunlock(&allproc_lock);
1261
1262	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1263	while (vrele_count-- > 0)
1264		vrele(vp);
1265	VFS_UNLOCK_GIANT(vfslocked);
1266}
1267
1268/*
1269 * Return true if caller has permission to set the ktracing state
1270 * of target.  Essentially, the target can't possess any
1271 * more permissions than the caller.  KTRFAC_ROOT signifies that
1272 * root previously set the tracing status on the target process, and
1273 * so, only root may further change it.
1274 */
1275static int
1276ktrcanset(td, targetp)
1277	struct thread *td;
1278	struct proc *targetp;
1279{
1280
1281	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1282	if (targetp->p_traceflag & KTRFAC_ROOT &&
1283	    priv_check(td, PRIV_KTRACE))
1284		return (0);
1285
1286	if (p_candebug(td, targetp) != 0)
1287		return (0);
1288
1289	return (1);
1290}
1291
1292#endif /* KTRACE */
1293