machdep.c revision 28976
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.258 1997/08/26 18:10:30 peter Exp $
39 */
40
41#include "apm.h"
42#include "npx.h"
43#include "opt_sysvipc.h"
44#include "opt_ddb.h"
45#include "opt_bounce.h"
46#include "opt_maxmem.h"
47#include "opt_perfmon.h"
48#include "opt_smp.h"
49#include "opt_userconfig.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/sysproto.h>
54#include <sys/signalvar.h>
55#include <sys/kernel.h>
56#include <sys/proc.h>
57#include <sys/buf.h>
58#include <sys/reboot.h>
59#include <sys/conf.h>
60#include <sys/callout.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/msgbuf.h>
64#include <sys/sysent.h>
65#include <sys/sysctl.h>
66#include <sys/vmmeter.h>
67
68#ifdef SYSVSHM
69#include <sys/shm.h>
70#endif
71
72#ifdef SYSVMSG
73#include <sys/msg.h>
74#endif
75
76#ifdef SYSVSEM
77#include <sys/sem.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_prot.h>
83#include <sys/lock.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90
91#include <sys/user.h>
92#include <sys/exec.h>
93
94#include <ddb/ddb.h>
95
96#include <net/netisr.h>
97
98#if NAPM > 0
99#include <machine/apm_bios.h>
100#endif
101#include <machine/cpu.h>
102#include <machine/reg.h>
103#include <machine/psl.h>
104#include <machine/clock.h>
105#include <machine/specialreg.h>
106#include <machine/cons.h>
107#include <machine/bootinfo.h>
108#include <machine/md_var.h>
109#include <machine/pcb_ext.h>
110#ifdef SMP
111#include <machine/smp.h>
112#endif
113#ifdef PERFMON
114#include <machine/perfmon.h>
115#endif
116
117#include <i386/isa/isa_device.h>
118#include <i386/isa/intr_machdep.h>
119#include <i386/isa/rtc.h>
120#include <machine/random.h>
121
122extern void init386 __P((int first));
123extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
124extern int ptrace_single_step __P((struct proc *p));
125extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
126extern void dblfault_handler __P((void));
127
128extern void printcpuinfo(void);	/* XXX header file */
129extern void earlysetcpuclass(void);	/* same header file */
130extern void finishidentcpu(void);
131extern void panicifcpuunsupported(void);
132extern void initializecpu(void);
133
134static void cpu_startup __P((void *));
135SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
136
137
138#ifdef BOUNCE_BUFFERS
139extern char *bouncememory;
140extern int maxbkva;
141#ifdef BOUNCEPAGES
142int	bouncepages = BOUNCEPAGES;
143#else
144int	bouncepages = 0;
145#endif
146#endif	/* BOUNCE_BUFFERS */
147
148extern int freebufspace;
149int	msgbufmapped = 0;		/* set when safe to use msgbuf */
150int _udatasel, _ucodesel;
151u_int	atdevbase;
152
153
154int physmem = 0;
155int cold = 1;
156
157static int
158sysctl_hw_physmem SYSCTL_HANDLER_ARGS
159{
160	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
161	return (error);
162}
163
164SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
165	0, 0, sysctl_hw_physmem, "I", "");
166
167static int
168sysctl_hw_usermem SYSCTL_HANDLER_ARGS
169{
170	int error = sysctl_handle_int(oidp, 0,
171		ctob(physmem - cnt.v_wire_count), req);
172	return (error);
173}
174
175SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
176	0, 0, sysctl_hw_usermem, "I", "");
177
178int boothowto = 0, bootverbose = 0, Maxmem = 0;
179static int	badpages = 0;
180long dumplo;
181extern int bootdev;
182
183vm_offset_t phys_avail[10];
184
185/* must be 2 less so 0 0 can signal end of chunks */
186#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
187
188static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
189
190static vm_offset_t buffer_sva, buffer_eva;
191vm_offset_t clean_sva, clean_eva;
192static vm_offset_t pager_sva, pager_eva;
193extern struct linker_set netisr_set;
194
195#define offsetof(type, member)	((size_t)(&((type *)0)->member))
196
197static void
198cpu_startup(dummy)
199	void *dummy;
200{
201	register unsigned i;
202	register caddr_t v;
203	vm_offset_t maxaddr;
204	vm_size_t size = 0;
205	int firstaddr;
206	vm_offset_t minaddr;
207
208	if (boothowto & RB_VERBOSE)
209		bootverbose++;
210
211	/*
212	 * Good {morning,afternoon,evening,night}.
213	 */
214	printf(version);
215	earlysetcpuclass();
216	startrtclock();
217	printcpuinfo();
218	panicifcpuunsupported();
219#ifdef PERFMON
220	perfmon_init();
221#endif
222	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
223	/*
224	 * Display any holes after the first chunk of extended memory.
225	 */
226	if (badpages != 0) {
227		int indx = 1;
228
229		/*
230		 * XXX skip reporting ISA hole & unmanaged kernel memory
231		 */
232		if (phys_avail[0] == PAGE_SIZE)
233			indx += 2;
234
235		printf("Physical memory hole(s):\n");
236		for (; phys_avail[indx + 1] != 0; indx += 2) {
237			int size = phys_avail[indx + 1] - phys_avail[indx];
238
239			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
240			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
241		}
242	}
243
244	/*
245	 * Quickly wire in netisrs.
246	 */
247	setup_netisrs(&netisr_set);
248
249	/*
250	 * Allocate space for system data structures.
251	 * The first available kernel virtual address is in "v".
252	 * As pages of kernel virtual memory are allocated, "v" is incremented.
253	 * As pages of memory are allocated and cleared,
254	 * "firstaddr" is incremented.
255	 * An index into the kernel page table corresponding to the
256	 * virtual memory address maintained in "v" is kept in "mapaddr".
257	 */
258
259	/*
260	 * Make two passes.  The first pass calculates how much memory is
261	 * needed and allocates it.  The second pass assigns virtual
262	 * addresses to the various data structures.
263	 */
264	firstaddr = 0;
265again:
266	v = (caddr_t)firstaddr;
267
268#define	valloc(name, type, num) \
269	    (name) = (type *)v; v = (caddr_t)((name)+(num))
270#define	valloclim(name, type, num, lim) \
271	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
272	valloc(callout, struct callout, ncallout);
273#ifdef SYSVSHM
274	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
275#endif
276#ifdef SYSVSEM
277	valloc(sema, struct semid_ds, seminfo.semmni);
278	valloc(sem, struct sem, seminfo.semmns);
279	/* This is pretty disgusting! */
280	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
281#endif
282#ifdef SYSVMSG
283	valloc(msgpool, char, msginfo.msgmax);
284	valloc(msgmaps, struct msgmap, msginfo.msgseg);
285	valloc(msghdrs, struct msg, msginfo.msgtql);
286	valloc(msqids, struct msqid_ds, msginfo.msgmni);
287#endif
288
289	if (nbuf == 0) {
290		nbuf = 30;
291		if( physmem > 1024)
292			nbuf += min((physmem - 1024) / 8, 2048);
293	}
294	nswbuf = max(min(nbuf/4, 128), 16);
295
296	valloc(swbuf, struct buf, nswbuf);
297	valloc(buf, struct buf, nbuf);
298
299#ifdef BOUNCE_BUFFERS
300	/*
301	 * If there is more than 16MB of memory, allocate some bounce buffers
302	 */
303	if (Maxmem > 4096) {
304		if (bouncepages == 0) {
305			bouncepages = 64;
306			bouncepages += ((Maxmem - 4096) / 2048) * 32;
307			if (bouncepages > 128)
308				bouncepages = 128;
309		}
310		v = (caddr_t)((vm_offset_t)round_page(v));
311		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
312	}
313#endif
314
315	/*
316	 * End of first pass, size has been calculated so allocate memory
317	 */
318	if (firstaddr == 0) {
319		size = (vm_size_t)(v - firstaddr);
320		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
321		if (firstaddr == 0)
322			panic("startup: no room for tables");
323		goto again;
324	}
325
326	/*
327	 * End of second pass, addresses have been assigned
328	 */
329	if ((vm_size_t)(v - firstaddr) != size)
330		panic("startup: table size inconsistency");
331
332#ifdef BOUNCE_BUFFERS
333	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
334			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) +
335				maxbkva + pager_map_size, TRUE);
336	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
337#else
338	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
339			(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
340#endif
341	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
342				(nbuf*BKVASIZE), TRUE);
343	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
344				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
345	pager_map->system_map = 1;
346	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
347				(16*ARG_MAX), TRUE);
348	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
349				(maxproc*UPAGES*PAGE_SIZE), FALSE);
350
351	/*
352	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
353	 * we use the more space efficient malloc in place of kmem_alloc.
354	 */
355	{
356		vm_offset_t mb_map_size;
357
358		mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
359		mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
360		mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
361		bzero(mclrefcnt, mb_map_size / MCLBYTES);
362		mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
363			mb_map_size, FALSE);
364		mb_map->system_map = 1;
365	}
366
367	/*
368	 * Initialize callouts
369	 */
370	callfree = callout;
371	for (i = 1; i < ncallout; i++)
372		callout[i-1].c_next = &callout[i];
373
374#if defined(USERCONFIG)
375#if defined(USERCONFIG_BOOT)
376	if (1) {
377#else
378        if (boothowto & RB_CONFIG) {
379#endif
380		userconfig();
381		cninit();	/* the preferred console may have changed */
382	}
383#endif
384
385#ifdef BOUNCE_BUFFERS
386	/*
387	 * init bounce buffers
388	 */
389	vm_bounce_init();
390#endif
391
392	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
393	    ptoa(cnt.v_free_count) / 1024);
394
395	/*
396	 * Set up buffers, so they can be used to read disk labels.
397	 */
398	bufinit();
399	vm_pager_bufferinit();
400
401#ifdef SMP
402	/*
403	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
404	 */
405	mp_start();			/* fire up the APs and APICs */
406	mp_announce();
407#endif  /* SMP */
408}
409
410int
411register_netisr(num, handler)
412	int num;
413	netisr_t *handler;
414{
415
416	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
417		printf("register_netisr: bad isr number: %d\n", num);
418		return (EINVAL);
419	}
420	netisrs[num] = handler;
421	return (0);
422}
423
424static void
425setup_netisrs(ls)
426	struct linker_set *ls;
427{
428	int i;
429	const struct netisrtab *nit;
430
431	for(i = 0; ls->ls_items[i]; i++) {
432		nit = (const struct netisrtab *)ls->ls_items[i];
433		register_netisr(nit->nit_num, nit->nit_isr);
434	}
435}
436
437/*
438 * Send an interrupt to process.
439 *
440 * Stack is set up to allow sigcode stored
441 * at top to call routine, followed by kcall
442 * to sigreturn routine below.  After sigreturn
443 * resets the signal mask, the stack, and the
444 * frame pointer, it returns to the user
445 * specified pc, psl.
446 */
447void
448sendsig(catcher, sig, mask, code)
449	sig_t catcher;
450	int sig, mask;
451	u_long code;
452{
453	register struct proc *p = curproc;
454	register struct trapframe *regs;
455	register struct sigframe *fp;
456	struct sigframe sf;
457	struct sigacts *psp = p->p_sigacts;
458	int oonstack;
459
460	regs = p->p_md.md_regs;
461        oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
462	/*
463	 * Allocate and validate space for the signal handler context.
464	 */
465        if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
466	    (psp->ps_sigonstack & sigmask(sig))) {
467		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
468		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
469		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
470	} else {
471		fp = (struct sigframe *)regs->tf_esp - 1;
472	}
473
474	/*
475	 * grow() will return FALSE if the fp will not fit inside the stack
476	 *	and the stack can not be grown. useracc will return FALSE
477	 *	if access is denied.
478	 */
479	if ((grow(p, (int)fp) == FALSE) ||
480	    (useracc((caddr_t)fp, sizeof(struct sigframe), B_WRITE) == FALSE)) {
481		/*
482		 * Process has trashed its stack; give it an illegal
483		 * instruction to halt it in its tracks.
484		 */
485		SIGACTION(p, SIGILL) = SIG_DFL;
486		sig = sigmask(SIGILL);
487		p->p_sigignore &= ~sig;
488		p->p_sigcatch &= ~sig;
489		p->p_sigmask &= ~sig;
490		psignal(p, SIGILL);
491		return;
492	}
493
494	/*
495	 * Build the argument list for the signal handler.
496	 */
497	if (p->p_sysent->sv_sigtbl) {
498		if (sig < p->p_sysent->sv_sigsize)
499			sig = p->p_sysent->sv_sigtbl[sig];
500		else
501			sig = p->p_sysent->sv_sigsize + 1;
502	}
503	sf.sf_signum = sig;
504	sf.sf_code = code;
505	sf.sf_scp = &fp->sf_sc;
506	sf.sf_addr = (char *) regs->tf_err;
507	sf.sf_handler = catcher;
508
509	/* save scratch registers */
510	sf.sf_sc.sc_eax = regs->tf_eax;
511	sf.sf_sc.sc_ebx = regs->tf_ebx;
512	sf.sf_sc.sc_ecx = regs->tf_ecx;
513	sf.sf_sc.sc_edx = regs->tf_edx;
514	sf.sf_sc.sc_esi = regs->tf_esi;
515	sf.sf_sc.sc_edi = regs->tf_edi;
516	sf.sf_sc.sc_cs = regs->tf_cs;
517	sf.sf_sc.sc_ds = regs->tf_ds;
518	sf.sf_sc.sc_ss = regs->tf_ss;
519	sf.sf_sc.sc_es = regs->tf_es;
520	sf.sf_sc.sc_isp = regs->tf_isp;
521
522	/*
523	 * Build the signal context to be used by sigreturn.
524	 */
525	sf.sf_sc.sc_onstack = oonstack;
526	sf.sf_sc.sc_mask = mask;
527	sf.sf_sc.sc_sp = regs->tf_esp;
528	sf.sf_sc.sc_fp = regs->tf_ebp;
529	sf.sf_sc.sc_pc = regs->tf_eip;
530	sf.sf_sc.sc_ps = regs->tf_eflags;
531	sf.sf_sc.sc_trapno = regs->tf_trapno;
532	sf.sf_sc.sc_err = regs->tf_err;
533
534	/*
535	 * If we're a vm86 process, we want to save the segment registers.
536	 * We also change eflags to be our emulated eflags, not the actual
537	 * eflags.
538	 */
539	if (regs->tf_eflags & PSL_VM) {
540		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
541		struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
542
543		sf.sf_sc.sc_gs = tf->tf_vm86_gs;
544		sf.sf_sc.sc_fs = tf->tf_vm86_fs;
545		sf.sf_sc.sc_es = tf->tf_vm86_es;
546		sf.sf_sc.sc_ds = tf->tf_vm86_ds;
547
548		if (vm86->vm86_has_vme == 0)
549			sf.sf_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
550			    | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
551
552		/*
553		 * We should never have PSL_T set when returning from vm86
554		 * mode.  It may be set here if we deliver a signal before
555		 * getting to vm86 mode, so turn it off.
556		 */
557		tf->tf_eflags &= ~(PSL_VM | PSL_T | PSL_VIF | PSL_VIP);
558	}
559
560	/*
561	 * Copy the sigframe out to the user's stack.
562	 */
563	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
564		/*
565		 * Something is wrong with the stack pointer.
566		 * ...Kill the process.
567		 */
568		sigexit(p, SIGILL);
569	}
570
571	regs->tf_esp = (int)fp;
572	regs->tf_eip = (int)(((char *)PS_STRINGS) - *(p->p_sysent->sv_szsigcode));
573	regs->tf_cs = _ucodesel;
574	regs->tf_ds = _udatasel;
575	regs->tf_es = _udatasel;
576	regs->tf_ss = _udatasel;
577}
578
579/*
580 * System call to cleanup state after a signal
581 * has been taken.  Reset signal mask and
582 * stack state from context left by sendsig (above).
583 * Return to previous pc and psl as specified by
584 * context left by sendsig. Check carefully to
585 * make sure that the user has not modified the
586 * state to gain improper privileges.
587 */
588int
589sigreturn(p, uap, retval)
590	struct proc *p;
591	struct sigreturn_args /* {
592		struct sigcontext *sigcntxp;
593	} */ *uap;
594	int *retval;
595{
596	register struct sigcontext *scp;
597	register struct sigframe *fp;
598	register struct trapframe *regs = p->p_md.md_regs;
599	int eflags;
600
601	/*
602	 * (XXX old comment) regs->tf_esp points to the return address.
603	 * The user scp pointer is above that.
604	 * The return address is faked in the signal trampoline code
605	 * for consistency.
606	 */
607	scp = uap->sigcntxp;
608	fp = (struct sigframe *)
609	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
610
611	if (useracc((caddr_t)fp, sizeof (*fp), B_WRITE) == 0)
612		return(EFAULT);
613
614	eflags = scp->sc_ps;
615	if (eflags & PSL_VM) {
616		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
617		struct vm86_kernel *vm86;
618
619		/*
620		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
621		 * set up the vm86 area, and we can't enter vm86 mode.
622		 */
623		if (p->p_addr->u_pcb.pcb_ext == 0)
624			return (EINVAL);
625		vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
626		if (vm86->vm86_inited == 0)
627			return (EINVAL);
628
629		/* go back to user mode if both flags are set */
630		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
631			trapsignal(p, SIGBUS, 0);
632
633#define VM_USERCHANGE	(PSL_USERCHANGE | PSL_RF)
634#define VME_USERCHANGE	(VM_USERCHANGE | PSL_VIP | PSL_VIF)
635		if (vm86->vm86_has_vme) {
636			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
637			    (eflags & VME_USERCHANGE) | PSL_VM;
638		} else {
639			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
640			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
641		}
642		tf->tf_vm86_ds = scp->sc_ds;
643		tf->tf_vm86_es = scp->sc_es;
644		tf->tf_vm86_fs = scp->sc_fs;
645		tf->tf_vm86_gs = scp->sc_gs;
646		tf->tf_ds = _udatasel;
647		tf->tf_es = _udatasel;
648	} else {
649		/*
650		 * Don't allow users to change privileged or reserved flags.
651		 */
652#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
653		/*
654		 * XXX do allow users to change the privileged flag PSL_RF.
655		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
656		 * should sometimes set it there too.  tf_eflags is kept in
657		 * the signal context during signal handling and there is no
658		 * other place to remember it, so the PSL_RF bit may be
659		 * corrupted by the signal handler without us knowing.
660		 * Corruption of the PSL_RF bit at worst causes one more or
661		 * one less debugger trap, so allowing it is fairly harmless.
662		 */
663		if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
664#ifdef DEBUG
665	    		printf("sigreturn: eflags = 0x%x\n", eflags);
666#endif
667	    		return(EINVAL);
668		}
669
670		/*
671		 * Don't allow users to load a valid privileged %cs.  Let the
672		 * hardware check for invalid selectors, excess privilege in
673		 * other selectors, invalid %eip's and invalid %esp's.
674		 */
675#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
676		if (!CS_SECURE(scp->sc_cs)) {
677#ifdef DEBUG
678    			printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
679#endif
680			trapsignal(p, SIGBUS, T_PROTFLT);
681			return(EINVAL);
682		}
683		regs->tf_ds = scp->sc_ds;
684		regs->tf_es = scp->sc_es;
685	}
686	/* restore scratch registers */
687	regs->tf_eax = scp->sc_eax;
688	regs->tf_ebx = scp->sc_ebx;
689	regs->tf_ecx = scp->sc_ecx;
690	regs->tf_edx = scp->sc_edx;
691	regs->tf_esi = scp->sc_esi;
692	regs->tf_edi = scp->sc_edi;
693	regs->tf_cs = scp->sc_cs;
694	regs->tf_ss = scp->sc_ss;
695	regs->tf_isp = scp->sc_isp;
696
697	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0)
698		return(EINVAL);
699
700	if (scp->sc_onstack & 01)
701		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
702	else
703		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
704	p->p_sigmask = scp->sc_mask & ~sigcantmask;
705	regs->tf_ebp = scp->sc_fp;
706	regs->tf_esp = scp->sc_sp;
707	regs->tf_eip = scp->sc_pc;
708	regs->tf_eflags = eflags;
709	return(EJUSTRETURN);
710}
711
712/*
713 * Machine dependent boot() routine
714 *
715 * I haven't seen anything to put here yet
716 * Possibly some stuff might be grafted back here from boot()
717 */
718void
719cpu_boot(int howto)
720{
721}
722
723/*
724 * Shutdown the CPU as much as possible
725 */
726void
727cpu_halt(void)
728{
729	for (;;)
730		__asm__ ("hlt");
731}
732
733/*
734 * Turn the power off.
735 */
736void
737cpu_power_down(void)
738{
739#if NAPM > 0
740	apm_power_off();
741#endif
742}
743
744/*
745 * Clear registers on exec
746 */
747void
748setregs(p, entry, stack)
749	struct proc *p;
750	u_long entry;
751	u_long stack;
752{
753	struct trapframe *regs = p->p_md.md_regs;
754
755#ifdef USER_LDT
756	struct pcb *pcb = &p->p_addr->u_pcb;
757
758	/* was i386_user_cleanup() in NetBSD */
759	if (pcb->pcb_ldt) {
760		if (pcb == curpcb)
761			lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
762		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt,
763			pcb->pcb_ldt_len * sizeof(union descriptor));
764		pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0;
765 	}
766#endif
767
768	bzero((char *)regs, sizeof(struct trapframe));
769	regs->tf_eip = entry;
770	regs->tf_esp = stack;
771	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
772	regs->tf_ss = _udatasel;
773	regs->tf_ds = _udatasel;
774	regs->tf_es = _udatasel;
775	regs->tf_cs = _ucodesel;
776
777	/*
778	 * Initialize the math emulator (if any) for the current process.
779	 * Actually, just clear the bit that says that the emulator has
780	 * been initialized.  Initialization is delayed until the process
781	 * traps to the emulator (if it is done at all) mainly because
782	 * emulators don't provide an entry point for initialization.
783	 */
784	p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
785
786	/*
787	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
788	 * for why fwait must be trapped at least if there is an npx or an
789	 * emulator).  This is mainly to handle the case where npx0 is not
790	 * configured, since the npx routines normally set up the trap
791	 * otherwise.  It should be done only at boot time, but doing it
792	 * here allows modifying `npx_exists' for testing the emulator on
793	 * systems with an npx.
794	 */
795	load_cr0(rcr0() | CR0_MP | CR0_TS);
796
797#if NNPX > 0
798	/* Initialize the npx (if any) for the current process. */
799	npxinit(__INITIAL_NPXCW__);
800#endif
801}
802
803static int
804sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
805{
806	int error;
807	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
808		req);
809	if (!error && req->newptr)
810		resettodr();
811	return (error);
812}
813
814SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
815	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
816
817SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
818	CTLFLAG_RW, &disable_rtc_set, 0, "");
819
820SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
821	CTLFLAG_RD, &bootinfo, bootinfo, "");
822
823SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
824	CTLFLAG_RW, &wall_cmos_clock, 0, "");
825
826/*
827 * Initialize 386 and configure to run kernel
828 */
829
830/*
831 * Initialize segments & interrupt table
832 */
833
834int currentldt;
835int _default_ldt;
836#ifdef SMP
837union descriptor gdt[NGDT + NCPU];	/* global descriptor table */
838#else
839union descriptor gdt[NGDT];		/* global descriptor table */
840#endif
841struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
842union descriptor ldt[NLDT];		/* local descriptor table */
843#ifdef SMP
844/* table descriptors - used to load tables by microp */
845struct region_descriptor r_gdt, r_idt;
846#endif
847
848#ifdef SMP
849extern struct i386tss common_tss;	/* One tss per cpu */
850#else
851struct i386tss common_tss;
852#ifdef VM86
853struct segment_descriptor common_tssd;
854u_int private_tss = 0;			/* flag indicating private tss */
855#endif /* VM86 */
856#endif
857
858static struct i386tss dblfault_tss;
859static char dblfault_stack[PAGE_SIZE];
860
861extern  struct user *proc0paddr;
862
863
864/* software prototypes -- in more palatable form */
865struct soft_segment_descriptor gdt_segs[
866#ifdef SMP
867					NGDT + NCPU
868#endif
869						   ] = {
870/* GNULL_SEL	0 Null Descriptor */
871{	0x0,			/* segment base address  */
872	0x0,			/* length */
873	0,			/* segment type */
874	0,			/* segment descriptor priority level */
875	0,			/* segment descriptor present */
876	0, 0,
877	0,			/* default 32 vs 16 bit size */
878	0  			/* limit granularity (byte/page units)*/ },
879/* GCODE_SEL	1 Code Descriptor for kernel */
880{	0x0,			/* segment base address  */
881	0xfffff,		/* length - all address space */
882	SDT_MEMERA,		/* segment type */
883	0,			/* segment descriptor priority level */
884	1,			/* segment descriptor present */
885	0, 0,
886	1,			/* default 32 vs 16 bit size */
887	1  			/* limit granularity (byte/page units)*/ },
888/* GDATA_SEL	2 Data Descriptor for kernel */
889{	0x0,			/* segment base address  */
890	0xfffff,		/* length - all address space */
891	SDT_MEMRWA,		/* segment type */
892	0,			/* segment descriptor priority level */
893	1,			/* segment descriptor present */
894	0, 0,
895	1,			/* default 32 vs 16 bit size */
896	1  			/* limit granularity (byte/page units)*/ },
897/* GLDT_SEL	3 LDT Descriptor */
898{	(int) ldt,		/* segment base address  */
899	sizeof(ldt)-1,		/* length - all address space */
900	SDT_SYSLDT,		/* segment type */
901	SEL_UPL,		/* segment descriptor priority level */
902	1,			/* segment descriptor present */
903	0, 0,
904	0,			/* unused - default 32 vs 16 bit size */
905	0  			/* limit granularity (byte/page units)*/ },
906/* GTGATE_SEL	4 Null Descriptor - Placeholder */
907{	0x0,			/* segment base address  */
908	0x0,			/* length - all address space */
909	0,			/* segment type */
910	0,			/* segment descriptor priority level */
911	0,			/* segment descriptor present */
912	0, 0,
913	0,			/* default 32 vs 16 bit size */
914	0  			/* limit granularity (byte/page units)*/ },
915/* GPANIC_SEL	5 Panic Tss Descriptor */
916{	(int) &dblfault_tss,	/* segment base address  */
917	sizeof(struct i386tss)-1,/* length - all address space */
918	SDT_SYS386TSS,		/* segment type */
919	0,			/* segment descriptor priority level */
920	1,			/* segment descriptor present */
921	0, 0,
922	0,			/* unused - default 32 vs 16 bit size */
923	0  			/* limit granularity (byte/page units)*/ },
924/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
925{
926	(int) &common_tss,	/* segment base address */
927	sizeof(struct i386tss)-1,/* length - all address space */
928	SDT_SYS386TSS,		/* segment type */
929	0,			/* segment descriptor priority level */
930	1,			/* segment descriptor present */
931	0, 0,
932	0,			/* unused - default 32 vs 16 bit size */
933	0  			/* limit granularity (byte/page units)*/ },
934/* GUSERLDT_SEL	7 User LDT Descriptor per process */
935{	(int) ldt,		/* segment base address  */
936	(512 * sizeof(union descriptor)-1),		/* length */
937	SDT_SYSLDT,		/* segment type */
938	0,			/* segment descriptor priority level */
939	1,			/* segment descriptor present */
940	0, 0,
941	0,			/* unused - default 32 vs 16 bit size */
942	0  			/* limit granularity (byte/page units)*/ },
943/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
944{	0,			/* segment base address (overwritten by APM)  */
945	0xfffff,		/* length */
946	SDT_MEMERA,		/* segment type */
947	0,			/* segment descriptor priority level */
948	1,			/* segment descriptor present */
949	0, 0,
950	1,			/* default 32 vs 16 bit size */
951	1  			/* limit granularity (byte/page units)*/ },
952/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
953{	0,			/* segment base address (overwritten by APM)  */
954	0xfffff,		/* length */
955	SDT_MEMERA,		/* segment type */
956	0,			/* segment descriptor priority level */
957	1,			/* segment descriptor present */
958	0, 0,
959	0,			/* default 32 vs 16 bit size */
960	1  			/* limit granularity (byte/page units)*/ },
961/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
962{	0,			/* segment base address (overwritten by APM) */
963	0xfffff,		/* length */
964	SDT_MEMRWA,		/* segment type */
965	0,			/* segment descriptor priority level */
966	1,			/* segment descriptor present */
967	0, 0,
968	1,			/* default 32 vs 16 bit size */
969	1  			/* limit granularity (byte/page units)*/ },
970};
971
972static struct soft_segment_descriptor ldt_segs[] = {
973	/* Null Descriptor - overwritten by call gate */
974{	0x0,			/* segment base address  */
975	0x0,			/* length - all address space */
976	0,			/* segment type */
977	0,			/* segment descriptor priority level */
978	0,			/* segment descriptor present */
979	0, 0,
980	0,			/* default 32 vs 16 bit size */
981	0  			/* limit granularity (byte/page units)*/ },
982	/* Null Descriptor - overwritten by call gate */
983{	0x0,			/* segment base address  */
984	0x0,			/* length - all address space */
985	0,			/* segment type */
986	0,			/* segment descriptor priority level */
987	0,			/* segment descriptor present */
988	0, 0,
989	0,			/* default 32 vs 16 bit size */
990	0  			/* limit granularity (byte/page units)*/ },
991	/* Null Descriptor - overwritten by call gate */
992{	0x0,			/* segment base address  */
993	0x0,			/* length - all address space */
994	0,			/* segment type */
995	0,			/* segment descriptor priority level */
996	0,			/* segment descriptor present */
997	0, 0,
998	0,			/* default 32 vs 16 bit size */
999	0  			/* limit granularity (byte/page units)*/ },
1000	/* Code Descriptor for user */
1001{	0x0,			/* segment base address  */
1002	0xfffff,		/* length - all address space */
1003	SDT_MEMERA,		/* segment type */
1004	SEL_UPL,		/* segment descriptor priority level */
1005	1,			/* segment descriptor present */
1006	0, 0,
1007	1,			/* default 32 vs 16 bit size */
1008	1  			/* limit granularity (byte/page units)*/ },
1009	/* Data Descriptor for user */
1010{	0x0,			/* segment base address  */
1011	0xfffff,		/* length - all address space */
1012	SDT_MEMRWA,		/* segment type */
1013	SEL_UPL,		/* segment descriptor priority level */
1014	1,			/* segment descriptor present */
1015	0, 0,
1016	1,			/* default 32 vs 16 bit size */
1017	1  			/* limit granularity (byte/page units)*/ },
1018};
1019
1020void
1021setidt(idx, func, typ, dpl, selec)
1022	int idx;
1023	inthand_t *func;
1024	int typ;
1025	int dpl;
1026	int selec;
1027{
1028	struct gate_descriptor *ip = idt + idx;
1029
1030	ip->gd_looffset = (int)func;
1031	ip->gd_selector = selec;
1032	ip->gd_stkcpy = 0;
1033	ip->gd_xx = 0;
1034	ip->gd_type = typ;
1035	ip->gd_dpl = dpl;
1036	ip->gd_p = 1;
1037	ip->gd_hioffset = ((int)func)>>16 ;
1038}
1039
1040#define	IDTVEC(name)	__CONCAT(X,name)
1041
1042extern inthand_t
1043	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1044	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1045	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1046	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1047	IDTVEC(syscall), IDTVEC(int0x80_syscall);
1048
1049void
1050sdtossd(sd, ssd)
1051	struct segment_descriptor *sd;
1052	struct soft_segment_descriptor *ssd;
1053{
1054	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1055	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1056	ssd->ssd_type  = sd->sd_type;
1057	ssd->ssd_dpl   = sd->sd_dpl;
1058	ssd->ssd_p     = sd->sd_p;
1059	ssd->ssd_def32 = sd->sd_def32;
1060	ssd->ssd_gran  = sd->sd_gran;
1061}
1062
1063void
1064init386(first)
1065	int first;
1066{
1067	int x;
1068	unsigned biosbasemem, biosextmem;
1069	struct gate_descriptor *gdp;
1070	int gsel_tss;
1071
1072	struct isa_device *idp;
1073#ifndef SMP
1074	/* table descriptors - used to load tables by microp */
1075	struct region_descriptor r_gdt, r_idt;
1076#endif
1077	int	pagesinbase, pagesinext;
1078	int	target_page, pa_indx;
1079	int	off;
1080
1081	proc0.p_addr = proc0paddr;
1082
1083	atdevbase = ISA_HOLE_START + KERNBASE;
1084
1085	/*
1086	 * Initialize the console before we print anything out.
1087	 */
1088	cninit();
1089
1090	/*
1091	 * make gdt memory segments, the code segment goes up to end of the
1092	 * page with etext in it, the data segment goes to the end of
1093	 * the address space
1094	 */
1095	/*
1096	 * XXX text protection is temporarily (?) disabled.  The limit was
1097	 * i386_btop(round_page(etext)) - 1.
1098	 */
1099	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1100	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1101#ifdef BDE_DEBUGGER
1102#define	NGDT1	8		/* avoid overwriting db entries with APM ones */
1103#else
1104#define	NGDT1	(sizeof gdt_segs / sizeof gdt_segs[0])
1105#endif
1106	for (x = 0; x < NGDT1; x++)
1107		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1108#ifdef VM86
1109	common_tssd = gdt[GPROC0_SEL].sd;
1110#endif /* VM86 */
1111
1112#ifdef SMP
1113	/*
1114	 * Spin these up now.  init_secondary() grabs them.  We could use
1115	 * #for(x,y,z) / #endfor cpp directives if they existed.
1116	 */
1117	for (x = 0; x < NCPU; x++) {
1118		gdt_segs[NGDT + x] = gdt_segs[GPROC0_SEL];
1119		ssdtosd(&gdt_segs[NGDT + x], &gdt[NGDT + x].sd);
1120	}
1121#endif
1122
1123	/* make ldt memory segments */
1124	/*
1125	 * The data segment limit must not cover the user area because we
1126	 * don't want the user area to be writable in copyout() etc. (page
1127	 * level protection is lost in kernel mode on 386's).  Also, we
1128	 * don't want the user area to be writable directly (page level
1129	 * protection of the user area is not available on 486's with
1130	 * CR0_WP set, because there is no user-read/kernel-write mode).
1131	 *
1132	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1133	 * should be spelled ...MAX_USER...
1134	 */
1135#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1136	/*
1137	 * The code segment limit has to cover the user area until we move
1138	 * the signal trampoline out of the user area.  This is safe because
1139	 * the code segment cannot be written to directly.
1140	 */
1141#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
1142	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1143	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1144	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1145		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1146
1147	/* exceptions */
1148	for (x = 0; x < NIDT; x++)
1149		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1150	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1151	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1152	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1153 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1154	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1155	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1156	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1157	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1158	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1159	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1160	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1161	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1162	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1163	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1164	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1165	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1166	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1167	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1168	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1169 	setidt(0x80, &IDTVEC(int0x80_syscall),
1170			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1171
1172#include	"isa.h"
1173#if	NISA >0
1174	isa_defaultirq();
1175#endif
1176	rand_initialize();
1177
1178	r_gdt.rd_limit = sizeof(gdt) - 1;
1179	r_gdt.rd_base =  (int) gdt;
1180	lgdt(&r_gdt);
1181
1182	r_idt.rd_limit = sizeof(idt) - 1;
1183	r_idt.rd_base = (int) idt;
1184	lidt(&r_idt);
1185
1186	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1187	lldt(_default_ldt);
1188	currentldt = _default_ldt;
1189
1190#ifdef DDB
1191	kdb_init();
1192	if (boothowto & RB_KDB)
1193		Debugger("Boot flags requested debugger");
1194#endif
1195
1196	finishidentcpu();	/* Final stage of CPU initialization */
1197	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1198	initializecpu();	/* Initialize CPU registers */
1199
1200	/* Use BIOS values stored in RTC CMOS RAM, since probing
1201	 * breaks certain 386 AT relics.
1202	 */
1203	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1204	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1205
1206	/*
1207	 * If BIOS tells us that it has more than 640k in the basemem,
1208	 *	don't believe it - set it to 640k.
1209	 */
1210	if (biosbasemem > 640) {
1211		printf("Preposterous RTC basemem of %dK, truncating to 640K\n",
1212		       biosbasemem);
1213		biosbasemem = 640;
1214	}
1215	if (bootinfo.bi_memsizes_valid && bootinfo.bi_basemem > 640) {
1216		printf("Preposterous BIOS basemem of %dK, truncating to 640K\n",
1217		       bootinfo.bi_basemem);
1218		bootinfo.bi_basemem = 640;
1219	}
1220
1221	/*
1222	 * Warn if the official BIOS interface disagrees with the RTC
1223	 * interface used above about the amount of base memory or the
1224	 * amount of extended memory.  Prefer the BIOS value for the base
1225	 * memory.  This is necessary for machines that `steal' base
1226	 * memory for use as BIOS memory, at least if we are going to use
1227	 * the BIOS for apm.  Prefer the RTC value for extended memory.
1228	 * Eventually the hackish interface shouldn't even be looked at.
1229	 */
1230	if (bootinfo.bi_memsizes_valid) {
1231		if (bootinfo.bi_basemem != biosbasemem) {
1232			vm_offset_t pa;
1233
1234			printf(
1235	"BIOS basemem (%ldK) != RTC basemem (%dK), setting to BIOS value\n",
1236			       bootinfo.bi_basemem, biosbasemem);
1237			biosbasemem = bootinfo.bi_basemem;
1238
1239			/*
1240			 * XXX if biosbasemem is now < 640, there is `hole'
1241			 * between the end of base memory and the start of
1242			 * ISA memory.  The hole may be empty or it may
1243			 * contain BIOS code or data.  Map it read/write so
1244			 * that the BIOS can write to it.  (Memory from 0 to
1245			 * the physical end of the kernel is mapped read-only
1246			 * to begin with and then parts of it are remapped.
1247			 * The parts that aren't remapped form holes that
1248			 * remain read-only and are unused by the kernel.
1249			 * The base memory area is below the physical end of
1250			 * the kernel and right now forms a read-only hole.
1251			 * The part of it from 0 to
1252			 * (trunc_page(biosbasemem * 1024) - 1) will be
1253			 * remapped and used by the kernel later.)
1254			 *
1255			 * This code is similar to the code used in
1256			 * pmap_mapdev, but since no memory needs to be
1257			 * allocated we simply change the mapping.
1258			 */
1259			for (pa = trunc_page(biosbasemem * 1024);
1260			     pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1261				unsigned *pte;
1262
1263				pte = (unsigned *)vtopte(pa + KERNBASE);
1264				*pte = pa | PG_RW | PG_V;
1265			}
1266		}
1267		if (bootinfo.bi_extmem != biosextmem)
1268			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1269			       bootinfo.bi_extmem, biosextmem);
1270	}
1271
1272#ifdef SMP
1273	/* make hole for AP bootstrap code */
1274	pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
1275#else
1276	pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
1277#endif
1278
1279	pagesinext = biosextmem * 1024 / PAGE_SIZE;
1280
1281	/*
1282	 * Special hack for chipsets that still remap the 384k hole when
1283	 *	there's 16MB of memory - this really confuses people that
1284	 *	are trying to use bus mastering ISA controllers with the
1285	 *	"16MB limit"; they only have 16MB, but the remapping puts
1286	 *	them beyond the limit.
1287	 */
1288	/*
1289	 * If extended memory is between 15-16MB (16-17MB phys address range),
1290	 *	chop it to 15MB.
1291	 */
1292	if ((pagesinext > 3840) && (pagesinext < 4096))
1293		pagesinext = 3840;
1294
1295	/*
1296	 * Maxmem isn't the "maximum memory", it's one larger than the
1297	 * highest page of the physical address space.  It should be
1298	 * called something like "Maxphyspage".
1299	 */
1300	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1301
1302#ifdef MAXMEM
1303	Maxmem = MAXMEM/4;
1304#endif
1305
1306#if NNPX > 0
1307	idp = find_isadev(isa_devtab_null, &npxdriver, 0);
1308	if (idp != NULL && idp->id_msize != 0)
1309		Maxmem = idp->id_msize / 4;
1310#endif
1311
1312#ifdef SMP
1313	/* look for the MP hardware - needed for apic addresses */
1314	mp_probe();
1315#endif
1316
1317	/* call pmap initialization to make new kernel address space */
1318	pmap_bootstrap (first, 0);
1319
1320	/*
1321	 * Size up each available chunk of physical memory.
1322	 */
1323
1324	/*
1325	 * We currently don't bother testing base memory.
1326	 * XXX  ...but we probably should.
1327	 */
1328	pa_indx = 0;
1329	badpages = 0;
1330	if (pagesinbase > 1) {
1331		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1332		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1333		physmem = pagesinbase - 1;
1334	} else {
1335		/* point at first chunk end */
1336		pa_indx++;
1337	}
1338
1339	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1340		int tmp, page_bad = FALSE;
1341
1342		/*
1343		 * map page into kernel: valid, read/write, non-cacheable
1344		 */
1345		*(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page;
1346		invltlb();
1347
1348		tmp = *(int *)CADDR1;
1349		/*
1350		 * Test for alternating 1's and 0's
1351		 */
1352		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1353		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1354			page_bad = TRUE;
1355		}
1356		/*
1357		 * Test for alternating 0's and 1's
1358		 */
1359		*(volatile int *)CADDR1 = 0x55555555;
1360		if (*(volatile int *)CADDR1 != 0x55555555) {
1361			page_bad = TRUE;
1362		}
1363		/*
1364		 * Test for all 1's
1365		 */
1366		*(volatile int *)CADDR1 = 0xffffffff;
1367		if (*(volatile int *)CADDR1 != 0xffffffff) {
1368			page_bad = TRUE;
1369		}
1370		/*
1371		 * Test for all 0's
1372		 */
1373		*(volatile int *)CADDR1 = 0x0;
1374		if (*(volatile int *)CADDR1 != 0x0) {
1375			/*
1376			 * test of page failed
1377			 */
1378			page_bad = TRUE;
1379		}
1380		/*
1381		 * Restore original value.
1382		 */
1383		*(int *)CADDR1 = tmp;
1384
1385		/*
1386		 * Adjust array of valid/good pages.
1387		 */
1388		if (page_bad == FALSE) {
1389			/*
1390			 * If this good page is a continuation of the
1391			 * previous set of good pages, then just increase
1392			 * the end pointer. Otherwise start a new chunk.
1393			 * Note that "end" points one higher than end,
1394			 * making the range >= start and < end.
1395			 */
1396			if (phys_avail[pa_indx] == target_page) {
1397				phys_avail[pa_indx] += PAGE_SIZE;
1398			} else {
1399				pa_indx++;
1400				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1401					printf("Too many holes in the physical address space, giving up\n");
1402					pa_indx--;
1403					break;
1404				}
1405				phys_avail[pa_indx++] = target_page;	/* start */
1406				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1407			}
1408			physmem++;
1409		} else {
1410			badpages++;
1411			page_bad = FALSE;
1412		}
1413	}
1414
1415	*(int *)CMAP1 = 0;
1416	invltlb();
1417
1418	/*
1419	 * XXX
1420	 * The last chunk must contain at least one page plus the message
1421	 * buffer to avoid complicating other code (message buffer address
1422	 * calculation, etc.).
1423	 */
1424	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1425	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1426		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1427		phys_avail[pa_indx--] = 0;
1428		phys_avail[pa_indx--] = 0;
1429	}
1430
1431	Maxmem = atop(phys_avail[pa_indx]);
1432
1433	/* Trim off space for the message buffer. */
1434	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1435
1436	avail_end = phys_avail[pa_indx];
1437
1438	/* now running on new page tables, configured,and u/iom is accessible */
1439
1440	/* Map the message buffer. */
1441	for (off = 0; off < round_page(sizeof(struct msgbuf)); off += PAGE_SIZE)
1442		pmap_enter(kernel_pmap, (vm_offset_t)msgbufp + off,
1443			   avail_end + off, VM_PROT_ALL, TRUE);
1444	msgbufmapped = 1;
1445
1446	/* make an initial tss so cpu can get interrupt stack on syscall! */
1447#ifdef VM86
1448	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
1449#else
1450	common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE;
1451#endif /* VM86 */
1452	common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1453	common_tss.tss_ioopt = (sizeof common_tss) << 16;
1454	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1455	ltr(gsel_tss);
1456
1457	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1458	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1459	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1460	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1461	dblfault_tss.tss_cr3 = (int)IdlePTD;
1462	dblfault_tss.tss_eip = (int) dblfault_handler;
1463	dblfault_tss.tss_eflags = PSL_KERNEL;
1464	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs =
1465	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1466	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1467	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1468
1469	/* make a call gate to reenter kernel with */
1470	gdp = &ldt[LSYS5CALLS_SEL].gd;
1471
1472	x = (int) &IDTVEC(syscall);
1473	gdp->gd_looffset = x++;
1474	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1475	gdp->gd_stkcpy = 1;
1476	gdp->gd_type = SDT_SYS386CGT;
1477	gdp->gd_dpl = SEL_UPL;
1478	gdp->gd_p = 1;
1479	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1480
1481	/* XXX does this work? */
1482	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1483
1484	/* transfer to user mode */
1485
1486	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1487	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1488
1489	/* setup proc 0's pcb */
1490	proc0.p_addr->u_pcb.pcb_flags = 0;
1491	proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
1492	proc0.p_addr->u_pcb.pcb_mpnest = 1;
1493	proc0.p_addr->u_pcb.pcb_ext = 0;
1494}
1495
1496int
1497ptrace_set_pc(p, addr)
1498	struct proc *p;
1499	unsigned int addr;
1500{
1501	p->p_md.md_regs->tf_eip = addr;
1502	return (0);
1503}
1504
1505int
1506ptrace_single_step(p)
1507	struct proc *p;
1508{
1509	p->p_md.md_regs->tf_eflags |= PSL_T;
1510	return (0);
1511}
1512
1513int ptrace_write_u(p, off, data)
1514	struct proc *p;
1515	vm_offset_t off;
1516	int data;
1517{
1518	struct trapframe frame_copy;
1519	vm_offset_t min;
1520	struct trapframe *tp;
1521
1522	/*
1523	 * Privileged kernel state is scattered all over the user area.
1524	 * Only allow write access to parts of regs and to fpregs.
1525	 */
1526	min = (char *)p->p_md.md_regs - (char *)p->p_addr;
1527	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1528		tp = p->p_md.md_regs;
1529		frame_copy = *tp;
1530		*(int *)((char *)&frame_copy + (off - min)) = data;
1531		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1532		    !CS_SECURE(frame_copy.tf_cs))
1533			return (EINVAL);
1534		*(int*)((char *)p->p_addr + off) = data;
1535		return (0);
1536	}
1537	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1538	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1539		*(int*)((char *)p->p_addr + off) = data;
1540		return (0);
1541	}
1542	return (EFAULT);
1543}
1544
1545int
1546fill_regs(p, regs)
1547	struct proc *p;
1548	struct reg *regs;
1549{
1550	struct pcb *pcb;
1551	struct trapframe *tp;
1552
1553	tp = p->p_md.md_regs;
1554	regs->r_es = tp->tf_es;
1555	regs->r_ds = tp->tf_ds;
1556	regs->r_edi = tp->tf_edi;
1557	regs->r_esi = tp->tf_esi;
1558	regs->r_ebp = tp->tf_ebp;
1559	regs->r_ebx = tp->tf_ebx;
1560	regs->r_edx = tp->tf_edx;
1561	regs->r_ecx = tp->tf_ecx;
1562	regs->r_eax = tp->tf_eax;
1563	regs->r_eip = tp->tf_eip;
1564	regs->r_cs = tp->tf_cs;
1565	regs->r_eflags = tp->tf_eflags;
1566	regs->r_esp = tp->tf_esp;
1567	regs->r_ss = tp->tf_ss;
1568	pcb = &p->p_addr->u_pcb;
1569	regs->r_fs = pcb->pcb_fs;
1570	regs->r_gs = pcb->pcb_gs;
1571	return (0);
1572}
1573
1574int
1575set_regs(p, regs)
1576	struct proc *p;
1577	struct reg *regs;
1578{
1579	struct pcb *pcb;
1580	struct trapframe *tp;
1581
1582	tp = p->p_md.md_regs;
1583	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1584	    !CS_SECURE(regs->r_cs))
1585		return (EINVAL);
1586	tp->tf_es = regs->r_es;
1587	tp->tf_ds = regs->r_ds;
1588	tp->tf_edi = regs->r_edi;
1589	tp->tf_esi = regs->r_esi;
1590	tp->tf_ebp = regs->r_ebp;
1591	tp->tf_ebx = regs->r_ebx;
1592	tp->tf_edx = regs->r_edx;
1593	tp->tf_ecx = regs->r_ecx;
1594	tp->tf_eax = regs->r_eax;
1595	tp->tf_eip = regs->r_eip;
1596	tp->tf_cs = regs->r_cs;
1597	tp->tf_eflags = regs->r_eflags;
1598	tp->tf_esp = regs->r_esp;
1599	tp->tf_ss = regs->r_ss;
1600	pcb = &p->p_addr->u_pcb;
1601	pcb->pcb_fs = regs->r_fs;
1602	pcb->pcb_gs = regs->r_gs;
1603	return (0);
1604}
1605
1606#ifndef DDB
1607void
1608Debugger(const char *msg)
1609{
1610	printf("Debugger(\"%s\") called.\n", msg);
1611}
1612#endif /* no DDB */
1613
1614#include <sys/disklabel.h>
1615
1616/*
1617 * Determine the size of the transfer, and make sure it is
1618 * within the boundaries of the partition. Adjust transfer
1619 * if needed, and signal errors or early completion.
1620 */
1621int
1622bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1623{
1624        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1625        int labelsect = lp->d_partitions[0].p_offset;
1626        int maxsz = p->p_size,
1627                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1628
1629        /* overwriting disk label ? */
1630        /* XXX should also protect bootstrap in first 8K */
1631        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1632#if LABELSECTOR != 0
1633            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1634#endif
1635            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1636                bp->b_error = EROFS;
1637                goto bad;
1638        }
1639
1640#if     defined(DOSBBSECTOR) && defined(notyet)
1641        /* overwriting master boot record? */
1642        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1643            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1644                bp->b_error = EROFS;
1645                goto bad;
1646        }
1647#endif
1648
1649        /* beyond partition? */
1650        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1651                /* if exactly at end of disk, return an EOF */
1652                if (bp->b_blkno == maxsz) {
1653                        bp->b_resid = bp->b_bcount;
1654                        return(0);
1655                }
1656                /* or truncate if part of it fits */
1657                sz = maxsz - bp->b_blkno;
1658                if (sz <= 0) {
1659                        bp->b_error = EINVAL;
1660                        goto bad;
1661                }
1662                bp->b_bcount = sz << DEV_BSHIFT;
1663        }
1664
1665        bp->b_pblkno = bp->b_blkno + p->p_offset;
1666        return(1);
1667
1668bad:
1669        bp->b_flags |= B_ERROR;
1670        return(-1);
1671}
1672
1673#ifdef DDB
1674
1675/*
1676 * Provide inb() and outb() as functions.  They are normally only
1677 * available as macros calling inlined functions, thus cannot be
1678 * called inside DDB.
1679 *
1680 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1681 */
1682
1683#undef inb
1684#undef outb
1685
1686/* silence compiler warnings */
1687u_char inb(u_int);
1688void outb(u_int, u_char);
1689
1690u_char
1691inb(u_int port)
1692{
1693	u_char	data;
1694	/*
1695	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1696	 * %edx, while gcc generates inferior code (movw instead of movl)
1697	 * if we tell it to load (u_short) port.
1698	 */
1699	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1700	return (data);
1701}
1702
1703void
1704outb(u_int port, u_char data)
1705{
1706	u_char	al;
1707	/*
1708	 * Use an unnecessary assignment to help gcc's register allocator.
1709	 * This make a large difference for gcc-1.40 and a tiny difference
1710	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1711	 * best results.  gcc-2.6.0 can't handle this.
1712	 */
1713	al = data;
1714	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1715}
1716
1717#endif /* DDB */
1718