kern_ktrace.c revision 211102
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/kern_ktrace.c 211102 2010-08-09 14:48:31Z gavin $");
36
37#include "opt_ktrace.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/fcntl.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/namei.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/unistd.h>
52#include <sys/vnode.h>
53#include <sys/socket.h>
54#include <sys/stat.h>
55#include <sys/ktrace.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/sysproto.h>
60
61#include <security/mac/mac_framework.h>
62
63/*
64 * The ktrace facility allows the tracing of certain key events in user space
65 * processes, such as system calls, signal delivery, context switches, and
66 * user generated events using utrace(2).  It works by streaming event
67 * records and data to a vnode associated with the process using the
68 * ktrace(2) system call.  In general, records can be written directly from
69 * the context that generates the event.  One important exception to this is
70 * during a context switch, where sleeping is not permitted.  To handle this
71 * case, trace events are generated using in-kernel ktr_request records, and
72 * then delivered to disk at a convenient moment -- either immediately, the
73 * next traceable event, at system call return, or at process exit.
74 *
75 * When dealing with multiple threads or processes writing to the same event
76 * log, ordering guarantees are weak: specifically, if an event has multiple
77 * records (i.e., system call enter and return), they may be interlaced with
78 * records from another event.  Process and thread ID information is provided
79 * in the record, and user applications can de-interlace events if required.
80 */
81
82static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
83
84#ifdef KTRACE
85
86#ifndef KTRACE_REQUEST_POOL
87#define	KTRACE_REQUEST_POOL	100
88#endif
89
90struct ktr_request {
91	struct	ktr_header ktr_header;
92	void	*ktr_buffer;
93	union {
94		struct	ktr_syscall ktr_syscall;
95		struct	ktr_sysret ktr_sysret;
96		struct	ktr_genio ktr_genio;
97		struct	ktr_psig ktr_psig;
98		struct	ktr_csw ktr_csw;
99	} ktr_data;
100	STAILQ_ENTRY(ktr_request) ktr_list;
101};
102
103static int data_lengths[] = {
104	0,					/* none */
105	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
106	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
107	0,					/* KTR_NAMEI */
108	sizeof(struct ktr_genio),		/* KTR_GENIO */
109	sizeof(struct ktr_psig),		/* KTR_PSIG */
110	sizeof(struct ktr_csw),			/* KTR_CSW */
111	0,					/* KTR_USER */
112	0,					/* KTR_STRUCT */
113	0,					/* KTR_SYSCTL */
114};
115
116static STAILQ_HEAD(, ktr_request) ktr_free;
117
118static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
119
120static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
121TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
122
123static u_int ktr_geniosize = PAGE_SIZE;
124TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
125SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
126    0, "Maximum size of genio event payload");
127
128static int print_message = 1;
129struct mtx ktrace_mtx;
130static struct sx ktrace_sx;
131
132static void ktrace_init(void *dummy);
133static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
134static u_int ktrace_resize_pool(u_int newsize);
135static struct ktr_request *ktr_getrequest(int type);
136static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
137static void ktr_freerequest(struct ktr_request *req);
138static void ktr_writerequest(struct thread *td, struct ktr_request *req);
139static int ktrcanset(struct thread *,struct proc *);
140static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
141static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
142
143/*
144 * ktrace itself generates events, such as context switches, which we do not
145 * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
146 * whether or not it is in a region where tracing of events should be
147 * suppressed.
148 */
149static void
150ktrace_enter(struct thread *td)
151{
152
153	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
154	td->td_pflags |= TDP_INKTRACE;
155}
156
157static void
158ktrace_exit(struct thread *td)
159{
160
161	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
162	td->td_pflags &= ~TDP_INKTRACE;
163}
164
165static void
166ktrace_assert(struct thread *td)
167{
168
169	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
170}
171
172static void
173ktrace_init(void *dummy)
174{
175	struct ktr_request *req;
176	int i;
177
178	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
179	sx_init(&ktrace_sx, "ktrace_sx");
180	STAILQ_INIT(&ktr_free);
181	for (i = 0; i < ktr_requestpool; i++) {
182		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
183		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
184	}
185}
186SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
187
188static int
189sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
190{
191	struct thread *td;
192	u_int newsize, oldsize, wantsize;
193	int error;
194
195	/* Handle easy read-only case first to avoid warnings from GCC. */
196	if (!req->newptr) {
197		mtx_lock(&ktrace_mtx);
198		oldsize = ktr_requestpool;
199		mtx_unlock(&ktrace_mtx);
200		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
201	}
202
203	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
204	if (error)
205		return (error);
206	td = curthread;
207	ktrace_enter(td);
208	mtx_lock(&ktrace_mtx);
209	oldsize = ktr_requestpool;
210	newsize = ktrace_resize_pool(wantsize);
211	mtx_unlock(&ktrace_mtx);
212	ktrace_exit(td);
213	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
214	if (error)
215		return (error);
216	if (wantsize > oldsize && newsize < wantsize)
217		return (ENOSPC);
218	return (0);
219}
220SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
221    &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
222    "Pool buffer size for ktrace(1)");
223
224static u_int
225ktrace_resize_pool(u_int newsize)
226{
227	struct ktr_request *req;
228	int bound;
229
230	mtx_assert(&ktrace_mtx, MA_OWNED);
231	print_message = 1;
232	bound = newsize - ktr_requestpool;
233	if (bound == 0)
234		return (ktr_requestpool);
235	if (bound < 0)
236		/* Shrink pool down to newsize if possible. */
237		while (bound++ < 0) {
238			req = STAILQ_FIRST(&ktr_free);
239			if (req == NULL)
240				return (ktr_requestpool);
241			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
242			ktr_requestpool--;
243			mtx_unlock(&ktrace_mtx);
244			free(req, M_KTRACE);
245			mtx_lock(&ktrace_mtx);
246		}
247	else
248		/* Grow pool up to newsize. */
249		while (bound-- > 0) {
250			mtx_unlock(&ktrace_mtx);
251			req = malloc(sizeof(struct ktr_request), M_KTRACE,
252			    M_WAITOK);
253			mtx_lock(&ktrace_mtx);
254			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
255			ktr_requestpool++;
256		}
257	return (ktr_requestpool);
258}
259
260/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
261CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
262    (sizeof((struct thread *)NULL)->td_name));
263
264static struct ktr_request *
265ktr_getrequest(int type)
266{
267	struct ktr_request *req;
268	struct thread *td = curthread;
269	struct proc *p = td->td_proc;
270	int pm;
271
272	ktrace_enter(td);	/* XXX: In caller instead? */
273	mtx_lock(&ktrace_mtx);
274	if (!KTRCHECK(td, type)) {
275		mtx_unlock(&ktrace_mtx);
276		ktrace_exit(td);
277		return (NULL);
278	}
279	req = STAILQ_FIRST(&ktr_free);
280	if (req != NULL) {
281		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
282		req->ktr_header.ktr_type = type;
283		if (p->p_traceflag & KTRFAC_DROP) {
284			req->ktr_header.ktr_type |= KTR_DROP;
285			p->p_traceflag &= ~KTRFAC_DROP;
286		}
287		mtx_unlock(&ktrace_mtx);
288		microtime(&req->ktr_header.ktr_time);
289		req->ktr_header.ktr_pid = p->p_pid;
290		req->ktr_header.ktr_tid = td->td_tid;
291		bcopy(td->td_name, req->ktr_header.ktr_comm,
292		    sizeof(req->ktr_header.ktr_comm));
293		req->ktr_buffer = NULL;
294		req->ktr_header.ktr_len = 0;
295	} else {
296		p->p_traceflag |= KTRFAC_DROP;
297		pm = print_message;
298		print_message = 0;
299		mtx_unlock(&ktrace_mtx);
300		if (pm)
301			printf("Out of ktrace request objects.\n");
302		ktrace_exit(td);
303	}
304	return (req);
305}
306
307/*
308 * Some trace generation environments don't permit direct access to VFS,
309 * such as during a context switch where sleeping is not allowed.  Under these
310 * circumstances, queue a request to the thread to be written asynchronously
311 * later.
312 */
313static void
314ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
315{
316
317	mtx_lock(&ktrace_mtx);
318	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
319	mtx_unlock(&ktrace_mtx);
320	ktrace_exit(td);
321}
322
323/*
324 * Drain any pending ktrace records from the per-thread queue to disk.  This
325 * is used both internally before committing other records, and also on
326 * system call return.  We drain all the ones we can find at the time when
327 * drain is requested, but don't keep draining after that as those events
328 * may be approximately "after" the current event.
329 */
330static void
331ktr_drain(struct thread *td)
332{
333	struct ktr_request *queued_req;
334	STAILQ_HEAD(, ktr_request) local_queue;
335
336	ktrace_assert(td);
337	sx_assert(&ktrace_sx, SX_XLOCKED);
338
339	STAILQ_INIT(&local_queue);	/* XXXRW: needed? */
340
341	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
342		mtx_lock(&ktrace_mtx);
343		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
344		mtx_unlock(&ktrace_mtx);
345
346		while ((queued_req = STAILQ_FIRST(&local_queue))) {
347			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
348			ktr_writerequest(td, queued_req);
349			ktr_freerequest(queued_req);
350		}
351	}
352}
353
354/*
355 * Submit a trace record for immediate commit to disk -- to be used only
356 * where entering VFS is OK.  First drain any pending records that may have
357 * been cached in the thread.
358 */
359static void
360ktr_submitrequest(struct thread *td, struct ktr_request *req)
361{
362
363	ktrace_assert(td);
364
365	sx_xlock(&ktrace_sx);
366	ktr_drain(td);
367	ktr_writerequest(td, req);
368	ktr_freerequest(req);
369	sx_xunlock(&ktrace_sx);
370
371	ktrace_exit(td);
372}
373
374static void
375ktr_freerequest(struct ktr_request *req)
376{
377
378	if (req->ktr_buffer != NULL)
379		free(req->ktr_buffer, M_KTRACE);
380	mtx_lock(&ktrace_mtx);
381	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
382	mtx_unlock(&ktrace_mtx);
383}
384
385void
386ktrsyscall(code, narg, args)
387	int code, narg;
388	register_t args[];
389{
390	struct ktr_request *req;
391	struct ktr_syscall *ktp;
392	size_t buflen;
393	char *buf = NULL;
394
395	buflen = sizeof(register_t) * narg;
396	if (buflen > 0) {
397		buf = malloc(buflen, M_KTRACE, M_WAITOK);
398		bcopy(args, buf, buflen);
399	}
400	req = ktr_getrequest(KTR_SYSCALL);
401	if (req == NULL) {
402		if (buf != NULL)
403			free(buf, M_KTRACE);
404		return;
405	}
406	ktp = &req->ktr_data.ktr_syscall;
407	ktp->ktr_code = code;
408	ktp->ktr_narg = narg;
409	if (buflen > 0) {
410		req->ktr_header.ktr_len = buflen;
411		req->ktr_buffer = buf;
412	}
413	ktr_submitrequest(curthread, req);
414}
415
416void
417ktrsysret(code, error, retval)
418	int code, error;
419	register_t retval;
420{
421	struct ktr_request *req;
422	struct ktr_sysret *ktp;
423
424	req = ktr_getrequest(KTR_SYSRET);
425	if (req == NULL)
426		return;
427	ktp = &req->ktr_data.ktr_sysret;
428	ktp->ktr_code = code;
429	ktp->ktr_error = error;
430	ktp->ktr_retval = retval;		/* what about val2 ? */
431	ktr_submitrequest(curthread, req);
432}
433
434/*
435 * When a process exits, drain per-process asynchronous trace records.
436 */
437void
438ktrprocexit(struct thread *td)
439{
440
441	ktrace_enter(td);
442	sx_xlock(&ktrace_sx);
443	ktr_drain(td);
444	sx_xunlock(&ktrace_sx);
445	ktrace_exit(td);
446}
447
448/*
449 * When a thread returns, drain any asynchronous records generated by the
450 * system call.
451 */
452void
453ktruserret(struct thread *td)
454{
455
456	ktrace_enter(td);
457	sx_xlock(&ktrace_sx);
458	ktr_drain(td);
459	sx_xunlock(&ktrace_sx);
460	ktrace_exit(td);
461}
462
463void
464ktrnamei(path)
465	char *path;
466{
467	struct ktr_request *req;
468	int namelen;
469	char *buf = NULL;
470
471	namelen = strlen(path);
472	if (namelen > 0) {
473		buf = malloc(namelen, M_KTRACE, M_WAITOK);
474		bcopy(path, buf, namelen);
475	}
476	req = ktr_getrequest(KTR_NAMEI);
477	if (req == NULL) {
478		if (buf != NULL)
479			free(buf, M_KTRACE);
480		return;
481	}
482	if (namelen > 0) {
483		req->ktr_header.ktr_len = namelen;
484		req->ktr_buffer = buf;
485	}
486	ktr_submitrequest(curthread, req);
487}
488
489void
490ktrsysctl(name, namelen)
491	int *name;
492	u_int namelen;
493{
494	struct ktr_request *req;
495	u_int mib[CTL_MAXNAME + 2];
496	char *mibname;
497	size_t mibnamelen;
498	int error;
499
500	/* Lookup name of mib. */
501	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
502	mib[0] = 0;
503	mib[1] = 1;
504	bcopy(name, mib + 2, namelen * sizeof(*name));
505	mibnamelen = 128;
506	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
507	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
508	    NULL, 0, &mibnamelen, 0);
509	if (error) {
510		free(mibname, M_KTRACE);
511		return;
512	}
513	req = ktr_getrequest(KTR_SYSCTL);
514	if (req == NULL) {
515		free(mibname, M_KTRACE);
516		return;
517	}
518	req->ktr_header.ktr_len = mibnamelen;
519	req->ktr_buffer = mibname;
520	ktr_submitrequest(curthread, req);
521}
522
523void
524ktrgenio(fd, rw, uio, error)
525	int fd;
526	enum uio_rw rw;
527	struct uio *uio;
528	int error;
529{
530	struct ktr_request *req;
531	struct ktr_genio *ktg;
532	int datalen;
533	char *buf;
534
535	if (error) {
536		free(uio, M_IOV);
537		return;
538	}
539	uio->uio_offset = 0;
540	uio->uio_rw = UIO_WRITE;
541	datalen = imin(uio->uio_resid, ktr_geniosize);
542	buf = malloc(datalen, M_KTRACE, M_WAITOK);
543	error = uiomove(buf, datalen, uio);
544	free(uio, M_IOV);
545	if (error) {
546		free(buf, M_KTRACE);
547		return;
548	}
549	req = ktr_getrequest(KTR_GENIO);
550	if (req == NULL) {
551		free(buf, M_KTRACE);
552		return;
553	}
554	ktg = &req->ktr_data.ktr_genio;
555	ktg->ktr_fd = fd;
556	ktg->ktr_rw = rw;
557	req->ktr_header.ktr_len = datalen;
558	req->ktr_buffer = buf;
559	ktr_submitrequest(curthread, req);
560}
561
562void
563ktrpsig(sig, action, mask, code)
564	int sig;
565	sig_t action;
566	sigset_t *mask;
567	int code;
568{
569	struct ktr_request *req;
570	struct ktr_psig	*kp;
571
572	req = ktr_getrequest(KTR_PSIG);
573	if (req == NULL)
574		return;
575	kp = &req->ktr_data.ktr_psig;
576	kp->signo = (char)sig;
577	kp->action = action;
578	kp->mask = *mask;
579	kp->code = code;
580	ktr_enqueuerequest(curthread, req);
581}
582
583void
584ktrcsw(out, user)
585	int out, user;
586{
587	struct ktr_request *req;
588	struct ktr_csw *kc;
589
590	req = ktr_getrequest(KTR_CSW);
591	if (req == NULL)
592		return;
593	kc = &req->ktr_data.ktr_csw;
594	kc->out = out;
595	kc->user = user;
596	ktr_enqueuerequest(curthread, req);
597}
598
599void
600ktrstruct(name, data, datalen)
601	const char *name;
602	void *data;
603	size_t datalen;
604{
605	struct ktr_request *req;
606	char *buf = NULL;
607	size_t buflen;
608
609	if (!data)
610		datalen = 0;
611	buflen = strlen(name) + 1 + datalen;
612	buf = malloc(buflen, M_KTRACE, M_WAITOK);
613	strcpy(buf, name);
614	bcopy(data, buf + strlen(name) + 1, datalen);
615	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
616		free(buf, M_KTRACE);
617		return;
618	}
619	req->ktr_buffer = buf;
620	req->ktr_header.ktr_len = buflen;
621	ktr_submitrequest(curthread, req);
622}
623#endif /* KTRACE */
624
625/* Interface and common routines */
626
627#ifndef _SYS_SYSPROTO_H_
628struct ktrace_args {
629	char	*fname;
630	int	ops;
631	int	facs;
632	int	pid;
633};
634#endif
635/* ARGSUSED */
636int
637ktrace(td, uap)
638	struct thread *td;
639	register struct ktrace_args *uap;
640{
641#ifdef KTRACE
642	register struct vnode *vp = NULL;
643	register struct proc *p;
644	struct pgrp *pg;
645	int facs = uap->facs & ~KTRFAC_ROOT;
646	int ops = KTROP(uap->ops);
647	int descend = uap->ops & KTRFLAG_DESCEND;
648	int nfound, ret = 0;
649	int flags, error = 0, vfslocked;
650	struct nameidata nd;
651	struct ucred *cred;
652
653	/*
654	 * Need something to (un)trace.
655	 */
656	if (ops != KTROP_CLEARFILE && facs == 0)
657		return (EINVAL);
658
659	ktrace_enter(td);
660	if (ops != KTROP_CLEAR) {
661		/*
662		 * an operation which requires a file argument.
663		 */
664		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
665		    uap->fname, td);
666		flags = FREAD | FWRITE | O_NOFOLLOW;
667		error = vn_open(&nd, &flags, 0, NULL);
668		if (error) {
669			ktrace_exit(td);
670			return (error);
671		}
672		vfslocked = NDHASGIANT(&nd);
673		NDFREE(&nd, NDF_ONLY_PNBUF);
674		vp = nd.ni_vp;
675		VOP_UNLOCK(vp, 0);
676		if (vp->v_type != VREG) {
677			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
678			VFS_UNLOCK_GIANT(vfslocked);
679			ktrace_exit(td);
680			return (EACCES);
681		}
682		VFS_UNLOCK_GIANT(vfslocked);
683	}
684	/*
685	 * Clear all uses of the tracefile.
686	 */
687	if (ops == KTROP_CLEARFILE) {
688		int vrele_count;
689
690		vrele_count = 0;
691		sx_slock(&allproc_lock);
692		FOREACH_PROC_IN_SYSTEM(p) {
693			PROC_LOCK(p);
694			if (p->p_tracevp == vp) {
695				if (ktrcanset(td, p)) {
696					mtx_lock(&ktrace_mtx);
697					cred = p->p_tracecred;
698					p->p_tracecred = NULL;
699					p->p_tracevp = NULL;
700					p->p_traceflag = 0;
701					mtx_unlock(&ktrace_mtx);
702					vrele_count++;
703					crfree(cred);
704				} else
705					error = EPERM;
706			}
707			PROC_UNLOCK(p);
708		}
709		sx_sunlock(&allproc_lock);
710		if (vrele_count > 0) {
711			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
712			while (vrele_count-- > 0)
713				vrele(vp);
714			VFS_UNLOCK_GIANT(vfslocked);
715		}
716		goto done;
717	}
718	/*
719	 * do it
720	 */
721	sx_slock(&proctree_lock);
722	if (uap->pid < 0) {
723		/*
724		 * by process group
725		 */
726		pg = pgfind(-uap->pid);
727		if (pg == NULL) {
728			sx_sunlock(&proctree_lock);
729			error = ESRCH;
730			goto done;
731		}
732		/*
733		 * ktrops() may call vrele(). Lock pg_members
734		 * by the proctree_lock rather than pg_mtx.
735		 */
736		PGRP_UNLOCK(pg);
737		nfound = 0;
738		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
739			PROC_LOCK(p);
740			if (p_cansee(td, p) != 0) {
741				PROC_UNLOCK(p);
742				continue;
743			}
744			PROC_UNLOCK(p);
745			nfound++;
746			if (descend)
747				ret |= ktrsetchildren(td, p, ops, facs, vp);
748			else
749				ret |= ktrops(td, p, ops, facs, vp);
750		}
751		if (nfound == 0) {
752			sx_sunlock(&proctree_lock);
753			error = ESRCH;
754			goto done;
755		}
756	} else {
757		/*
758		 * by pid
759		 */
760		p = pfind(uap->pid);
761		if (p == NULL) {
762			sx_sunlock(&proctree_lock);
763			error = ESRCH;
764			goto done;
765		}
766		error = p_cansee(td, p);
767		/*
768		 * The slock of the proctree lock will keep this process
769		 * from going away, so unlocking the proc here is ok.
770		 */
771		PROC_UNLOCK(p);
772		if (error) {
773			sx_sunlock(&proctree_lock);
774			goto done;
775		}
776		if (descend)
777			ret |= ktrsetchildren(td, p, ops, facs, vp);
778		else
779			ret |= ktrops(td, p, ops, facs, vp);
780	}
781	sx_sunlock(&proctree_lock);
782	if (!ret)
783		error = EPERM;
784done:
785	if (vp != NULL) {
786		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
787		(void) vn_close(vp, FWRITE, td->td_ucred, td);
788		VFS_UNLOCK_GIANT(vfslocked);
789	}
790	ktrace_exit(td);
791	return (error);
792#else /* !KTRACE */
793	return (ENOSYS);
794#endif /* KTRACE */
795}
796
797/* ARGSUSED */
798int
799utrace(td, uap)
800	struct thread *td;
801	register struct utrace_args *uap;
802{
803
804#ifdef KTRACE
805	struct ktr_request *req;
806	void *cp;
807	int error;
808
809	if (!KTRPOINT(td, KTR_USER))
810		return (0);
811	if (uap->len > KTR_USER_MAXLEN)
812		return (EINVAL);
813	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
814	error = copyin(uap->addr, cp, uap->len);
815	if (error) {
816		free(cp, M_KTRACE);
817		return (error);
818	}
819	req = ktr_getrequest(KTR_USER);
820	if (req == NULL) {
821		free(cp, M_KTRACE);
822		return (ENOMEM);
823	}
824	req->ktr_buffer = cp;
825	req->ktr_header.ktr_len = uap->len;
826	ktr_submitrequest(td, req);
827	return (0);
828#else /* !KTRACE */
829	return (ENOSYS);
830#endif /* KTRACE */
831}
832
833#ifdef KTRACE
834static int
835ktrops(td, p, ops, facs, vp)
836	struct thread *td;
837	struct proc *p;
838	int ops, facs;
839	struct vnode *vp;
840{
841	struct vnode *tracevp = NULL;
842	struct ucred *tracecred = NULL;
843
844	PROC_LOCK(p);
845	if (!ktrcanset(td, p)) {
846		PROC_UNLOCK(p);
847		return (0);
848	}
849	mtx_lock(&ktrace_mtx);
850	if (ops == KTROP_SET) {
851		if (p->p_tracevp != vp) {
852			/*
853			 * if trace file already in use, relinquish below
854			 */
855			tracevp = p->p_tracevp;
856			VREF(vp);
857			p->p_tracevp = vp;
858		}
859		if (p->p_tracecred != td->td_ucred) {
860			tracecred = p->p_tracecred;
861			p->p_tracecred = crhold(td->td_ucred);
862		}
863		p->p_traceflag |= facs;
864		if (priv_check(td, PRIV_KTRACE) == 0)
865			p->p_traceflag |= KTRFAC_ROOT;
866	} else {
867		/* KTROP_CLEAR */
868		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
869			/* no more tracing */
870			p->p_traceflag = 0;
871			tracevp = p->p_tracevp;
872			p->p_tracevp = NULL;
873			tracecred = p->p_tracecred;
874			p->p_tracecred = NULL;
875		}
876	}
877	mtx_unlock(&ktrace_mtx);
878	PROC_UNLOCK(p);
879	if (tracevp != NULL) {
880		int vfslocked;
881
882		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
883		vrele(tracevp);
884		VFS_UNLOCK_GIANT(vfslocked);
885	}
886	if (tracecred != NULL)
887		crfree(tracecred);
888
889	return (1);
890}
891
892static int
893ktrsetchildren(td, top, ops, facs, vp)
894	struct thread *td;
895	struct proc *top;
896	int ops, facs;
897	struct vnode *vp;
898{
899	register struct proc *p;
900	register int ret = 0;
901
902	p = top;
903	sx_assert(&proctree_lock, SX_LOCKED);
904	for (;;) {
905		ret |= ktrops(td, p, ops, facs, vp);
906		/*
907		 * If this process has children, descend to them next,
908		 * otherwise do any siblings, and if done with this level,
909		 * follow back up the tree (but not past top).
910		 */
911		if (!LIST_EMPTY(&p->p_children))
912			p = LIST_FIRST(&p->p_children);
913		else for (;;) {
914			if (p == top)
915				return (ret);
916			if (LIST_NEXT(p, p_sibling)) {
917				p = LIST_NEXT(p, p_sibling);
918				break;
919			}
920			p = p->p_pptr;
921		}
922	}
923	/*NOTREACHED*/
924}
925
926static void
927ktr_writerequest(struct thread *td, struct ktr_request *req)
928{
929	struct ktr_header *kth;
930	struct vnode *vp;
931	struct proc *p;
932	struct ucred *cred;
933	struct uio auio;
934	struct iovec aiov[3];
935	struct mount *mp;
936	int datalen, buflen, vrele_count;
937	int error, vfslocked;
938
939	/*
940	 * We hold the vnode and credential for use in I/O in case ktrace is
941	 * disabled on the process as we write out the request.
942	 *
943	 * XXXRW: This is not ideal: we could end up performing a write after
944	 * the vnode has been closed.
945	 */
946	mtx_lock(&ktrace_mtx);
947	vp = td->td_proc->p_tracevp;
948	cred = td->td_proc->p_tracecred;
949
950	/*
951	 * If vp is NULL, the vp has been cleared out from under this
952	 * request, so just drop it.  Make sure the credential and vnode are
953	 * in sync: we should have both or neither.
954	 */
955	if (vp == NULL) {
956		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
957		mtx_unlock(&ktrace_mtx);
958		return;
959	}
960	VREF(vp);
961	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
962	crhold(cred);
963	mtx_unlock(&ktrace_mtx);
964
965	kth = &req->ktr_header;
966	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
967	    sizeof(data_lengths) / sizeof(data_lengths[0]),
968	    ("data_lengths array overflow"));
969	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
970	buflen = kth->ktr_len;
971	auio.uio_iov = &aiov[0];
972	auio.uio_offset = 0;
973	auio.uio_segflg = UIO_SYSSPACE;
974	auio.uio_rw = UIO_WRITE;
975	aiov[0].iov_base = (caddr_t)kth;
976	aiov[0].iov_len = sizeof(struct ktr_header);
977	auio.uio_resid = sizeof(struct ktr_header);
978	auio.uio_iovcnt = 1;
979	auio.uio_td = td;
980	if (datalen != 0) {
981		aiov[1].iov_base = (caddr_t)&req->ktr_data;
982		aiov[1].iov_len = datalen;
983		auio.uio_resid += datalen;
984		auio.uio_iovcnt++;
985		kth->ktr_len += datalen;
986	}
987	if (buflen != 0) {
988		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
989		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
990		aiov[auio.uio_iovcnt].iov_len = buflen;
991		auio.uio_resid += buflen;
992		auio.uio_iovcnt++;
993	}
994
995	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
996	vn_start_write(vp, &mp, V_WAIT);
997	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
998#ifdef MAC
999	error = mac_vnode_check_write(cred, NOCRED, vp);
1000	if (error == 0)
1001#endif
1002		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1003	VOP_UNLOCK(vp, 0);
1004	vn_finished_write(mp);
1005	crfree(cred);
1006	if (!error) {
1007		vrele(vp);
1008		VFS_UNLOCK_GIANT(vfslocked);
1009		return;
1010	}
1011	VFS_UNLOCK_GIANT(vfslocked);
1012
1013	/*
1014	 * If error encountered, give up tracing on this vnode.  We defer
1015	 * all the vrele()'s on the vnode until after we are finished walking
1016	 * the various lists to avoid needlessly holding locks.
1017	 * NB: at this point we still hold the vnode reference that must
1018	 * not go away as we need the valid vnode to compare with. Thus let
1019	 * vrele_count start at 1 and the reference will be freed
1020	 * by the loop at the end after our last use of vp.
1021	 */
1022	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1023	    error);
1024	vrele_count = 1;
1025	/*
1026	 * First, clear this vnode from being used by any processes in the
1027	 * system.
1028	 * XXX - If one process gets an EPERM writing to the vnode, should
1029	 * we really do this?  Other processes might have suitable
1030	 * credentials for the operation.
1031	 */
1032	cred = NULL;
1033	sx_slock(&allproc_lock);
1034	FOREACH_PROC_IN_SYSTEM(p) {
1035		PROC_LOCK(p);
1036		if (p->p_tracevp == vp) {
1037			mtx_lock(&ktrace_mtx);
1038			p->p_tracevp = NULL;
1039			p->p_traceflag = 0;
1040			cred = p->p_tracecred;
1041			p->p_tracecred = NULL;
1042			mtx_unlock(&ktrace_mtx);
1043			vrele_count++;
1044		}
1045		PROC_UNLOCK(p);
1046		if (cred != NULL) {
1047			crfree(cred);
1048			cred = NULL;
1049		}
1050	}
1051	sx_sunlock(&allproc_lock);
1052
1053	/*
1054	 * We can't clear any pending requests in threads that have cached
1055	 * them but not yet committed them, as those are per-thread.  The
1056	 * thread will have to clear it itself on system call return.
1057	 */
1058	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1059	while (vrele_count-- > 0)
1060		vrele(vp);
1061	VFS_UNLOCK_GIANT(vfslocked);
1062}
1063
1064/*
1065 * Return true if caller has permission to set the ktracing state
1066 * of target.  Essentially, the target can't possess any
1067 * more permissions than the caller.  KTRFAC_ROOT signifies that
1068 * root previously set the tracing status on the target process, and
1069 * so, only root may further change it.
1070 */
1071static int
1072ktrcanset(td, targetp)
1073	struct thread *td;
1074	struct proc *targetp;
1075{
1076
1077	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1078	if (targetp->p_traceflag & KTRFAC_ROOT &&
1079	    priv_check(td, PRIV_KTRACE))
1080		return (0);
1081
1082	if (p_candebug(td, targetp) != 0)
1083		return (0);
1084
1085	return (1);
1086}
1087
1088#endif /* KTRACE */
1089