machdep.c revision 162954
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/sys/i386/i386/machdep.c 162954 2006-10-02 12:59:59Z phk $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_ipx.h"
50#include "opt_isa.h"
51#include "opt_kstack_pages.h"
52#include "opt_maxmem.h"
53#include "opt_msgbuf.h"
54#include "opt_npx.h"
55#include "opt_perfmon.h"
56#include "opt_xbox.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/clock.h>
66#include <sys/cons.h>
67#include <sys/cpu.h>
68#include <sys/eventhandler.h>
69#include <sys/exec.h>
70#include <sys/imgact.h>
71#include <sys/kdb.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/linker.h>
75#include <sys/lock.h>
76#include <sys/malloc.h>
77#include <sys/memrange.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/ptrace.h>
82#include <sys/reboot.h>
83#include <sys/sched.h>
84#include <sys/signalvar.h>
85#include <sys/sysctl.h>
86#include <sys/sysent.h>
87#include <sys/sysproto.h>
88#include <sys/ucontext.h>
89#include <sys/vmmeter.h>
90
91#include <vm/vm.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_param.h>
99
100#ifdef DDB
101#ifndef KDB
102#error KDB must be enabled in order for DDB to work!
103#endif
104#include <ddb/ddb.h>
105#include <ddb/db_sym.h>
106#endif
107
108#include <isa/rtc.h>
109
110#include <net/netisr.h>
111
112#include <machine/bootinfo.h>
113#include <machine/clock.h>
114#include <machine/cpu.h>
115#include <machine/cputypes.h>
116#include <machine/intr_machdep.h>
117#include <machine/md_var.h>
118#include <machine/pc/bios.h>
119#include <machine/pcb.h>
120#include <machine/pcb_ext.h>
121#include <machine/proc.h>
122#include <machine/reg.h>
123#include <machine/sigframe.h>
124#include <machine/specialreg.h>
125#include <machine/vm86.h>
126#ifdef PERFMON
127#include <machine/perfmon.h>
128#endif
129#ifdef SMP
130#include <machine/privatespace.h>
131#include <machine/smp.h>
132#endif
133
134#ifdef DEV_ISA
135#include <i386/isa/icu.h>
136#endif
137
138#ifdef XBOX
139#include <machine/xbox.h>
140
141int arch_i386_is_xbox = 0;
142uint32_t arch_i386_xbox_memsize = 0;
143#endif
144
145/* Sanity check for __curthread() */
146CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
147
148extern void init386(int first);
149extern void dblfault_handler(void);
150
151extern void printcpuinfo(void);	/* XXX header file */
152extern void finishidentcpu(void);
153extern void panicifcpuunsupported(void);
154extern void initializecpu(void);
155
156#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
157#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
158
159#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
160#define CPU_ENABLE_SSE
161#endif
162
163static void cpu_startup(void *);
164static void fpstate_drop(struct thread *td);
165static void get_fpcontext(struct thread *td, mcontext_t *mcp);
166static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
167#ifdef CPU_ENABLE_SSE
168static void set_fpregs_xmm(struct save87 *, struct savexmm *);
169static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
170#endif /* CPU_ENABLE_SSE */
171SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
172
173#ifdef DDB
174extern vm_offset_t ksym_start, ksym_end;
175#endif
176
177int	_udatasel, _ucodesel;
178u_int	basemem;
179
180int cold = 1;
181
182#ifdef COMPAT_43
183static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
184#endif
185#ifdef COMPAT_FREEBSD4
186static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
187#endif
188
189long Maxmem = 0;
190long realmem = 0;
191
192#define PHYSMAP_SIZE	(2 * 16)
193
194vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
195vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
196
197/* must be 2 less so 0 0 can signal end of chunks */
198#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
199#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
200
201struct kva_md_info kmi;
202
203static struct trapframe proc0_tf;
204#ifndef SMP
205static struct pcpu __pcpu;
206#endif
207
208struct mtx icu_lock;
209
210struct mem_range_softc mem_range_softc;
211
212static void
213cpu_startup(dummy)
214	void *dummy;
215{
216	/*
217	 * Good {morning,afternoon,evening,night}.
218	 */
219	startrtclock();
220	printcpuinfo();
221	panicifcpuunsupported();
222#ifdef PERFMON
223	perfmon_init();
224#endif
225	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
226	    ptoa((uintmax_t)Maxmem) / 1048576);
227	realmem = Maxmem;
228	/*
229	 * Display any holes after the first chunk of extended memory.
230	 */
231	if (bootverbose) {
232		int indx;
233
234		printf("Physical memory chunk(s):\n");
235		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
236			vm_paddr_t size;
237
238			size = phys_avail[indx + 1] - phys_avail[indx];
239			printf(
240			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
241			    (uintmax_t)phys_avail[indx],
242			    (uintmax_t)phys_avail[indx + 1] - 1,
243			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
244		}
245	}
246
247	vm_ksubmap_init(&kmi);
248
249	printf("avail memory = %ju (%ju MB)\n",
250	    ptoa((uintmax_t)cnt.v_free_count),
251	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
252
253	/*
254	 * Set up buffers, so they can be used to read disk labels.
255	 */
256	bufinit();
257	vm_pager_bufferinit();
258
259	cpu_setregs();
260}
261
262/*
263 * Send an interrupt to process.
264 *
265 * Stack is set up to allow sigcode stored
266 * at top to call routine, followed by kcall
267 * to sigreturn routine below.  After sigreturn
268 * resets the signal mask, the stack, and the
269 * frame pointer, it returns to the user
270 * specified pc, psl.
271 */
272#ifdef COMPAT_43
273static void
274osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
275{
276	struct osigframe sf, *fp;
277	struct proc *p;
278	struct thread *td;
279	struct sigacts *psp;
280	struct trapframe *regs;
281	int sig;
282	int oonstack;
283
284	td = curthread;
285	p = td->td_proc;
286	PROC_LOCK_ASSERT(p, MA_OWNED);
287	sig = ksi->ksi_signo;
288	psp = p->p_sigacts;
289	mtx_assert(&psp->ps_mtx, MA_OWNED);
290	regs = td->td_frame;
291	oonstack = sigonstack(regs->tf_esp);
292
293	/* Allocate space for the signal handler context. */
294	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
295	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
296		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
297		    td->td_sigstk.ss_size - sizeof(struct osigframe));
298#if defined(COMPAT_43)
299		td->td_sigstk.ss_flags |= SS_ONSTACK;
300#endif
301	} else
302		fp = (struct osigframe *)regs->tf_esp - 1;
303
304	/* Translate the signal if appropriate. */
305	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
306		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
307
308	/* Build the argument list for the signal handler. */
309	sf.sf_signum = sig;
310	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
311	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
312		/* Signal handler installed with SA_SIGINFO. */
313		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
314		sf.sf_siginfo.si_signo = sig;
315		sf.sf_siginfo.si_code = ksi->ksi_code;
316		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
317	} else {
318		/* Old FreeBSD-style arguments. */
319		sf.sf_arg2 = ksi->ksi_code;
320		sf.sf_addr = (register_t)ksi->ksi_addr;
321		sf.sf_ahu.sf_handler = catcher;
322	}
323	mtx_unlock(&psp->ps_mtx);
324	PROC_UNLOCK(p);
325
326	/* Save most if not all of trap frame. */
327	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
328	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
329	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
330	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
331	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
332	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
333	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
334	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
335	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
336	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
337	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
338	sf.sf_siginfo.si_sc.sc_gs = rgs();
339	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
340
341	/* Build the signal context to be used by osigreturn(). */
342	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
343	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
344	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
345	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
346	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
347	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
348	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
349	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
350
351	/*
352	 * If we're a vm86 process, we want to save the segment registers.
353	 * We also change eflags to be our emulated eflags, not the actual
354	 * eflags.
355	 */
356	if (regs->tf_eflags & PSL_VM) {
357		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
358		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
359		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
360
361		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
362		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
363		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
364		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
365
366		if (vm86->vm86_has_vme == 0)
367			sf.sf_siginfo.si_sc.sc_ps =
368			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
369			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
370
371		/* See sendsig() for comments. */
372		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
373	}
374
375	/*
376	 * Copy the sigframe out to the user's stack.
377	 */
378	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
379#ifdef DEBUG
380		printf("process %ld has trashed its stack\n", (long)p->p_pid);
381#endif
382		PROC_LOCK(p);
383		sigexit(td, SIGILL);
384	}
385
386	regs->tf_esp = (int)fp;
387	regs->tf_eip = PS_STRINGS - szosigcode;
388	regs->tf_eflags &= ~PSL_T;
389	regs->tf_cs = _ucodesel;
390	regs->tf_ds = _udatasel;
391	regs->tf_es = _udatasel;
392	regs->tf_fs = _udatasel;
393	load_gs(_udatasel);
394	regs->tf_ss = _udatasel;
395	PROC_LOCK(p);
396	mtx_lock(&psp->ps_mtx);
397}
398#endif /* COMPAT_43 */
399
400#ifdef COMPAT_FREEBSD4
401static void
402freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
403{
404	struct sigframe4 sf, *sfp;
405	struct proc *p;
406	struct thread *td;
407	struct sigacts *psp;
408	struct trapframe *regs;
409	int sig;
410	int oonstack;
411
412	td = curthread;
413	p = td->td_proc;
414	PROC_LOCK_ASSERT(p, MA_OWNED);
415	sig = ksi->ksi_signo;
416	psp = p->p_sigacts;
417	mtx_assert(&psp->ps_mtx, MA_OWNED);
418	regs = td->td_frame;
419	oonstack = sigonstack(regs->tf_esp);
420
421	/* Save user context. */
422	bzero(&sf, sizeof(sf));
423	sf.sf_uc.uc_sigmask = *mask;
424	sf.sf_uc.uc_stack = td->td_sigstk;
425	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
426	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
427	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
428	sf.sf_uc.uc_mcontext.mc_gs = rgs();
429	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
430
431	/* Allocate space for the signal handler context. */
432	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
433	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
434		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
435		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
436#if defined(COMPAT_43)
437		td->td_sigstk.ss_flags |= SS_ONSTACK;
438#endif
439	} else
440		sfp = (struct sigframe4 *)regs->tf_esp - 1;
441
442	/* Translate the signal if appropriate. */
443	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
444		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
445
446	/* Build the argument list for the signal handler. */
447	sf.sf_signum = sig;
448	sf.sf_ucontext = (register_t)&sfp->sf_uc;
449	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
450		/* Signal handler installed with SA_SIGINFO. */
451		sf.sf_siginfo = (register_t)&sfp->sf_si;
452		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
453
454		/* Fill in POSIX parts */
455		sf.sf_si.si_signo = sig;
456		sf.sf_si.si_code = ksi->ksi_code;
457		sf.sf_si.si_addr = ksi->ksi_addr;
458	} else {
459		/* Old FreeBSD-style arguments. */
460		sf.sf_siginfo = ksi->ksi_code;
461		sf.sf_addr = (register_t)ksi->ksi_addr;
462		sf.sf_ahu.sf_handler = catcher;
463	}
464	mtx_unlock(&psp->ps_mtx);
465	PROC_UNLOCK(p);
466
467	/*
468	 * If we're a vm86 process, we want to save the segment registers.
469	 * We also change eflags to be our emulated eflags, not the actual
470	 * eflags.
471	 */
472	if (regs->tf_eflags & PSL_VM) {
473		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
474		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
475
476		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
477		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
478		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
479		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
480
481		if (vm86->vm86_has_vme == 0)
482			sf.sf_uc.uc_mcontext.mc_eflags =
483			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
484			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
485
486		/*
487		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
488		 * syscalls made by the signal handler.  This just avoids
489		 * wasting time for our lazy fixup of such faults.  PSL_NT
490		 * does nothing in vm86 mode, but vm86 programs can set it
491		 * almost legitimately in probes for old cpu types.
492		 */
493		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
494	}
495
496	/*
497	 * Copy the sigframe out to the user's stack.
498	 */
499	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
500#ifdef DEBUG
501		printf("process %ld has trashed its stack\n", (long)p->p_pid);
502#endif
503		PROC_LOCK(p);
504		sigexit(td, SIGILL);
505	}
506
507	regs->tf_esp = (int)sfp;
508	regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
509	regs->tf_eflags &= ~PSL_T;
510	regs->tf_cs = _ucodesel;
511	regs->tf_ds = _udatasel;
512	regs->tf_es = _udatasel;
513	regs->tf_fs = _udatasel;
514	regs->tf_ss = _udatasel;
515	PROC_LOCK(p);
516	mtx_lock(&psp->ps_mtx);
517}
518#endif	/* COMPAT_FREEBSD4 */
519
520void
521sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
522{
523	struct sigframe sf, *sfp;
524	struct proc *p;
525	struct thread *td;
526	struct sigacts *psp;
527	char *sp;
528	struct trapframe *regs;
529	int sig;
530	int oonstack;
531
532	td = curthread;
533	p = td->td_proc;
534	PROC_LOCK_ASSERT(p, MA_OWNED);
535	sig = ksi->ksi_signo;
536	psp = p->p_sigacts;
537	mtx_assert(&psp->ps_mtx, MA_OWNED);
538#ifdef COMPAT_FREEBSD4
539	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
540		freebsd4_sendsig(catcher, ksi, mask);
541		return;
542	}
543#endif
544#ifdef COMPAT_43
545	if (SIGISMEMBER(psp->ps_osigset, sig)) {
546		osendsig(catcher, ksi, mask);
547		return;
548	}
549#endif
550	regs = td->td_frame;
551	oonstack = sigonstack(regs->tf_esp);
552
553	/* Save user context. */
554	bzero(&sf, sizeof(sf));
555	sf.sf_uc.uc_sigmask = *mask;
556	sf.sf_uc.uc_stack = td->td_sigstk;
557	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
558	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
559	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
560	sf.sf_uc.uc_mcontext.mc_gs = rgs();
561	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
562	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
563	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
564	fpstate_drop(td);
565
566	/* Allocate space for the signal handler context. */
567	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
568	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
569		sp = td->td_sigstk.ss_sp +
570		    td->td_sigstk.ss_size - sizeof(struct sigframe);
571#if defined(COMPAT_43)
572		td->td_sigstk.ss_flags |= SS_ONSTACK;
573#endif
574	} else
575		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
576	/* Align to 16 bytes. */
577	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
578
579	/* Translate the signal if appropriate. */
580	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
581		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
582
583	/* Build the argument list for the signal handler. */
584	sf.sf_signum = sig;
585	sf.sf_ucontext = (register_t)&sfp->sf_uc;
586	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
587		/* Signal handler installed with SA_SIGINFO. */
588		sf.sf_siginfo = (register_t)&sfp->sf_si;
589		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
590
591		/* Fill in POSIX parts */
592		sf.sf_si = ksi->ksi_info;
593		sf.sf_si.si_signo = sig; /* maybe a translated signal */
594	} else {
595		/* Old FreeBSD-style arguments. */
596		sf.sf_siginfo = ksi->ksi_code;
597		sf.sf_addr = (register_t)ksi->ksi_addr;
598		sf.sf_ahu.sf_handler = catcher;
599	}
600	mtx_unlock(&psp->ps_mtx);
601	PROC_UNLOCK(p);
602
603	/*
604	 * If we're a vm86 process, we want to save the segment registers.
605	 * We also change eflags to be our emulated eflags, not the actual
606	 * eflags.
607	 */
608	if (regs->tf_eflags & PSL_VM) {
609		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
610		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
611
612		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
613		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
614		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
615		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
616
617		if (vm86->vm86_has_vme == 0)
618			sf.sf_uc.uc_mcontext.mc_eflags =
619			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
620			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
621
622		/*
623		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
624		 * syscalls made by the signal handler.  This just avoids
625		 * wasting time for our lazy fixup of such faults.  PSL_NT
626		 * does nothing in vm86 mode, but vm86 programs can set it
627		 * almost legitimately in probes for old cpu types.
628		 */
629		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
630	}
631
632	/*
633	 * Copy the sigframe out to the user's stack.
634	 */
635	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
636#ifdef DEBUG
637		printf("process %ld has trashed its stack\n", (long)p->p_pid);
638#endif
639		PROC_LOCK(p);
640		sigexit(td, SIGILL);
641	}
642
643	regs->tf_esp = (int)sfp;
644	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
645	regs->tf_eflags &= ~PSL_T;
646	regs->tf_cs = _ucodesel;
647	regs->tf_ds = _udatasel;
648	regs->tf_es = _udatasel;
649	regs->tf_fs = _udatasel;
650	regs->tf_ss = _udatasel;
651	PROC_LOCK(p);
652	mtx_lock(&psp->ps_mtx);
653}
654
655/*
656 * System call to cleanup state after a signal
657 * has been taken.  Reset signal mask and
658 * stack state from context left by sendsig (above).
659 * Return to previous pc and psl as specified by
660 * context left by sendsig. Check carefully to
661 * make sure that the user has not modified the
662 * state to gain improper privileges.
663 *
664 * MPSAFE
665 */
666#ifdef COMPAT_43
667int
668osigreturn(td, uap)
669	struct thread *td;
670	struct osigreturn_args /* {
671		struct osigcontext *sigcntxp;
672	} */ *uap;
673{
674	struct osigcontext sc;
675	struct trapframe *regs;
676	struct osigcontext *scp;
677	struct proc *p = td->td_proc;
678	int eflags, error;
679	ksiginfo_t ksi;
680
681	regs = td->td_frame;
682	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
683	if (error != 0)
684		return (error);
685	scp = &sc;
686	eflags = scp->sc_ps;
687	if (eflags & PSL_VM) {
688		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
689		struct vm86_kernel *vm86;
690
691		/*
692		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
693		 * set up the vm86 area, and we can't enter vm86 mode.
694		 */
695		if (td->td_pcb->pcb_ext == 0)
696			return (EINVAL);
697		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
698		if (vm86->vm86_inited == 0)
699			return (EINVAL);
700
701		/* Go back to user mode if both flags are set. */
702		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
703			ksiginfo_init_trap(&ksi);
704			ksi.ksi_signo = SIGBUS;
705			ksi.ksi_code = BUS_OBJERR;
706			ksi.ksi_addr = (void *)regs->tf_eip;
707			trapsignal(td, &ksi);
708		}
709
710		if (vm86->vm86_has_vme) {
711			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
712			    (eflags & VME_USERCHANGE) | PSL_VM;
713		} else {
714			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
715			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
716			    (eflags & VM_USERCHANGE) | PSL_VM;
717		}
718		tf->tf_vm86_ds = scp->sc_ds;
719		tf->tf_vm86_es = scp->sc_es;
720		tf->tf_vm86_fs = scp->sc_fs;
721		tf->tf_vm86_gs = scp->sc_gs;
722		tf->tf_ds = _udatasel;
723		tf->tf_es = _udatasel;
724		tf->tf_fs = _udatasel;
725	} else {
726		/*
727		 * Don't allow users to change privileged or reserved flags.
728		 */
729		/*
730		 * XXX do allow users to change the privileged flag PSL_RF.
731		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
732		 * should sometimes set it there too.  tf_eflags is kept in
733		 * the signal context during signal handling and there is no
734		 * other place to remember it, so the PSL_RF bit may be
735		 * corrupted by the signal handler without us knowing.
736		 * Corruption of the PSL_RF bit at worst causes one more or
737		 * one less debugger trap, so allowing it is fairly harmless.
738		 */
739		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
740	    		return (EINVAL);
741		}
742
743		/*
744		 * Don't allow users to load a valid privileged %cs.  Let the
745		 * hardware check for invalid selectors, excess privilege in
746		 * other selectors, invalid %eip's and invalid %esp's.
747		 */
748		if (!CS_SECURE(scp->sc_cs)) {
749			ksiginfo_init_trap(&ksi);
750			ksi.ksi_signo = SIGBUS;
751			ksi.ksi_code = BUS_OBJERR;
752			ksi.ksi_trapno = T_PROTFLT;
753			ksi.ksi_addr = (void *)regs->tf_eip;
754			trapsignal(td, &ksi);
755			return (EINVAL);
756		}
757		regs->tf_ds = scp->sc_ds;
758		regs->tf_es = scp->sc_es;
759		regs->tf_fs = scp->sc_fs;
760	}
761
762	/* Restore remaining registers. */
763	regs->tf_eax = scp->sc_eax;
764	regs->tf_ebx = scp->sc_ebx;
765	regs->tf_ecx = scp->sc_ecx;
766	regs->tf_edx = scp->sc_edx;
767	regs->tf_esi = scp->sc_esi;
768	regs->tf_edi = scp->sc_edi;
769	regs->tf_cs = scp->sc_cs;
770	regs->tf_ss = scp->sc_ss;
771	regs->tf_isp = scp->sc_isp;
772	regs->tf_ebp = scp->sc_fp;
773	regs->tf_esp = scp->sc_sp;
774	regs->tf_eip = scp->sc_pc;
775	regs->tf_eflags = eflags;
776
777	PROC_LOCK(p);
778#if defined(COMPAT_43)
779	if (scp->sc_onstack & 1)
780		td->td_sigstk.ss_flags |= SS_ONSTACK;
781	else
782		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
783#endif
784	SIGSETOLD(td->td_sigmask, scp->sc_mask);
785	SIG_CANTMASK(td->td_sigmask);
786	signotify(td);
787	PROC_UNLOCK(p);
788	return (EJUSTRETURN);
789}
790#endif /* COMPAT_43 */
791
792#ifdef COMPAT_FREEBSD4
793/*
794 * MPSAFE
795 */
796int
797freebsd4_sigreturn(td, uap)
798	struct thread *td;
799	struct freebsd4_sigreturn_args /* {
800		const ucontext4 *sigcntxp;
801	} */ *uap;
802{
803	struct ucontext4 uc;
804	struct proc *p = td->td_proc;
805	struct trapframe *regs;
806	const struct ucontext4 *ucp;
807	int cs, eflags, error;
808	ksiginfo_t ksi;
809
810	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
811	if (error != 0)
812		return (error);
813	ucp = &uc;
814	regs = td->td_frame;
815	eflags = ucp->uc_mcontext.mc_eflags;
816	if (eflags & PSL_VM) {
817		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
818		struct vm86_kernel *vm86;
819
820		/*
821		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
822		 * set up the vm86 area, and we can't enter vm86 mode.
823		 */
824		if (td->td_pcb->pcb_ext == 0)
825			return (EINVAL);
826		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
827		if (vm86->vm86_inited == 0)
828			return (EINVAL);
829
830		/* Go back to user mode if both flags are set. */
831		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
832			ksiginfo_init_trap(&ksi);
833			ksi.ksi_signo = SIGBUS;
834			ksi.ksi_code = BUS_OBJERR;
835			ksi.ksi_addr = (void *)regs->tf_eip;
836			trapsignal(td, &ksi);
837		}
838		if (vm86->vm86_has_vme) {
839			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
840			    (eflags & VME_USERCHANGE) | PSL_VM;
841		} else {
842			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
843			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
844			    (eflags & VM_USERCHANGE) | PSL_VM;
845		}
846		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
847		tf->tf_eflags = eflags;
848		tf->tf_vm86_ds = tf->tf_ds;
849		tf->tf_vm86_es = tf->tf_es;
850		tf->tf_vm86_fs = tf->tf_fs;
851		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
852		tf->tf_ds = _udatasel;
853		tf->tf_es = _udatasel;
854		tf->tf_fs = _udatasel;
855	} else {
856		/*
857		 * Don't allow users to change privileged or reserved flags.
858		 */
859		/*
860		 * XXX do allow users to change the privileged flag PSL_RF.
861		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
862		 * should sometimes set it there too.  tf_eflags is kept in
863		 * the signal context during signal handling and there is no
864		 * other place to remember it, so the PSL_RF bit may be
865		 * corrupted by the signal handler without us knowing.
866		 * Corruption of the PSL_RF bit at worst causes one more or
867		 * one less debugger trap, so allowing it is fairly harmless.
868		 */
869		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
870			printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
871	    		return (EINVAL);
872		}
873
874		/*
875		 * Don't allow users to load a valid privileged %cs.  Let the
876		 * hardware check for invalid selectors, excess privilege in
877		 * other selectors, invalid %eip's and invalid %esp's.
878		 */
879		cs = ucp->uc_mcontext.mc_cs;
880		if (!CS_SECURE(cs)) {
881			printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
882			ksiginfo_init_trap(&ksi);
883			ksi.ksi_signo = SIGBUS;
884			ksi.ksi_code = BUS_OBJERR;
885			ksi.ksi_trapno = T_PROTFLT;
886			ksi.ksi_addr = (void *)regs->tf_eip;
887			trapsignal(td, &ksi);
888			return (EINVAL);
889		}
890
891		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
892	}
893
894	PROC_LOCK(p);
895#if defined(COMPAT_43)
896	if (ucp->uc_mcontext.mc_onstack & 1)
897		td->td_sigstk.ss_flags |= SS_ONSTACK;
898	else
899		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
900#endif
901
902	td->td_sigmask = ucp->uc_sigmask;
903	SIG_CANTMASK(td->td_sigmask);
904	signotify(td);
905	PROC_UNLOCK(p);
906	return (EJUSTRETURN);
907}
908#endif	/* COMPAT_FREEBSD4 */
909
910/*
911 * MPSAFE
912 */
913int
914sigreturn(td, uap)
915	struct thread *td;
916	struct sigreturn_args /* {
917		const struct __ucontext *sigcntxp;
918	} */ *uap;
919{
920	ucontext_t uc;
921	struct proc *p = td->td_proc;
922	struct trapframe *regs;
923	const ucontext_t *ucp;
924	int cs, eflags, error, ret;
925	ksiginfo_t ksi;
926
927	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
928	if (error != 0)
929		return (error);
930	ucp = &uc;
931	regs = td->td_frame;
932	eflags = ucp->uc_mcontext.mc_eflags;
933	if (eflags & PSL_VM) {
934		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
935		struct vm86_kernel *vm86;
936
937		/*
938		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
939		 * set up the vm86 area, and we can't enter vm86 mode.
940		 */
941		if (td->td_pcb->pcb_ext == 0)
942			return (EINVAL);
943		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
944		if (vm86->vm86_inited == 0)
945			return (EINVAL);
946
947		/* Go back to user mode if both flags are set. */
948		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
949			ksiginfo_init_trap(&ksi);
950			ksi.ksi_signo = SIGBUS;
951			ksi.ksi_code = BUS_OBJERR;
952			ksi.ksi_addr = (void *)regs->tf_eip;
953			trapsignal(td, &ksi);
954		}
955
956		if (vm86->vm86_has_vme) {
957			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
958			    (eflags & VME_USERCHANGE) | PSL_VM;
959		} else {
960			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
961			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
962			    (eflags & VM_USERCHANGE) | PSL_VM;
963		}
964		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
965		tf->tf_eflags = eflags;
966		tf->tf_vm86_ds = tf->tf_ds;
967		tf->tf_vm86_es = tf->tf_es;
968		tf->tf_vm86_fs = tf->tf_fs;
969		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
970		tf->tf_ds = _udatasel;
971		tf->tf_es = _udatasel;
972		tf->tf_fs = _udatasel;
973	} else {
974		/*
975		 * Don't allow users to change privileged or reserved flags.
976		 */
977		/*
978		 * XXX do allow users to change the privileged flag PSL_RF.
979		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
980		 * should sometimes set it there too.  tf_eflags is kept in
981		 * the signal context during signal handling and there is no
982		 * other place to remember it, so the PSL_RF bit may be
983		 * corrupted by the signal handler without us knowing.
984		 * Corruption of the PSL_RF bit at worst causes one more or
985		 * one less debugger trap, so allowing it is fairly harmless.
986		 */
987		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
988			printf("sigreturn: eflags = 0x%x\n", eflags);
989	    		return (EINVAL);
990		}
991
992		/*
993		 * Don't allow users to load a valid privileged %cs.  Let the
994		 * hardware check for invalid selectors, excess privilege in
995		 * other selectors, invalid %eip's and invalid %esp's.
996		 */
997		cs = ucp->uc_mcontext.mc_cs;
998		if (!CS_SECURE(cs)) {
999			printf("sigreturn: cs = 0x%x\n", cs);
1000			ksiginfo_init_trap(&ksi);
1001			ksi.ksi_signo = SIGBUS;
1002			ksi.ksi_code = BUS_OBJERR;
1003			ksi.ksi_trapno = T_PROTFLT;
1004			ksi.ksi_addr = (void *)regs->tf_eip;
1005			trapsignal(td, &ksi);
1006			return (EINVAL);
1007		}
1008
1009		ret = set_fpcontext(td, &ucp->uc_mcontext);
1010		if (ret != 0)
1011			return (ret);
1012		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1013	}
1014
1015	PROC_LOCK(p);
1016#if defined(COMPAT_43)
1017	if (ucp->uc_mcontext.mc_onstack & 1)
1018		td->td_sigstk.ss_flags |= SS_ONSTACK;
1019	else
1020		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1021#endif
1022
1023	td->td_sigmask = ucp->uc_sigmask;
1024	SIG_CANTMASK(td->td_sigmask);
1025	signotify(td);
1026	PROC_UNLOCK(p);
1027	return (EJUSTRETURN);
1028}
1029
1030/*
1031 * Machine dependent boot() routine
1032 *
1033 * I haven't seen anything to put here yet
1034 * Possibly some stuff might be grafted back here from boot()
1035 */
1036void
1037cpu_boot(int howto)
1038{
1039}
1040
1041/* Get current clock frequency for the given cpu id. */
1042int
1043cpu_est_clockrate(int cpu_id, uint64_t *rate)
1044{
1045	register_t reg;
1046	uint64_t tsc1, tsc2;
1047
1048	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1049		return (EINVAL);
1050	if (!tsc_present)
1051		return (EOPNOTSUPP);
1052
1053	/* If we're booting, trust the rate calibrated moments ago. */
1054	if (cold) {
1055		*rate = tsc_freq;
1056		return (0);
1057	}
1058
1059#ifdef SMP
1060	/* Schedule ourselves on the indicated cpu. */
1061	mtx_lock_spin(&sched_lock);
1062	sched_bind(curthread, cpu_id);
1063	mtx_unlock_spin(&sched_lock);
1064#endif
1065
1066	/* Calibrate by measuring a short delay. */
1067	reg = intr_disable();
1068	tsc1 = rdtsc();
1069	DELAY(1000);
1070	tsc2 = rdtsc();
1071	intr_restore(reg);
1072
1073#ifdef SMP
1074	mtx_lock_spin(&sched_lock);
1075	sched_unbind(curthread);
1076	mtx_unlock_spin(&sched_lock);
1077#endif
1078
1079	/*
1080	 * Calculate the difference in readings, convert to Mhz, and
1081	 * subtract 0.5% of the total.  Empirical testing has shown that
1082	 * overhead in DELAY() works out to approximately this value.
1083	 */
1084	tsc2 -= tsc1;
1085	*rate = tsc2 * 1000 - tsc2 * 5;
1086	return (0);
1087}
1088
1089/*
1090 * Shutdown the CPU as much as possible
1091 */
1092void
1093cpu_halt(void)
1094{
1095	for (;;)
1096		__asm__ ("hlt");
1097}
1098
1099/*
1100 * Hook to idle the CPU when possible.  In the SMP case we default to
1101 * off because a halted cpu will not currently pick up a new thread in the
1102 * run queue until the next timer tick.  If turned on this will result in
1103 * approximately a 4.2% loss in real time performance in buildworld tests
1104 * (but improves user and sys times oddly enough), and saves approximately
1105 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
1106 *
1107 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
1108 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
1109 * Then we can have our cake and eat it too.
1110 *
1111 * XXX I'm turning it on for SMP as well by default for now.  It seems to
1112 * help lock contention somewhat, and this is critical for HTT. -Peter
1113 */
1114static int	cpu_idle_hlt = 1;
1115SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1116    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1117
1118static void
1119cpu_idle_default(void)
1120{
1121	/*
1122	 * we must absolutely guarentee that hlt is the
1123	 * absolute next instruction after sti or we
1124	 * introduce a timing window.
1125	 */
1126	__asm __volatile("sti; hlt");
1127}
1128
1129/*
1130 * Note that we have to be careful here to avoid a race between checking
1131 * sched_runnable() and actually halting.  If we don't do this, we may waste
1132 * the time between calling hlt and the next interrupt even though there
1133 * is a runnable process.
1134 */
1135void
1136cpu_idle(void)
1137{
1138
1139#ifdef SMP
1140	if (mp_grab_cpu_hlt())
1141		return;
1142#endif
1143
1144	if (cpu_idle_hlt) {
1145		disable_intr();
1146  		if (sched_runnable())
1147			enable_intr();
1148		else
1149			(*cpu_idle_hook)();
1150	}
1151}
1152
1153/* Other subsystems (e.g., ACPI) can hook this later. */
1154void (*cpu_idle_hook)(void) = cpu_idle_default;
1155
1156/*
1157 * Clear registers on exec
1158 */
1159void
1160exec_setregs(td, entry, stack, ps_strings)
1161	struct thread *td;
1162	u_long entry;
1163	u_long stack;
1164	u_long ps_strings;
1165{
1166	struct trapframe *regs = td->td_frame;
1167	struct pcb *pcb = td->td_pcb;
1168
1169	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1170	pcb->pcb_gs = _udatasel;
1171	load_gs(_udatasel);
1172
1173	if (td->td_proc->p_md.md_ldt)
1174		user_ldt_free(td);
1175
1176	bzero((char *)regs, sizeof(struct trapframe));
1177	regs->tf_eip = entry;
1178	regs->tf_esp = stack;
1179	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1180	regs->tf_ss = _udatasel;
1181	regs->tf_ds = _udatasel;
1182	regs->tf_es = _udatasel;
1183	regs->tf_fs = _udatasel;
1184	regs->tf_cs = _ucodesel;
1185
1186	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1187	regs->tf_ebx = ps_strings;
1188
1189        /*
1190         * Reset the hardware debug registers if they were in use.
1191         * They won't have any meaning for the newly exec'd process.
1192         */
1193        if (pcb->pcb_flags & PCB_DBREGS) {
1194                pcb->pcb_dr0 = 0;
1195                pcb->pcb_dr1 = 0;
1196                pcb->pcb_dr2 = 0;
1197                pcb->pcb_dr3 = 0;
1198                pcb->pcb_dr6 = 0;
1199                pcb->pcb_dr7 = 0;
1200                if (pcb == PCPU_GET(curpcb)) {
1201		        /*
1202			 * Clear the debug registers on the running
1203			 * CPU, otherwise they will end up affecting
1204			 * the next process we switch to.
1205			 */
1206		        reset_dbregs();
1207                }
1208                pcb->pcb_flags &= ~PCB_DBREGS;
1209        }
1210
1211	/*
1212	 * Initialize the math emulator (if any) for the current process.
1213	 * Actually, just clear the bit that says that the emulator has
1214	 * been initialized.  Initialization is delayed until the process
1215	 * traps to the emulator (if it is done at all) mainly because
1216	 * emulators don't provide an entry point for initialization.
1217	 */
1218	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1219
1220	/*
1221	 * Drop the FP state if we hold it, so that the process gets a
1222	 * clean FP state if it uses the FPU again.
1223	 */
1224	fpstate_drop(td);
1225
1226	/*
1227	 * XXX - Linux emulator
1228	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1229	 * on it.
1230	 */
1231	td->td_retval[1] = 0;
1232}
1233
1234void
1235cpu_setregs(void)
1236{
1237	unsigned int cr0;
1238
1239	cr0 = rcr0();
1240
1241	/*
1242	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1243	 *
1244	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1245	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1246	 * bit to control the trap, because setting the CR0_EM bit does
1247	 * not cause WAIT instructions to trap.  It's important to trap
1248	 * WAIT instructions - otherwise the "wait" variants of no-wait
1249	 * control instructions would degenerate to the "no-wait" variants
1250	 * after FP context switches but work correctly otherwise.  It's
1251	 * particularly important to trap WAITs when there is no NPX -
1252	 * otherwise the "wait" variants would always degenerate.
1253	 *
1254	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1255	 * Setting it should fail or do nothing on lesser processors.
1256	 */
1257	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1258	load_cr0(cr0);
1259	load_gs(_udatasel);
1260}
1261
1262static int
1263sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1264{
1265	int error;
1266	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1267		req);
1268	if (!error && req->newptr)
1269		resettodr();
1270	return (error);
1271}
1272
1273SYSCTL_PROC(_machdep, OID_AUTO, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1274	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1275
1276SYSCTL_INT(_machdep, OID_AUTO, disable_rtc_set,
1277	CTLFLAG_RW, &disable_rtc_set, 0, "");
1278
1279SYSCTL_INT(_machdep, OID_AUTO, wall_cmos_clock,
1280	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1281
1282u_long bootdev;		/* not a struct cdev *- encoding is different */
1283SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1284	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1285
1286/*
1287 * Initialize 386 and configure to run kernel
1288 */
1289
1290/*
1291 * Initialize segments & interrupt table
1292 */
1293
1294int _default_ldt;
1295union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1296static struct gate_descriptor idt0[NIDT];
1297struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1298union descriptor ldt[NLDT];		/* local descriptor table */
1299struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1300
1301#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1302extern int has_f00f_bug;
1303#endif
1304
1305static struct i386tss dblfault_tss;
1306static char dblfault_stack[PAGE_SIZE];
1307
1308extern  vm_offset_t	proc0kstack;
1309
1310
1311/*
1312 * software prototypes -- in more palatable form.
1313 *
1314 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1315 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1316 */
1317struct soft_segment_descriptor gdt_segs[] = {
1318/* GNULL_SEL	0 Null Descriptor */
1319{	0x0,			/* segment base address  */
1320	0x0,			/* length */
1321	0,			/* segment type */
1322	0,			/* segment descriptor priority level */
1323	0,			/* segment descriptor present */
1324	0, 0,
1325	0,			/* default 32 vs 16 bit size */
1326	0  			/* limit granularity (byte/page units)*/ },
1327/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1328{	0x0,			/* segment base address  */
1329	0xfffff,		/* length - all address space */
1330	SDT_MEMRWA,		/* segment type */
1331	0,			/* segment descriptor priority level */
1332	1,			/* segment descriptor present */
1333	0, 0,
1334	1,			/* default 32 vs 16 bit size */
1335	1  			/* limit granularity (byte/page units)*/ },
1336/* GUFS_SEL	2 %fs Descriptor for user */
1337{	0x0,			/* segment base address  */
1338	0xfffff,		/* length - all address space */
1339	SDT_MEMRWA,		/* segment type */
1340	SEL_UPL,		/* segment descriptor priority level */
1341	1,			/* segment descriptor present */
1342	0, 0,
1343	1,			/* default 32 vs 16 bit size */
1344	1  			/* limit granularity (byte/page units)*/ },
1345/* GUGS_SEL	3 %gs Descriptor for user */
1346{	0x0,			/* segment base address  */
1347	0xfffff,		/* length - all address space */
1348	SDT_MEMRWA,		/* segment type */
1349	SEL_UPL,		/* segment descriptor priority level */
1350	1,			/* segment descriptor present */
1351	0, 0,
1352	1,			/* default 32 vs 16 bit size */
1353	1  			/* limit granularity (byte/page units)*/ },
1354/* GCODE_SEL	4 Code Descriptor for kernel */
1355{	0x0,			/* segment base address  */
1356	0xfffff,		/* length - all address space */
1357	SDT_MEMERA,		/* segment type */
1358	0,			/* segment descriptor priority level */
1359	1,			/* segment descriptor present */
1360	0, 0,
1361	1,			/* default 32 vs 16 bit size */
1362	1  			/* limit granularity (byte/page units)*/ },
1363/* GDATA_SEL	5 Data Descriptor for kernel */
1364{	0x0,			/* segment base address  */
1365	0xfffff,		/* length - all address space */
1366	SDT_MEMRWA,		/* segment type */
1367	0,			/* segment descriptor priority level */
1368	1,			/* segment descriptor present */
1369	0, 0,
1370	1,			/* default 32 vs 16 bit size */
1371	1  			/* limit granularity (byte/page units)*/ },
1372/* GUCODE_SEL	6 Code Descriptor for user */
1373{	0x0,			/* segment base address  */
1374	0xfffff,		/* length - all address space */
1375	SDT_MEMERA,		/* segment type */
1376	SEL_UPL,		/* segment descriptor priority level */
1377	1,			/* segment descriptor present */
1378	0, 0,
1379	1,			/* default 32 vs 16 bit size */
1380	1  			/* limit granularity (byte/page units)*/ },
1381/* GUDATA_SEL	7 Data Descriptor for user */
1382{	0x0,			/* segment base address  */
1383	0xfffff,		/* length - all address space */
1384	SDT_MEMRWA,		/* segment type */
1385	SEL_UPL,		/* segment descriptor priority level */
1386	1,			/* segment descriptor present */
1387	0, 0,
1388	1,			/* default 32 vs 16 bit size */
1389	1  			/* limit granularity (byte/page units)*/ },
1390/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1391{	0x400,			/* segment base address */
1392	0xfffff,		/* length */
1393	SDT_MEMRWA,		/* segment type */
1394	0,			/* segment descriptor priority level */
1395	1,			/* segment descriptor present */
1396	0, 0,
1397	1,			/* default 32 vs 16 bit size */
1398	1  			/* limit granularity (byte/page units)*/ },
1399/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1400{
1401	0x0,			/* segment base address */
1402	sizeof(struct i386tss)-1,/* length  */
1403	SDT_SYS386TSS,		/* segment type */
1404	0,			/* segment descriptor priority level */
1405	1,			/* segment descriptor present */
1406	0, 0,
1407	0,			/* unused - default 32 vs 16 bit size */
1408	0  			/* limit granularity (byte/page units)*/ },
1409/* GLDT_SEL	10 LDT Descriptor */
1410{	(int) ldt,		/* segment base address  */
1411	sizeof(ldt)-1,		/* length - all address space */
1412	SDT_SYSLDT,		/* segment type */
1413	SEL_UPL,		/* segment descriptor priority level */
1414	1,			/* segment descriptor present */
1415	0, 0,
1416	0,			/* unused - default 32 vs 16 bit size */
1417	0  			/* limit granularity (byte/page units)*/ },
1418/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1419{	(int) ldt,		/* segment base address  */
1420	(512 * sizeof(union descriptor)-1),		/* length */
1421	SDT_SYSLDT,		/* segment type */
1422	0,			/* segment descriptor priority level */
1423	1,			/* segment descriptor present */
1424	0, 0,
1425	0,			/* unused - default 32 vs 16 bit size */
1426	0  			/* limit granularity (byte/page units)*/ },
1427/* GPANIC_SEL	12 Panic Tss Descriptor */
1428{	(int) &dblfault_tss,	/* segment base address  */
1429	sizeof(struct i386tss)-1,/* length - all address space */
1430	SDT_SYS386TSS,		/* segment type */
1431	0,			/* segment descriptor priority level */
1432	1,			/* segment descriptor present */
1433	0, 0,
1434	0,			/* unused - default 32 vs 16 bit size */
1435	0  			/* limit granularity (byte/page units)*/ },
1436/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1437{	0,			/* segment base address (overwritten)  */
1438	0xfffff,		/* length */
1439	SDT_MEMERA,		/* segment type */
1440	0,			/* segment descriptor priority level */
1441	1,			/* segment descriptor present */
1442	0, 0,
1443	0,			/* default 32 vs 16 bit size */
1444	1  			/* limit granularity (byte/page units)*/ },
1445/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1446{	0,			/* segment base address (overwritten)  */
1447	0xfffff,		/* length */
1448	SDT_MEMERA,		/* segment type */
1449	0,			/* segment descriptor priority level */
1450	1,			/* segment descriptor present */
1451	0, 0,
1452	0,			/* default 32 vs 16 bit size */
1453	1  			/* limit granularity (byte/page units)*/ },
1454/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1455{	0,			/* segment base address (overwritten) */
1456	0xfffff,		/* length */
1457	SDT_MEMRWA,		/* segment type */
1458	0,			/* segment descriptor priority level */
1459	1,			/* segment descriptor present */
1460	0, 0,
1461	1,			/* default 32 vs 16 bit size */
1462	1  			/* limit granularity (byte/page units)*/ },
1463/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1464{	0,			/* segment base address (overwritten) */
1465	0xfffff,		/* length */
1466	SDT_MEMRWA,		/* segment type */
1467	0,			/* segment descriptor priority level */
1468	1,			/* segment descriptor present */
1469	0, 0,
1470	0,			/* default 32 vs 16 bit size */
1471	1  			/* limit granularity (byte/page units)*/ },
1472/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1473{	0,			/* segment base address (overwritten) */
1474	0xfffff,		/* length */
1475	SDT_MEMRWA,		/* segment type */
1476	0,			/* segment descriptor priority level */
1477	1,			/* segment descriptor present */
1478	0, 0,
1479	0,			/* default 32 vs 16 bit size */
1480	1  			/* limit granularity (byte/page units)*/ },
1481/* GNDIS_SEL	18 NDIS Descriptor */
1482{	0x0,			/* segment base address  */
1483	0x0,			/* length */
1484	0,			/* segment type */
1485	0,			/* segment descriptor priority level */
1486	0,			/* segment descriptor present */
1487	0, 0,
1488	0,			/* default 32 vs 16 bit size */
1489	0  			/* limit granularity (byte/page units)*/ },
1490};
1491
1492static struct soft_segment_descriptor ldt_segs[] = {
1493	/* Null Descriptor - overwritten by call gate */
1494{	0x0,			/* segment base address  */
1495	0x0,			/* length - all address space */
1496	0,			/* segment type */
1497	0,			/* segment descriptor priority level */
1498	0,			/* segment descriptor present */
1499	0, 0,
1500	0,			/* default 32 vs 16 bit size */
1501	0  			/* limit granularity (byte/page units)*/ },
1502	/* Null Descriptor - overwritten by call gate */
1503{	0x0,			/* segment base address  */
1504	0x0,			/* length - all address space */
1505	0,			/* segment type */
1506	0,			/* segment descriptor priority level */
1507	0,			/* segment descriptor present */
1508	0, 0,
1509	0,			/* default 32 vs 16 bit size */
1510	0  			/* limit granularity (byte/page units)*/ },
1511	/* Null Descriptor - overwritten by call gate */
1512{	0x0,			/* segment base address  */
1513	0x0,			/* length - all address space */
1514	0,			/* segment type */
1515	0,			/* segment descriptor priority level */
1516	0,			/* segment descriptor present */
1517	0, 0,
1518	0,			/* default 32 vs 16 bit size */
1519	0  			/* limit granularity (byte/page units)*/ },
1520	/* Code Descriptor for user */
1521{	0x0,			/* segment base address  */
1522	0xfffff,		/* length - all address space */
1523	SDT_MEMERA,		/* segment type */
1524	SEL_UPL,		/* segment descriptor priority level */
1525	1,			/* segment descriptor present */
1526	0, 0,
1527	1,			/* default 32 vs 16 bit size */
1528	1  			/* limit granularity (byte/page units)*/ },
1529	/* Null Descriptor - overwritten by call gate */
1530{	0x0,			/* segment base address  */
1531	0x0,			/* length - all address space */
1532	0,			/* segment type */
1533	0,			/* segment descriptor priority level */
1534	0,			/* segment descriptor present */
1535	0, 0,
1536	0,			/* default 32 vs 16 bit size */
1537	0  			/* limit granularity (byte/page units)*/ },
1538	/* Data Descriptor for user */
1539{	0x0,			/* segment base address  */
1540	0xfffff,		/* length - all address space */
1541	SDT_MEMRWA,		/* segment type */
1542	SEL_UPL,		/* segment descriptor priority level */
1543	1,			/* segment descriptor present */
1544	0, 0,
1545	1,			/* default 32 vs 16 bit size */
1546	1  			/* limit granularity (byte/page units)*/ },
1547};
1548
1549void
1550setidt(idx, func, typ, dpl, selec)
1551	int idx;
1552	inthand_t *func;
1553	int typ;
1554	int dpl;
1555	int selec;
1556{
1557	struct gate_descriptor *ip;
1558
1559	ip = idt + idx;
1560	ip->gd_looffset = (int)func;
1561	ip->gd_selector = selec;
1562	ip->gd_stkcpy = 0;
1563	ip->gd_xx = 0;
1564	ip->gd_type = typ;
1565	ip->gd_dpl = dpl;
1566	ip->gd_p = 1;
1567	ip->gd_hioffset = ((int)func)>>16 ;
1568}
1569
1570#define	IDTVEC(name)	__CONCAT(X,name)
1571
1572extern inthand_t
1573	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1574	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1575	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1576	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1577	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1578
1579#ifdef DDB
1580/*
1581 * Display the index and function name of any IDT entries that don't use
1582 * the default 'rsvd' entry point.
1583 */
1584DB_SHOW_COMMAND(idt, db_show_idt)
1585{
1586	struct gate_descriptor *ip;
1587	int idx;
1588	uintptr_t func;
1589
1590	ip = idt;
1591	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1592		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1593		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1594			db_printf("%3d\t", idx);
1595			db_printsym(func, DB_STGY_PROC);
1596			db_printf("\n");
1597		}
1598		ip++;
1599	}
1600}
1601#endif
1602
1603void
1604sdtossd(sd, ssd)
1605	struct segment_descriptor *sd;
1606	struct soft_segment_descriptor *ssd;
1607{
1608	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1609	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1610	ssd->ssd_type  = sd->sd_type;
1611	ssd->ssd_dpl   = sd->sd_dpl;
1612	ssd->ssd_p     = sd->sd_p;
1613	ssd->ssd_def32 = sd->sd_def32;
1614	ssd->ssd_gran  = sd->sd_gran;
1615}
1616
1617/*
1618 * Populate the (physmap) array with base/bound pairs describing the
1619 * available physical memory in the system, then test this memory and
1620 * build the phys_avail array describing the actually-available memory.
1621 *
1622 * If we cannot accurately determine the physical memory map, then use
1623 * value from the 0xE801 call, and failing that, the RTC.
1624 *
1625 * Total memory size may be set by the kernel environment variable
1626 * hw.physmem or the compile-time define MAXMEM.
1627 *
1628 * XXX first should be vm_paddr_t.
1629 */
1630static void
1631getmemsize(int first)
1632{
1633	int i, physmap_idx, pa_indx, da_indx;
1634	int hasbrokenint12, has_smap;
1635	u_long physmem_tunable;
1636	u_int extmem;
1637	struct vm86frame vmf;
1638	struct vm86context vmc;
1639	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1640	pt_entry_t *pte;
1641	struct bios_smap *smap;
1642	quad_t dcons_addr, dcons_size;
1643
1644	has_smap = 0;
1645#ifdef XBOX
1646	if (arch_i386_is_xbox) {
1647		/*
1648		 * We queried the memory size before, so chop off 4MB for
1649		 * the framebuffer and inform the OS of this.
1650		 */
1651		physmap[0] = 0;
1652		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
1653		physmap_idx = 0;
1654		goto physmap_done;
1655	}
1656#endif
1657
1658	hasbrokenint12 = 0;
1659	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1660	bzero(&vmf, sizeof(vmf));
1661	bzero(physmap, sizeof(physmap));
1662	basemem = 0;
1663
1664	/*
1665	 * Some newer BIOSes has broken INT 12H implementation which cause
1666	 * kernel panic immediately. In this case, we need to scan SMAP
1667	 * with INT 15:E820 first, then determine base memory size.
1668	 */
1669	if (hasbrokenint12) {
1670		goto int15e820;
1671	}
1672
1673	/*
1674	 * Perform "base memory" related probes & setup
1675	 */
1676	vm86_intcall(0x12, &vmf);
1677	basemem = vmf.vmf_ax;
1678	if (basemem > 640) {
1679		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1680			basemem);
1681		basemem = 640;
1682	}
1683
1684	/*
1685	 * XXX if biosbasemem is now < 640, there is a `hole'
1686	 * between the end of base memory and the start of
1687	 * ISA memory.  The hole may be empty or it may
1688	 * contain BIOS code or data.  Map it read/write so
1689	 * that the BIOS can write to it.  (Memory from 0 to
1690	 * the physical end of the kernel is mapped read-only
1691	 * to begin with and then parts of it are remapped.
1692	 * The parts that aren't remapped form holes that
1693	 * remain read-only and are unused by the kernel.
1694	 * The base memory area is below the physical end of
1695	 * the kernel and right now forms a read-only hole.
1696	 * The part of it from PAGE_SIZE to
1697	 * (trunc_page(biosbasemem * 1024) - 1) will be
1698	 * remapped and used by the kernel later.)
1699	 *
1700	 * This code is similar to the code used in
1701	 * pmap_mapdev, but since no memory needs to be
1702	 * allocated we simply change the mapping.
1703	 */
1704	for (pa = trunc_page(basemem * 1024);
1705	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1706		pmap_kenter(KERNBASE + pa, pa);
1707
1708	/*
1709	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
1710	 * the vm86 page table so that vm86 can scribble on them using
1711	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
1712	 * page 0, at least as initialized here?
1713	 */
1714	pte = (pt_entry_t *)vm86paddr;
1715	for (i = basemem / 4; i < 160; i++)
1716		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1717
1718int15e820:
1719	/*
1720	 * map page 1 R/W into the kernel page table so we can use it
1721	 * as a buffer.  The kernel will unmap this page later.
1722	 */
1723	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
1724
1725	/*
1726	 * get memory map with INT 15:E820
1727	 */
1728	vmc.npages = 0;
1729	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1730	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1731
1732	physmap_idx = 0;
1733	vmf.vmf_ebx = 0;
1734	do {
1735		vmf.vmf_eax = 0xE820;
1736		vmf.vmf_edx = SMAP_SIG;
1737		vmf.vmf_ecx = sizeof(struct bios_smap);
1738		i = vm86_datacall(0x15, &vmf, &vmc);
1739		if (i || vmf.vmf_eax != SMAP_SIG)
1740			break;
1741		if (boothowto & RB_VERBOSE)
1742			printf("SMAP type=%02x base=%016llx len=%016llx\n",
1743			    smap->type, smap->base, smap->length);
1744		has_smap = 1;
1745
1746		if (smap->type != 0x01)
1747			continue;
1748
1749		if (smap->length == 0)
1750			continue;
1751
1752#ifndef PAE
1753		if (smap->base >= 0xffffffff) {
1754			printf("%uK of memory above 4GB ignored\n",
1755			    (u_int)(smap->length / 1024));
1756			continue;
1757		}
1758#endif
1759
1760		for (i = 0; i <= physmap_idx; i += 2) {
1761			if (smap->base < physmap[i + 1]) {
1762				if (boothowto & RB_VERBOSE)
1763					printf(
1764	"Overlapping or non-montonic memory region, ignoring second region\n");
1765				continue;
1766			}
1767		}
1768
1769		if (smap->base == physmap[physmap_idx + 1]) {
1770			physmap[physmap_idx + 1] += smap->length;
1771			continue;
1772		}
1773
1774		physmap_idx += 2;
1775		if (physmap_idx == PHYSMAP_SIZE) {
1776			printf(
1777		"Too many segments in the physical address map, giving up\n");
1778			break;
1779		}
1780		physmap[physmap_idx] = smap->base;
1781		physmap[physmap_idx + 1] = smap->base + smap->length;
1782	} while (vmf.vmf_ebx != 0);
1783
1784	/*
1785	 * Perform "base memory" related probes & setup based on SMAP
1786	 */
1787	if (basemem == 0) {
1788		for (i = 0; i <= physmap_idx; i += 2) {
1789			if (physmap[i] == 0x00000000) {
1790				basemem = physmap[i + 1] / 1024;
1791				break;
1792			}
1793		}
1794
1795		/*
1796		 * XXX this function is horribly organized and has to the same
1797		 * things that it does above here.
1798		 */
1799		if (basemem == 0)
1800			basemem = 640;
1801		if (basemem > 640) {
1802			printf(
1803		    "Preposterous BIOS basemem of %uK, truncating to 640K\n",
1804			    basemem);
1805			basemem = 640;
1806		}
1807
1808		/*
1809		 * Let vm86 scribble on pages between basemem and
1810		 * ISA_HOLE_START, as above.
1811		 */
1812		for (pa = trunc_page(basemem * 1024);
1813		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1814			pmap_kenter(KERNBASE + pa, pa);
1815		pte = (pt_entry_t *)vm86paddr;
1816		for (i = basemem / 4; i < 160; i++)
1817			pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1818	}
1819
1820	if (physmap[1] != 0)
1821		goto physmap_done;
1822
1823	/*
1824	 * If we failed above, try memory map with INT 15:E801
1825	 */
1826	vmf.vmf_ax = 0xE801;
1827	if (vm86_intcall(0x15, &vmf) == 0) {
1828		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1829	} else {
1830#if 0
1831		vmf.vmf_ah = 0x88;
1832		vm86_intcall(0x15, &vmf);
1833		extmem = vmf.vmf_ax;
1834#else
1835		/*
1836		 * Prefer the RTC value for extended memory.
1837		 */
1838		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1839#endif
1840	}
1841
1842	/*
1843	 * Special hack for chipsets that still remap the 384k hole when
1844	 * there's 16MB of memory - this really confuses people that
1845	 * are trying to use bus mastering ISA controllers with the
1846	 * "16MB limit"; they only have 16MB, but the remapping puts
1847	 * them beyond the limit.
1848	 *
1849	 * If extended memory is between 15-16MB (16-17MB phys address range),
1850	 *	chop it to 15MB.
1851	 */
1852	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1853		extmem = 15 * 1024;
1854
1855	physmap[0] = 0;
1856	physmap[1] = basemem * 1024;
1857	physmap_idx = 2;
1858	physmap[physmap_idx] = 0x100000;
1859	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1860
1861physmap_done:
1862	/*
1863	 * Now, physmap contains a map of physical memory.
1864	 */
1865
1866#ifdef SMP
1867	/* make hole for AP bootstrap code */
1868	physmap[1] = mp_bootaddress(physmap[1]);
1869#endif
1870
1871	/*
1872	 * Maxmem isn't the "maximum memory", it's one larger than the
1873	 * highest page of the physical address space.  It should be
1874	 * called something like "Maxphyspage".  We may adjust this
1875	 * based on ``hw.physmem'' and the results of the memory test.
1876	 */
1877	Maxmem = atop(physmap[physmap_idx + 1]);
1878
1879#ifdef MAXMEM
1880	Maxmem = MAXMEM / 4;
1881#endif
1882
1883	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1884		Maxmem = atop(physmem_tunable);
1885
1886	/*
1887	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
1888	 * the amount of memory in the system.
1889	 */
1890	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
1891		Maxmem = atop(physmap[physmap_idx + 1]);
1892
1893	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1894	    (boothowto & RB_VERBOSE))
1895		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1896
1897	/*
1898	 * If Maxmem has been increased beyond what the system has detected,
1899	 * extend the last memory segment to the new limit.
1900	 */
1901	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1902		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1903
1904	/* call pmap initialization to make new kernel address space */
1905	pmap_bootstrap(first, 0);
1906
1907	/*
1908	 * Size up each available chunk of physical memory.
1909	 */
1910	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1911	pa_indx = 0;
1912	da_indx = 1;
1913	phys_avail[pa_indx++] = physmap[0];
1914	phys_avail[pa_indx] = physmap[0];
1915	dump_avail[da_indx] = physmap[0];
1916	pte = CMAP1;
1917
1918	/*
1919	 * Get dcons buffer address
1920	 */
1921	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1922	    getenv_quad("dcons.size", &dcons_size) == 0)
1923		dcons_addr = 0;
1924
1925	/*
1926	 * physmap is in bytes, so when converting to page boundaries,
1927	 * round up the start address and round down the end address.
1928	 */
1929	for (i = 0; i <= physmap_idx; i += 2) {
1930		vm_paddr_t end;
1931
1932		end = ptoa((vm_paddr_t)Maxmem);
1933		if (physmap[i + 1] < end)
1934			end = trunc_page(physmap[i + 1]);
1935		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1936			int tmp, page_bad, full;
1937			int *ptr = (int *)CADDR1;
1938
1939			full = FALSE;
1940			/*
1941			 * block out kernel memory as not available.
1942			 */
1943			if (pa >= KERNLOAD && pa < first)
1944				goto do_dump_avail;
1945
1946			/*
1947			 * block out dcons buffer
1948			 */
1949			if (dcons_addr > 0
1950			    && pa >= trunc_page(dcons_addr)
1951			    && pa < dcons_addr + dcons_size)
1952				goto do_dump_avail;
1953
1954			page_bad = FALSE;
1955
1956			/*
1957			 * map page into kernel: valid, read/write,non-cacheable
1958			 */
1959			*pte = pa | PG_V | PG_RW | PG_N;
1960			invltlb();
1961
1962			tmp = *(int *)ptr;
1963			/*
1964			 * Test for alternating 1's and 0's
1965			 */
1966			*(volatile int *)ptr = 0xaaaaaaaa;
1967			if (*(volatile int *)ptr != 0xaaaaaaaa)
1968				page_bad = TRUE;
1969			/*
1970			 * Test for alternating 0's and 1's
1971			 */
1972			*(volatile int *)ptr = 0x55555555;
1973			if (*(volatile int *)ptr != 0x55555555)
1974				page_bad = TRUE;
1975			/*
1976			 * Test for all 1's
1977			 */
1978			*(volatile int *)ptr = 0xffffffff;
1979			if (*(volatile int *)ptr != 0xffffffff)
1980				page_bad = TRUE;
1981			/*
1982			 * Test for all 0's
1983			 */
1984			*(volatile int *)ptr = 0x0;
1985			if (*(volatile int *)ptr != 0x0)
1986				page_bad = TRUE;
1987			/*
1988			 * Restore original value.
1989			 */
1990			*(int *)ptr = tmp;
1991
1992			/*
1993			 * Adjust array of valid/good pages.
1994			 */
1995			if (page_bad == TRUE)
1996				continue;
1997			/*
1998			 * If this good page is a continuation of the
1999			 * previous set of good pages, then just increase
2000			 * the end pointer. Otherwise start a new chunk.
2001			 * Note that "end" points one higher than end,
2002			 * making the range >= start and < end.
2003			 * If we're also doing a speculative memory
2004			 * test and we at or past the end, bump up Maxmem
2005			 * so that we keep going. The first bad page
2006			 * will terminate the loop.
2007			 */
2008			if (phys_avail[pa_indx] == pa) {
2009				phys_avail[pa_indx] += PAGE_SIZE;
2010			} else {
2011				pa_indx++;
2012				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2013					printf(
2014		"Too many holes in the physical address space, giving up\n");
2015					pa_indx--;
2016					full = TRUE;
2017					goto do_dump_avail;
2018				}
2019				phys_avail[pa_indx++] = pa;	/* start */
2020				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2021			}
2022			physmem++;
2023do_dump_avail:
2024			if (dump_avail[da_indx] == pa) {
2025				dump_avail[da_indx] += PAGE_SIZE;
2026			} else {
2027				da_indx++;
2028				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2029					da_indx--;
2030					goto do_next;
2031				}
2032				dump_avail[da_indx++] = pa;	/* start */
2033				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2034			}
2035do_next:
2036			if (full)
2037				break;
2038		}
2039	}
2040	*pte = 0;
2041	invltlb();
2042
2043	/*
2044	 * XXX
2045	 * The last chunk must contain at least one page plus the message
2046	 * buffer to avoid complicating other code (message buffer address
2047	 * calculation, etc.).
2048	 */
2049	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2050	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
2051		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2052		phys_avail[pa_indx--] = 0;
2053		phys_avail[pa_indx--] = 0;
2054	}
2055
2056	Maxmem = atop(phys_avail[pa_indx]);
2057
2058	/* Trim off space for the message buffer. */
2059	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
2060
2061	avail_end = phys_avail[pa_indx];
2062}
2063
2064void
2065init386(first)
2066	int first;
2067{
2068	struct gate_descriptor *gdp;
2069	int gsel_tss, metadata_missing, off, x;
2070	struct pcpu *pc;
2071
2072	thread0.td_kstack = proc0kstack;
2073	thread0.td_pcb = (struct pcb *)
2074	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
2075
2076	/*
2077 	 * This may be done better later if it gets more high level
2078 	 * components in it. If so just link td->td_proc here.
2079	 */
2080	proc_linkup(&proc0, &ksegrp0, &thread0);
2081
2082	metadata_missing = 0;
2083	if (bootinfo.bi_modulep) {
2084		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2085		preload_bootstrap_relocate(KERNBASE);
2086	} else {
2087		metadata_missing = 1;
2088	}
2089	if (envmode == 1)
2090		kern_envp = static_env;
2091	else if (bootinfo.bi_envp)
2092		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2093
2094	/* Init basic tunables, hz etc */
2095	init_param1();
2096
2097	/*
2098	 * Make gdt memory segments.  All segments cover the full 4GB
2099	 * of address space and permissions are enforced at page level.
2100	 */
2101	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2102	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2103	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2104	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2105	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2106	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2107
2108#ifdef SMP
2109	pc = &SMP_prvspace[0].pcpu;
2110#else
2111	pc = &__pcpu;
2112#endif
2113	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2114	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2115	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2116
2117	for (x = 0; x < NGDT; x++)
2118		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2119
2120	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2121	r_gdt.rd_base =  (int) gdt;
2122	lgdt(&r_gdt);
2123
2124	pcpu_init(pc, 0, sizeof(struct pcpu));
2125	PCPU_SET(prvspace, pc);
2126	PCPU_SET(curthread, &thread0);
2127	PCPU_SET(curpcb, thread0.td_pcb);
2128
2129	/*
2130	 * Initialize mutexes.
2131	 *
2132	 * icu_lock: in order to allow an interrupt to occur in a critical
2133	 * 	     section, to set pcpu->ipending (etc...) properly, we
2134	 *	     must be able to get the icu lock, so it can't be
2135	 *	     under witness.
2136	 */
2137	mutex_init();
2138	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
2139	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
2140
2141	/* make ldt memory segments */
2142	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2143	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2144	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2145		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2146
2147	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2148	lldt(_default_ldt);
2149	PCPU_SET(currentldt, _default_ldt);
2150
2151	/* exceptions */
2152	for (x = 0; x < NIDT; x++)
2153		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2154		    GSEL(GCODE_SEL, SEL_KPL));
2155	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2156	    GSEL(GCODE_SEL, SEL_KPL));
2157	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2158	    GSEL(GCODE_SEL, SEL_KPL));
2159	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2160	    GSEL(GCODE_SEL, SEL_KPL));
2161 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2162	    GSEL(GCODE_SEL, SEL_KPL));
2163	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2164	    GSEL(GCODE_SEL, SEL_KPL));
2165	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2166	    GSEL(GCODE_SEL, SEL_KPL));
2167	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2168	    GSEL(GCODE_SEL, SEL_KPL));
2169	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2170	    , GSEL(GCODE_SEL, SEL_KPL));
2171	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2172	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2173	    GSEL(GCODE_SEL, SEL_KPL));
2174	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2175	    GSEL(GCODE_SEL, SEL_KPL));
2176	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2177	    GSEL(GCODE_SEL, SEL_KPL));
2178	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2179	    GSEL(GCODE_SEL, SEL_KPL));
2180	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2181	    GSEL(GCODE_SEL, SEL_KPL));
2182	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2183	    GSEL(GCODE_SEL, SEL_KPL));
2184	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2185	    GSEL(GCODE_SEL, SEL_KPL));
2186	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2187	    GSEL(GCODE_SEL, SEL_KPL));
2188	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2189	    GSEL(GCODE_SEL, SEL_KPL));
2190	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2191	    GSEL(GCODE_SEL, SEL_KPL));
2192 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2193	    GSEL(GCODE_SEL, SEL_KPL));
2194
2195	r_idt.rd_limit = sizeof(idt0) - 1;
2196	r_idt.rd_base = (int) idt;
2197	lidt(&r_idt);
2198
2199#ifdef XBOX
2200	/*
2201	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2202	 * This should be 0x10de / 0x02a5.
2203	 *
2204	 * This is exactly what Linux does.
2205	 */
2206	outl(0xcf8, 0x80000000);
2207	if (inl(0xcfc) == 0x02a510de) {
2208		arch_i386_is_xbox = 1;
2209		pic16l_setled(XBOX_LED_GREEN);
2210
2211		/*
2212		 * We are an XBOX, but we may have either 64MB or 128MB of
2213		 * memory. The PCI host bridge should be programmed for this,
2214		 * so we just query it.
2215		 */
2216		outl(0xcf8, 0x80000084);
2217		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2218	}
2219#endif /* XBOX */
2220
2221	/*
2222	 * Initialize the console before we print anything out.
2223	 */
2224	cninit();
2225
2226	if (metadata_missing)
2227		printf("WARNING: loader(8) metadata is missing!\n");
2228
2229#ifdef DEV_ISA
2230	elcr_probe();
2231	atpic_startup();
2232#endif
2233
2234#ifdef DDB
2235	ksym_start = bootinfo.bi_symtab;
2236	ksym_end = bootinfo.bi_esymtab;
2237#endif
2238
2239	kdb_init();
2240
2241#ifdef KDB
2242	if (boothowto & RB_KDB)
2243		kdb_enter("Boot flags requested debugger");
2244#endif
2245
2246	finishidentcpu();	/* Final stage of CPU initialization */
2247	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2248	    GSEL(GCODE_SEL, SEL_KPL));
2249	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2250	    GSEL(GCODE_SEL, SEL_KPL));
2251	initializecpu();	/* Initialize CPU registers */
2252
2253	/* make an initial tss so cpu can get interrupt stack on syscall! */
2254	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2255	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2256	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
2257	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2258	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2259	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2260	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2261	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2262	ltr(gsel_tss);
2263
2264	/* pointer to selector slot for %fs/%gs */
2265	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2266
2267	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2268	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2269	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2270	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2271#ifdef PAE
2272	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2273#else
2274	dblfault_tss.tss_cr3 = (int)IdlePTD;
2275#endif
2276	dblfault_tss.tss_eip = (int)dblfault_handler;
2277	dblfault_tss.tss_eflags = PSL_KERNEL;
2278	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2279	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2280	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2281	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2282	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2283
2284	vm86_initialize();
2285	getmemsize(first);
2286	init_param2(physmem);
2287
2288	/* now running on new page tables, configured,and u/iom is accessible */
2289
2290	/* Map the message buffer. */
2291	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2292		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2293
2294	msgbufinit(msgbufp, MSGBUF_SIZE);
2295
2296	/* make a call gate to reenter kernel with */
2297	gdp = &ldt[LSYS5CALLS_SEL].gd;
2298
2299	x = (int) &IDTVEC(lcall_syscall);
2300	gdp->gd_looffset = x;
2301	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2302	gdp->gd_stkcpy = 1;
2303	gdp->gd_type = SDT_SYS386CGT;
2304	gdp->gd_dpl = SEL_UPL;
2305	gdp->gd_p = 1;
2306	gdp->gd_hioffset = x >> 16;
2307
2308	/* XXX does this work? */
2309	/* XXX yes! */
2310	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2311	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2312
2313	/* transfer to user mode */
2314
2315	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2316	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2317
2318	/* setup proc 0's pcb */
2319	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
2320#ifdef PAE
2321	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2322#else
2323	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2324#endif
2325	thread0.td_pcb->pcb_ext = 0;
2326	thread0.td_frame = &proc0_tf;
2327}
2328
2329void
2330cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2331{
2332
2333	pcpu->pc_acpi_id = 0xffffffff;
2334}
2335
2336void
2337spinlock_enter(void)
2338{
2339	struct thread *td;
2340
2341	td = curthread;
2342	if (td->td_md.md_spinlock_count == 0)
2343		td->td_md.md_saved_flags = intr_disable();
2344	td->td_md.md_spinlock_count++;
2345	critical_enter();
2346}
2347
2348void
2349spinlock_exit(void)
2350{
2351	struct thread *td;
2352
2353	td = curthread;
2354	critical_exit();
2355	td->td_md.md_spinlock_count--;
2356	if (td->td_md.md_spinlock_count == 0)
2357		intr_restore(td->td_md.md_saved_flags);
2358}
2359
2360#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2361static void f00f_hack(void *unused);
2362SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL)
2363
2364static void
2365f00f_hack(void *unused)
2366{
2367	struct gate_descriptor *new_idt;
2368	vm_offset_t tmp;
2369
2370	if (!has_f00f_bug)
2371		return;
2372
2373	GIANT_REQUIRED;
2374
2375	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2376
2377	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2378	if (tmp == 0)
2379		panic("kmem_alloc returned 0");
2380
2381	/* Put the problematic entry (#6) at the end of the lower page. */
2382	new_idt = (struct gate_descriptor*)
2383	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2384	bcopy(idt, new_idt, sizeof(idt0));
2385	r_idt.rd_base = (u_int)new_idt;
2386	lidt(&r_idt);
2387	idt = new_idt;
2388	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2389			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2390		panic("vm_map_protect failed");
2391}
2392#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2393
2394/*
2395 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2396 * we want to start a backtrace from the function that caused us to enter
2397 * the debugger. We have the context in the trapframe, but base the trace
2398 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2399 * enough for a backtrace.
2400 */
2401void
2402makectx(struct trapframe *tf, struct pcb *pcb)
2403{
2404
2405	pcb->pcb_edi = tf->tf_edi;
2406	pcb->pcb_esi = tf->tf_esi;
2407	pcb->pcb_ebp = tf->tf_ebp;
2408	pcb->pcb_ebx = tf->tf_ebx;
2409	pcb->pcb_eip = tf->tf_eip;
2410	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2411}
2412
2413int
2414ptrace_set_pc(struct thread *td, u_long addr)
2415{
2416
2417	td->td_frame->tf_eip = addr;
2418	return (0);
2419}
2420
2421int
2422ptrace_single_step(struct thread *td)
2423{
2424	td->td_frame->tf_eflags |= PSL_T;
2425	return (0);
2426}
2427
2428int
2429ptrace_clear_single_step(struct thread *td)
2430{
2431	td->td_frame->tf_eflags &= ~PSL_T;
2432	return (0);
2433}
2434
2435int
2436fill_regs(struct thread *td, struct reg *regs)
2437{
2438	struct pcb *pcb;
2439	struct trapframe *tp;
2440
2441	tp = td->td_frame;
2442	pcb = td->td_pcb;
2443	regs->r_fs = tp->tf_fs;
2444	regs->r_es = tp->tf_es;
2445	regs->r_ds = tp->tf_ds;
2446	regs->r_edi = tp->tf_edi;
2447	regs->r_esi = tp->tf_esi;
2448	regs->r_ebp = tp->tf_ebp;
2449	regs->r_ebx = tp->tf_ebx;
2450	regs->r_edx = tp->tf_edx;
2451	regs->r_ecx = tp->tf_ecx;
2452	regs->r_eax = tp->tf_eax;
2453	regs->r_eip = tp->tf_eip;
2454	regs->r_cs = tp->tf_cs;
2455	regs->r_eflags = tp->tf_eflags;
2456	regs->r_esp = tp->tf_esp;
2457	regs->r_ss = tp->tf_ss;
2458	regs->r_gs = pcb->pcb_gs;
2459	return (0);
2460}
2461
2462int
2463set_regs(struct thread *td, struct reg *regs)
2464{
2465	struct pcb *pcb;
2466	struct trapframe *tp;
2467
2468	tp = td->td_frame;
2469	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2470	    !CS_SECURE(regs->r_cs))
2471		return (EINVAL);
2472	pcb = td->td_pcb;
2473	tp->tf_fs = regs->r_fs;
2474	tp->tf_es = regs->r_es;
2475	tp->tf_ds = regs->r_ds;
2476	tp->tf_edi = regs->r_edi;
2477	tp->tf_esi = regs->r_esi;
2478	tp->tf_ebp = regs->r_ebp;
2479	tp->tf_ebx = regs->r_ebx;
2480	tp->tf_edx = regs->r_edx;
2481	tp->tf_ecx = regs->r_ecx;
2482	tp->tf_eax = regs->r_eax;
2483	tp->tf_eip = regs->r_eip;
2484	tp->tf_cs = regs->r_cs;
2485	tp->tf_eflags = regs->r_eflags;
2486	tp->tf_esp = regs->r_esp;
2487	tp->tf_ss = regs->r_ss;
2488	pcb->pcb_gs = regs->r_gs;
2489	return (0);
2490}
2491
2492#ifdef CPU_ENABLE_SSE
2493static void
2494fill_fpregs_xmm(sv_xmm, sv_87)
2495	struct savexmm *sv_xmm;
2496	struct save87 *sv_87;
2497{
2498	register struct env87 *penv_87 = &sv_87->sv_env;
2499	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2500	int i;
2501
2502	bzero(sv_87, sizeof(*sv_87));
2503
2504	/* FPU control/status */
2505	penv_87->en_cw = penv_xmm->en_cw;
2506	penv_87->en_sw = penv_xmm->en_sw;
2507	penv_87->en_tw = penv_xmm->en_tw;
2508	penv_87->en_fip = penv_xmm->en_fip;
2509	penv_87->en_fcs = penv_xmm->en_fcs;
2510	penv_87->en_opcode = penv_xmm->en_opcode;
2511	penv_87->en_foo = penv_xmm->en_foo;
2512	penv_87->en_fos = penv_xmm->en_fos;
2513
2514	/* FPU registers */
2515	for (i = 0; i < 8; ++i)
2516		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2517}
2518
2519static void
2520set_fpregs_xmm(sv_87, sv_xmm)
2521	struct save87 *sv_87;
2522	struct savexmm *sv_xmm;
2523{
2524	register struct env87 *penv_87 = &sv_87->sv_env;
2525	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2526	int i;
2527
2528	/* FPU control/status */
2529	penv_xmm->en_cw = penv_87->en_cw;
2530	penv_xmm->en_sw = penv_87->en_sw;
2531	penv_xmm->en_tw = penv_87->en_tw;
2532	penv_xmm->en_fip = penv_87->en_fip;
2533	penv_xmm->en_fcs = penv_87->en_fcs;
2534	penv_xmm->en_opcode = penv_87->en_opcode;
2535	penv_xmm->en_foo = penv_87->en_foo;
2536	penv_xmm->en_fos = penv_87->en_fos;
2537
2538	/* FPU registers */
2539	for (i = 0; i < 8; ++i)
2540		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2541}
2542#endif /* CPU_ENABLE_SSE */
2543
2544int
2545fill_fpregs(struct thread *td, struct fpreg *fpregs)
2546{
2547#ifdef CPU_ENABLE_SSE
2548	if (cpu_fxsr) {
2549		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2550						(struct save87 *)fpregs);
2551		return (0);
2552	}
2553#endif /* CPU_ENABLE_SSE */
2554	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2555	return (0);
2556}
2557
2558int
2559set_fpregs(struct thread *td, struct fpreg *fpregs)
2560{
2561#ifdef CPU_ENABLE_SSE
2562	if (cpu_fxsr) {
2563		set_fpregs_xmm((struct save87 *)fpregs,
2564					   &td->td_pcb->pcb_save.sv_xmm);
2565		return (0);
2566	}
2567#endif /* CPU_ENABLE_SSE */
2568	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2569	return (0);
2570}
2571
2572/*
2573 * Get machine context.
2574 */
2575int
2576get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2577{
2578	struct trapframe *tp;
2579
2580	tp = td->td_frame;
2581
2582	PROC_LOCK(curthread->td_proc);
2583	mcp->mc_onstack = sigonstack(tp->tf_esp);
2584	PROC_UNLOCK(curthread->td_proc);
2585	mcp->mc_gs = td->td_pcb->pcb_gs;
2586	mcp->mc_fs = tp->tf_fs;
2587	mcp->mc_es = tp->tf_es;
2588	mcp->mc_ds = tp->tf_ds;
2589	mcp->mc_edi = tp->tf_edi;
2590	mcp->mc_esi = tp->tf_esi;
2591	mcp->mc_ebp = tp->tf_ebp;
2592	mcp->mc_isp = tp->tf_isp;
2593	mcp->mc_eflags = tp->tf_eflags;
2594	if (flags & GET_MC_CLEAR_RET) {
2595		mcp->mc_eax = 0;
2596		mcp->mc_edx = 0;
2597		mcp->mc_eflags &= ~PSL_C;
2598	} else {
2599		mcp->mc_eax = tp->tf_eax;
2600		mcp->mc_edx = tp->tf_edx;
2601	}
2602	mcp->mc_ebx = tp->tf_ebx;
2603	mcp->mc_ecx = tp->tf_ecx;
2604	mcp->mc_eip = tp->tf_eip;
2605	mcp->mc_cs = tp->tf_cs;
2606	mcp->mc_esp = tp->tf_esp;
2607	mcp->mc_ss = tp->tf_ss;
2608	mcp->mc_len = sizeof(*mcp);
2609	get_fpcontext(td, mcp);
2610	return (0);
2611}
2612
2613/*
2614 * Set machine context.
2615 *
2616 * However, we don't set any but the user modifiable flags, and we won't
2617 * touch the cs selector.
2618 */
2619int
2620set_mcontext(struct thread *td, const mcontext_t *mcp)
2621{
2622	struct trapframe *tp;
2623	int eflags, ret;
2624
2625	tp = td->td_frame;
2626	if (mcp->mc_len != sizeof(*mcp))
2627		return (EINVAL);
2628	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2629	    (tp->tf_eflags & ~PSL_USERCHANGE);
2630	if ((ret = set_fpcontext(td, mcp)) == 0) {
2631		tp->tf_fs = mcp->mc_fs;
2632		tp->tf_es = mcp->mc_es;
2633		tp->tf_ds = mcp->mc_ds;
2634		tp->tf_edi = mcp->mc_edi;
2635		tp->tf_esi = mcp->mc_esi;
2636		tp->tf_ebp = mcp->mc_ebp;
2637		tp->tf_ebx = mcp->mc_ebx;
2638		tp->tf_edx = mcp->mc_edx;
2639		tp->tf_ecx = mcp->mc_ecx;
2640		tp->tf_eax = mcp->mc_eax;
2641		tp->tf_eip = mcp->mc_eip;
2642		tp->tf_eflags = eflags;
2643		tp->tf_esp = mcp->mc_esp;
2644		tp->tf_ss = mcp->mc_ss;
2645		td->td_pcb->pcb_gs = mcp->mc_gs;
2646		ret = 0;
2647	}
2648	return (ret);
2649}
2650
2651static void
2652get_fpcontext(struct thread *td, mcontext_t *mcp)
2653{
2654#ifndef DEV_NPX
2655	mcp->mc_fpformat = _MC_FPFMT_NODEV;
2656	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
2657#else
2658	union savefpu *addr;
2659
2660	/*
2661	 * XXX mc_fpstate might be misaligned, since its declaration is not
2662	 * unportabilized using __attribute__((aligned(16))) like the
2663	 * declaration of struct savemm, and anyway, alignment doesn't work
2664	 * for auto variables since we don't use gcc's pessimal stack
2665	 * alignment.  Work around this by abusing the spare fields after
2666	 * mcp->mc_fpstate.
2667	 *
2668	 * XXX unpessimize most cases by only aligning when fxsave might be
2669	 * called, although this requires knowing too much about
2670	 * npxgetregs()'s internals.
2671	 */
2672	addr = (union savefpu *)&mcp->mc_fpstate;
2673	if (td == PCPU_GET(fpcurthread) &&
2674#ifdef CPU_ENABLE_SSE
2675	    cpu_fxsr &&
2676#endif
2677	    ((uintptr_t)(void *)addr & 0xF)) {
2678		do
2679			addr = (void *)((char *)addr + 4);
2680		while ((uintptr_t)(void *)addr & 0xF);
2681	}
2682	mcp->mc_ownedfp = npxgetregs(td, addr);
2683	if (addr != (union savefpu *)&mcp->mc_fpstate) {
2684		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
2685		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
2686	}
2687	mcp->mc_fpformat = npxformat();
2688#endif
2689}
2690
2691static int
2692set_fpcontext(struct thread *td, const mcontext_t *mcp)
2693{
2694	union savefpu *addr;
2695
2696	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2697		return (0);
2698	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
2699	    mcp->mc_fpformat != _MC_FPFMT_XMM)
2700		return (EINVAL);
2701	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2702		/* We don't care what state is left in the FPU or PCB. */
2703		fpstate_drop(td);
2704	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2705	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2706		/* XXX align as above. */
2707		addr = (union savefpu *)&mcp->mc_fpstate;
2708		if (td == PCPU_GET(fpcurthread) &&
2709#ifdef CPU_ENABLE_SSE
2710		    cpu_fxsr &&
2711#endif
2712		    ((uintptr_t)(void *)addr & 0xF)) {
2713			do
2714				addr = (void *)((char *)addr + 4);
2715			while ((uintptr_t)(void *)addr & 0xF);
2716			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
2717		}
2718#ifdef DEV_NPX
2719#ifdef CPU_ENABLE_SSE
2720		if (cpu_fxsr)
2721			addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
2722#endif
2723		/*
2724		 * XXX we violate the dubious requirement that npxsetregs()
2725		 * be called with interrupts disabled.
2726		 */
2727		npxsetregs(td, addr);
2728#endif
2729		/*
2730		 * Don't bother putting things back where they were in the
2731		 * misaligned case, since we know that the caller won't use
2732		 * them again.
2733		 */
2734	} else
2735		return (EINVAL);
2736	return (0);
2737}
2738
2739static void
2740fpstate_drop(struct thread *td)
2741{
2742	register_t s;
2743
2744	s = intr_disable();
2745#ifdef DEV_NPX
2746	if (PCPU_GET(fpcurthread) == td)
2747		npxdrop();
2748#endif
2749	/*
2750	 * XXX force a full drop of the npx.  The above only drops it if we
2751	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
2752	 *
2753	 * XXX I don't much like npxgetregs()'s semantics of doing a full
2754	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2755	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2756	 * sendsig() is the only caller of npxgetregs()... perhaps we just
2757	 * have too many layers.
2758	 */
2759	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
2760	intr_restore(s);
2761}
2762
2763int
2764fill_dbregs(struct thread *td, struct dbreg *dbregs)
2765{
2766	struct pcb *pcb;
2767
2768	if (td == NULL) {
2769		dbregs->dr[0] = rdr0();
2770		dbregs->dr[1] = rdr1();
2771		dbregs->dr[2] = rdr2();
2772		dbregs->dr[3] = rdr3();
2773		dbregs->dr[4] = rdr4();
2774		dbregs->dr[5] = rdr5();
2775		dbregs->dr[6] = rdr6();
2776		dbregs->dr[7] = rdr7();
2777	} else {
2778		pcb = td->td_pcb;
2779		dbregs->dr[0] = pcb->pcb_dr0;
2780		dbregs->dr[1] = pcb->pcb_dr1;
2781		dbregs->dr[2] = pcb->pcb_dr2;
2782		dbregs->dr[3] = pcb->pcb_dr3;
2783		dbregs->dr[4] = 0;
2784		dbregs->dr[5] = 0;
2785		dbregs->dr[6] = pcb->pcb_dr6;
2786		dbregs->dr[7] = pcb->pcb_dr7;
2787	}
2788	return (0);
2789}
2790
2791int
2792set_dbregs(struct thread *td, struct dbreg *dbregs)
2793{
2794	struct pcb *pcb;
2795	int i;
2796	u_int32_t mask1, mask2;
2797
2798	if (td == NULL) {
2799		load_dr0(dbregs->dr[0]);
2800		load_dr1(dbregs->dr[1]);
2801		load_dr2(dbregs->dr[2]);
2802		load_dr3(dbregs->dr[3]);
2803		load_dr4(dbregs->dr[4]);
2804		load_dr5(dbregs->dr[5]);
2805		load_dr6(dbregs->dr[6]);
2806		load_dr7(dbregs->dr[7]);
2807	} else {
2808		/*
2809		 * Don't let an illegal value for dr7 get set.	Specifically,
2810		 * check for undefined settings.  Setting these bit patterns
2811		 * result in undefined behaviour and can lead to an unexpected
2812		 * TRCTRAP.
2813		 */
2814		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2815		     i++, mask1 <<= 2, mask2 <<= 2)
2816			if ((dbregs->dr[7] & mask1) == mask2)
2817				return (EINVAL);
2818
2819		pcb = td->td_pcb;
2820
2821		/*
2822		 * Don't let a process set a breakpoint that is not within the
2823		 * process's address space.  If a process could do this, it
2824		 * could halt the system by setting a breakpoint in the kernel
2825		 * (if ddb was enabled).  Thus, we need to check to make sure
2826		 * that no breakpoints are being enabled for addresses outside
2827		 * process's address space.
2828		 *
2829		 * XXX - what about when the watched area of the user's
2830		 * address space is written into from within the kernel
2831		 * ... wouldn't that still cause a breakpoint to be generated
2832		 * from within kernel mode?
2833		 */
2834
2835		if (dbregs->dr[7] & 0x3) {
2836			/* dr0 is enabled */
2837			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2838				return (EINVAL);
2839		}
2840
2841		if (dbregs->dr[7] & (0x3<<2)) {
2842			/* dr1 is enabled */
2843			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2844				return (EINVAL);
2845		}
2846
2847		if (dbregs->dr[7] & (0x3<<4)) {
2848			/* dr2 is enabled */
2849			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2850				return (EINVAL);
2851		}
2852
2853		if (dbregs->dr[7] & (0x3<<6)) {
2854			/* dr3 is enabled */
2855			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2856				return (EINVAL);
2857		}
2858
2859		pcb->pcb_dr0 = dbregs->dr[0];
2860		pcb->pcb_dr1 = dbregs->dr[1];
2861		pcb->pcb_dr2 = dbregs->dr[2];
2862		pcb->pcb_dr3 = dbregs->dr[3];
2863		pcb->pcb_dr6 = dbregs->dr[6];
2864		pcb->pcb_dr7 = dbregs->dr[7];
2865
2866		pcb->pcb_flags |= PCB_DBREGS;
2867	}
2868
2869	return (0);
2870}
2871
2872/*
2873 * Return > 0 if a hardware breakpoint has been hit, and the
2874 * breakpoint was in user space.  Return 0, otherwise.
2875 */
2876int
2877user_dbreg_trap(void)
2878{
2879        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2880        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2881        int nbp;            /* number of breakpoints that triggered */
2882        caddr_t addr[4];    /* breakpoint addresses */
2883        int i;
2884
2885        dr7 = rdr7();
2886        if ((dr7 & 0x000000ff) == 0) {
2887                /*
2888                 * all GE and LE bits in the dr7 register are zero,
2889                 * thus the trap couldn't have been caused by the
2890                 * hardware debug registers
2891                 */
2892                return 0;
2893        }
2894
2895        nbp = 0;
2896        dr6 = rdr6();
2897        bp = dr6 & 0x0000000f;
2898
2899        if (!bp) {
2900                /*
2901                 * None of the breakpoint bits are set meaning this
2902                 * trap was not caused by any of the debug registers
2903                 */
2904                return 0;
2905        }
2906
2907        /*
2908         * at least one of the breakpoints were hit, check to see
2909         * which ones and if any of them are user space addresses
2910         */
2911
2912        if (bp & 0x01) {
2913                addr[nbp++] = (caddr_t)rdr0();
2914        }
2915        if (bp & 0x02) {
2916                addr[nbp++] = (caddr_t)rdr1();
2917        }
2918        if (bp & 0x04) {
2919                addr[nbp++] = (caddr_t)rdr2();
2920        }
2921        if (bp & 0x08) {
2922                addr[nbp++] = (caddr_t)rdr3();
2923        }
2924
2925        for (i=0; i<nbp; i++) {
2926                if (addr[i] <
2927                    (caddr_t)VM_MAXUSER_ADDRESS) {
2928                        /*
2929                         * addr[i] is in user space
2930                         */
2931                        return nbp;
2932                }
2933        }
2934
2935        /*
2936         * None of the breakpoints are in user space.
2937         */
2938        return 0;
2939}
2940
2941#ifndef DEV_APIC
2942#include <machine/apicvar.h>
2943
2944/*
2945 * Provide stub functions so that the MADT APIC enumerator in the acpi
2946 * kernel module will link against a kernel without 'device apic'.
2947 *
2948 * XXX - This is a gross hack.
2949 */
2950void
2951apic_register_enumerator(struct apic_enumerator *enumerator)
2952{
2953}
2954
2955void *
2956ioapic_create(uintptr_t addr, int32_t id, int intbase)
2957{
2958	return (NULL);
2959}
2960
2961int
2962ioapic_disable_pin(void *cookie, u_int pin)
2963{
2964	return (ENXIO);
2965}
2966
2967int
2968ioapic_get_vector(void *cookie, u_int pin)
2969{
2970	return (-1);
2971}
2972
2973void
2974ioapic_register(void *cookie)
2975{
2976}
2977
2978int
2979ioapic_remap_vector(void *cookie, u_int pin, int vector)
2980{
2981	return (ENXIO);
2982}
2983
2984int
2985ioapic_set_extint(void *cookie, u_int pin)
2986{
2987	return (ENXIO);
2988}
2989
2990int
2991ioapic_set_nmi(void *cookie, u_int pin)
2992{
2993	return (ENXIO);
2994}
2995
2996int
2997ioapic_set_polarity(void *cookie, u_int pin, enum intr_polarity pol)
2998{
2999	return (ENXIO);
3000}
3001
3002int
3003ioapic_set_triggermode(void *cookie, u_int pin, enum intr_trigger trigger)
3004{
3005	return (ENXIO);
3006}
3007
3008void
3009lapic_create(u_int apic_id, int boot_cpu)
3010{
3011}
3012
3013void
3014lapic_init(uintptr_t addr)
3015{
3016}
3017
3018int
3019lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode)
3020{
3021	return (ENXIO);
3022}
3023
3024int
3025lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol)
3026{
3027	return (ENXIO);
3028}
3029
3030int
3031lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger)
3032{
3033	return (ENXIO);
3034}
3035#endif
3036
3037#ifdef KDB
3038
3039/*
3040 * Provide inb() and outb() as functions.  They are normally only
3041 * available as macros calling inlined functions, thus cannot be
3042 * called from the debugger.
3043 *
3044 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
3045 */
3046
3047#undef inb
3048#undef outb
3049
3050/* silence compiler warnings */
3051u_char inb(u_int);
3052void outb(u_int, u_char);
3053
3054u_char
3055inb(u_int port)
3056{
3057	u_char	data;
3058	/*
3059	 * We use %%dx and not %1 here because i/o is done at %dx and not at
3060	 * %edx, while gcc generates inferior code (movw instead of movl)
3061	 * if we tell it to load (u_short) port.
3062	 */
3063	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
3064	return (data);
3065}
3066
3067void
3068outb(u_int port, u_char data)
3069{
3070	u_char	al;
3071	/*
3072	 * Use an unnecessary assignment to help gcc's register allocator.
3073	 * This make a large difference for gcc-1.40 and a tiny difference
3074	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
3075	 * best results.  gcc-2.6.0 can't handle this.
3076	 */
3077	al = data;
3078	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3079}
3080
3081#endif /* KDB */
3082