machdep.c revision 117600
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/sys/i386/i386/machdep.c 117600 2003-07-15 00:11:04Z davidxu $");
42
43#include "opt_atalk.h"
44#include "opt_compat.h"
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_inet.h"
48#include "opt_ipx.h"
49#include "opt_isa.h"
50#include "opt_maxmem.h"
51#include "opt_msgbuf.h"
52#include "opt_npx.h"
53#include "opt_perfmon.h"
54#include "opt_kstack_pages.h"
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/sysproto.h>
59#include <sys/signalvar.h>
60#include <sys/imgact.h>
61#include <sys/kernel.h>
62#include <sys/ktr.h>
63#include <sys/linker.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/pcpu.h>
68#include <sys/proc.h>
69#include <sys/bio.h>
70#include <sys/buf.h>
71#include <sys/reboot.h>
72#include <sys/callout.h>
73#include <sys/msgbuf.h>
74#include <sys/sched.h>
75#include <sys/sysent.h>
76#include <sys/sysctl.h>
77#include <sys/ucontext.h>
78#include <sys/vmmeter.h>
79#include <sys/bus.h>
80#include <sys/eventhandler.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90
91#include <sys/user.h>
92#include <sys/exec.h>
93#include <sys/cons.h>
94
95#include <ddb/ddb.h>
96
97#include <net/netisr.h>
98
99#include <machine/cpu.h>
100#include <machine/cputypes.h>
101#include <machine/reg.h>
102#include <machine/clock.h>
103#include <machine/specialreg.h>
104#include <machine/bootinfo.h>
105#include <machine/md_var.h>
106#include <machine/pc/bios.h>
107#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
108#include <machine/proc.h>
109#ifdef PERFMON
110#include <machine/perfmon.h>
111#endif
112#ifdef SMP
113#include <machine/privatespace.h>
114#include <machine/smp.h>
115#endif
116
117#include <i386/isa/icu.h>
118#include <i386/isa/intr_machdep.h>
119#include <isa/rtc.h>
120#include <machine/vm86.h>
121#include <sys/ptrace.h>
122#include <machine/sigframe.h>
123
124extern void init386(int first);
125extern void dblfault_handler(void);
126
127extern void printcpuinfo(void);	/* XXX header file */
128extern void finishidentcpu(void);
129extern void panicifcpuunsupported(void);
130extern void initializecpu(void);
131
132#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
133#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
134
135#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
136#define CPU_ENABLE_SSE
137#endif
138#if defined(CPU_DISABLE_SSE)
139#undef CPU_ENABLE_SSE
140#endif
141
142static void cpu_startup(void *);
143static void fpstate_drop(struct thread *td);
144static void get_fpcontext(struct thread *td, mcontext_t *mcp);
145static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
146#ifdef CPU_ENABLE_SSE
147static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149#endif /* CPU_ENABLE_SSE */
150SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
151
152int	_udatasel, _ucodesel;
153u_int	atdevbase;
154
155int cold = 1;
156
157#ifdef COMPAT_43
158static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
159#endif
160#ifdef COMPAT_FREEBSD4
161static void freebsd4_sendsig(sig_t catcher, int sig, sigset_t *mask,
162    u_long code);
163#endif
164
165long Maxmem = 0;
166
167vm_paddr_t phys_avail[10];
168
169/* must be 2 less so 0 0 can signal end of chunks */
170#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
171
172struct kva_md_info kmi;
173
174static struct trapframe proc0_tf;
175#ifndef SMP
176static struct pcpu __pcpu;
177#endif
178
179struct mtx icu_lock;
180
181static void
182cpu_startup(dummy)
183	void *dummy;
184{
185	/*
186	 * Good {morning,afternoon,evening,night}.
187	 */
188	startrtclock();
189	printcpuinfo();
190	panicifcpuunsupported();
191#ifdef PERFMON
192	perfmon_init();
193#endif
194	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
195	    ptoa((uintmax_t)Maxmem) / 1048576);
196	/*
197	 * Display any holes after the first chunk of extended memory.
198	 */
199	if (bootverbose) {
200		int indx;
201
202		printf("Physical memory chunk(s):\n");
203		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
204			vm_paddr_t size;
205
206			size = phys_avail[indx + 1] - phys_avail[indx];
207			printf(
208			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
209			    (uintmax_t)phys_avail[indx],
210			    (uintmax_t)phys_avail[indx + 1] - 1,
211			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
212		}
213	}
214
215	vm_ksubmap_init(&kmi);
216
217	printf("avail memory = %ju (%ju MB)\n",
218	    ptoa((uintmax_t)cnt.v_free_count),
219	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
220
221	/*
222	 * Set up buffers, so they can be used to read disk labels.
223	 */
224	bufinit();
225	vm_pager_bufferinit();
226
227#ifndef SMP
228	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
229	cpu_setregs();
230#endif
231}
232
233/*
234 * Send an interrupt to process.
235 *
236 * Stack is set up to allow sigcode stored
237 * at top to call routine, followed by kcall
238 * to sigreturn routine below.  After sigreturn
239 * resets the signal mask, the stack, and the
240 * frame pointer, it returns to the user
241 * specified pc, psl.
242 */
243#ifdef COMPAT_43
244static void
245osendsig(catcher, sig, mask, code)
246	sig_t catcher;
247	int sig;
248	sigset_t *mask;
249	u_long code;
250{
251	struct osigframe sf, *fp;
252	struct proc *p;
253	struct thread *td;
254	struct sigacts *psp;
255	struct trapframe *regs;
256	int oonstack;
257
258	td = curthread;
259	p = td->td_proc;
260	PROC_LOCK_ASSERT(p, MA_OWNED);
261	psp = p->p_sigacts;
262	mtx_assert(&psp->ps_mtx, MA_OWNED);
263	regs = td->td_frame;
264	oonstack = sigonstack(regs->tf_esp);
265
266	/* Allocate space for the signal handler context. */
267	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
268	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
269		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
270		    p->p_sigstk.ss_size - sizeof(struct osigframe));
271#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
272		p->p_sigstk.ss_flags |= SS_ONSTACK;
273#endif
274	} else
275		fp = (struct osigframe *)regs->tf_esp - 1;
276
277	/* Translate the signal if appropriate. */
278	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
279		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
280
281	/* Build the argument list for the signal handler. */
282	sf.sf_signum = sig;
283	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
284	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
285		/* Signal handler installed with SA_SIGINFO. */
286		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
287		sf.sf_siginfo.si_signo = sig;
288		sf.sf_siginfo.si_code = code;
289		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
290	} else {
291		/* Old FreeBSD-style arguments. */
292		sf.sf_arg2 = code;
293		sf.sf_addr = regs->tf_err;
294		sf.sf_ahu.sf_handler = catcher;
295	}
296	mtx_unlock(&psp->ps_mtx);
297	PROC_UNLOCK(p);
298
299	/* Save most if not all of trap frame. */
300	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
301	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
302	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
303	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
304	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
305	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
306	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
307	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
308	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
309	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
310	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
311	sf.sf_siginfo.si_sc.sc_gs = rgs();
312	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
313
314	/* Build the signal context to be used by osigreturn(). */
315	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
316	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
317	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
318	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
319	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
320	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
321	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
322	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
323
324	/*
325	 * If we're a vm86 process, we want to save the segment registers.
326	 * We also change eflags to be our emulated eflags, not the actual
327	 * eflags.
328	 */
329	if (regs->tf_eflags & PSL_VM) {
330		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
331		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
332		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
333
334		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
335		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
336		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
337		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
338
339		if (vm86->vm86_has_vme == 0)
340			sf.sf_siginfo.si_sc.sc_ps =
341			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
342			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
343
344		/* See sendsig() for comments. */
345		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
346	}
347
348	/*
349	 * Copy the sigframe out to the user's stack.
350	 */
351	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
352#ifdef DEBUG
353		printf("process %ld has trashed its stack\n", (long)p->p_pid);
354#endif
355		PROC_LOCK(p);
356		sigexit(td, SIGILL);
357	}
358
359	regs->tf_esp = (int)fp;
360	regs->tf_eip = PS_STRINGS - szosigcode;
361	regs->tf_eflags &= ~PSL_T;
362	regs->tf_cs = _ucodesel;
363	regs->tf_ds = _udatasel;
364	regs->tf_es = _udatasel;
365	regs->tf_fs = _udatasel;
366	load_gs(_udatasel);
367	regs->tf_ss = _udatasel;
368	PROC_LOCK(p);
369	mtx_lock(&psp->ps_mtx);
370}
371#endif /* COMPAT_43 */
372
373#ifdef COMPAT_FREEBSD4
374static void
375freebsd4_sendsig(catcher, sig, mask, code)
376	sig_t catcher;
377	int sig;
378	sigset_t *mask;
379	u_long code;
380{
381	struct sigframe4 sf, *sfp;
382	struct proc *p;
383	struct thread *td;
384	struct sigacts *psp;
385	struct trapframe *regs;
386	int oonstack;
387
388	td = curthread;
389	p = td->td_proc;
390	PROC_LOCK_ASSERT(p, MA_OWNED);
391	psp = p->p_sigacts;
392	mtx_assert(&psp->ps_mtx, MA_OWNED);
393	regs = td->td_frame;
394	oonstack = sigonstack(regs->tf_esp);
395
396	/* Save user context. */
397	bzero(&sf, sizeof(sf));
398	sf.sf_uc.uc_sigmask = *mask;
399	sf.sf_uc.uc_stack = p->p_sigstk;
400	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
401	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
402	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
403	sf.sf_uc.uc_mcontext.mc_gs = rgs();
404	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
405
406	/* Allocate space for the signal handler context. */
407	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
408	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
409		sfp = (struct sigframe4 *)(p->p_sigstk.ss_sp +
410		    p->p_sigstk.ss_size - sizeof(struct sigframe4));
411#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
412		p->p_sigstk.ss_flags |= SS_ONSTACK;
413#endif
414	} else
415		sfp = (struct sigframe4 *)regs->tf_esp - 1;
416
417	/* Translate the signal if appropriate. */
418	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
419		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
420
421	/* Build the argument list for the signal handler. */
422	sf.sf_signum = sig;
423	sf.sf_ucontext = (register_t)&sfp->sf_uc;
424	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
425		/* Signal handler installed with SA_SIGINFO. */
426		sf.sf_siginfo = (register_t)&sfp->sf_si;
427		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
428
429		/* Fill in POSIX parts */
430		sf.sf_si.si_signo = sig;
431		sf.sf_si.si_code = code;
432		sf.sf_si.si_addr = (void *)regs->tf_err;
433	} else {
434		/* Old FreeBSD-style arguments. */
435		sf.sf_siginfo = code;
436		sf.sf_addr = regs->tf_err;
437		sf.sf_ahu.sf_handler = catcher;
438	}
439	mtx_unlock(&psp->ps_mtx);
440	PROC_UNLOCK(p);
441
442	/*
443	 * If we're a vm86 process, we want to save the segment registers.
444	 * We also change eflags to be our emulated eflags, not the actual
445	 * eflags.
446	 */
447	if (regs->tf_eflags & PSL_VM) {
448		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
449		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
450
451		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
452		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
453		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
454		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
455
456		if (vm86->vm86_has_vme == 0)
457			sf.sf_uc.uc_mcontext.mc_eflags =
458			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
459			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
460
461		/*
462		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
463		 * syscalls made by the signal handler.  This just avoids
464		 * wasting time for our lazy fixup of such faults.  PSL_NT
465		 * does nothing in vm86 mode, but vm86 programs can set it
466		 * almost legitimately in probes for old cpu types.
467		 */
468		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
469	}
470
471	/*
472	 * Copy the sigframe out to the user's stack.
473	 */
474	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
475#ifdef DEBUG
476		printf("process %ld has trashed its stack\n", (long)p->p_pid);
477#endif
478		PROC_LOCK(p);
479		sigexit(td, SIGILL);
480	}
481
482	regs->tf_esp = (int)sfp;
483	regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
484	regs->tf_eflags &= ~PSL_T;
485	regs->tf_cs = _ucodesel;
486	regs->tf_ds = _udatasel;
487	regs->tf_es = _udatasel;
488	regs->tf_fs = _udatasel;
489	regs->tf_ss = _udatasel;
490	PROC_LOCK(p);
491	mtx_lock(&psp->ps_mtx);
492}
493#endif	/* COMPAT_FREEBSD4 */
494
495void
496sendsig(catcher, sig, mask, code)
497	sig_t catcher;
498	int sig;
499	sigset_t *mask;
500	u_long code;
501{
502	struct sigframe sf, *sfp;
503	struct proc *p;
504	struct thread *td;
505	struct sigacts *psp;
506	char *sp;
507	struct trapframe *regs;
508	int oonstack;
509
510	td = curthread;
511	p = td->td_proc;
512	PROC_LOCK_ASSERT(p, MA_OWNED);
513	psp = p->p_sigacts;
514	mtx_assert(&psp->ps_mtx, MA_OWNED);
515#ifdef COMPAT_FREEBSD4
516	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
517		freebsd4_sendsig(catcher, sig, mask, code);
518		return;
519	}
520#endif
521#ifdef COMPAT_43
522	if (SIGISMEMBER(psp->ps_osigset, sig)) {
523		osendsig(catcher, sig, mask, code);
524		return;
525	}
526#endif
527	regs = td->td_frame;
528	oonstack = sigonstack(regs->tf_esp);
529
530	/* Save user context. */
531	bzero(&sf, sizeof(sf));
532	sf.sf_uc.uc_sigmask = *mask;
533	sf.sf_uc.uc_stack = p->p_sigstk;
534	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
535	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
536	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
537	sf.sf_uc.uc_mcontext.mc_gs = rgs();
538	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
539	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
540	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
541	fpstate_drop(td);
542
543	/* Allocate space for the signal handler context. */
544	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
545	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
546		sp = p->p_sigstk.ss_sp +
547		    p->p_sigstk.ss_size - sizeof(struct sigframe);
548#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
549		p->p_sigstk.ss_flags |= SS_ONSTACK;
550#endif
551	} else
552		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
553	/* Align to 16 bytes. */
554	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
555
556	/* Translate the signal if appropriate. */
557	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
558		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
559
560	/* Build the argument list for the signal handler. */
561	sf.sf_signum = sig;
562	sf.sf_ucontext = (register_t)&sfp->sf_uc;
563	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
564		/* Signal handler installed with SA_SIGINFO. */
565		sf.sf_siginfo = (register_t)&sfp->sf_si;
566		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
567
568		/* Fill in POSIX parts */
569		sf.sf_si.si_signo = sig;
570		sf.sf_si.si_code = code;
571		sf.sf_si.si_addr = (void *)regs->tf_err;
572	} else {
573		/* Old FreeBSD-style arguments. */
574		sf.sf_siginfo = code;
575		sf.sf_addr = regs->tf_err;
576		sf.sf_ahu.sf_handler = catcher;
577	}
578	mtx_unlock(&psp->ps_mtx);
579	PROC_UNLOCK(p);
580
581	/*
582	 * If we're a vm86 process, we want to save the segment registers.
583	 * We also change eflags to be our emulated eflags, not the actual
584	 * eflags.
585	 */
586	if (regs->tf_eflags & PSL_VM) {
587		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
588		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
589
590		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
591		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
592		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
593		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
594
595		if (vm86->vm86_has_vme == 0)
596			sf.sf_uc.uc_mcontext.mc_eflags =
597			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
598			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
599
600		/*
601		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
602		 * syscalls made by the signal handler.  This just avoids
603		 * wasting time for our lazy fixup of such faults.  PSL_NT
604		 * does nothing in vm86 mode, but vm86 programs can set it
605		 * almost legitimately in probes for old cpu types.
606		 */
607		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
608	}
609
610	/*
611	 * Copy the sigframe out to the user's stack.
612	 */
613	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
614#ifdef DEBUG
615		printf("process %ld has trashed its stack\n", (long)p->p_pid);
616#endif
617		PROC_LOCK(p);
618		sigexit(td, SIGILL);
619	}
620
621	regs->tf_esp = (int)sfp;
622	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
623	regs->tf_eflags &= ~PSL_T;
624	regs->tf_cs = _ucodesel;
625	regs->tf_ds = _udatasel;
626	regs->tf_es = _udatasel;
627	regs->tf_fs = _udatasel;
628	regs->tf_ss = _udatasel;
629	PROC_LOCK(p);
630	mtx_lock(&psp->ps_mtx);
631}
632
633/*
634 * Build siginfo_t for SA thread
635 */
636void
637cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
638{
639	struct proc *p;
640	struct thread *td;
641
642	td = curthread;
643	p = td->td_proc;
644	PROC_LOCK_ASSERT(p, MA_OWNED);
645
646	bzero(si, sizeof(*si));
647	si->si_signo = sig;
648	si->si_code = code;
649	si->si_addr = (void *)td->td_frame->tf_err;
650	/* XXXKSE fill other fields */
651}
652
653/*
654 * System call to cleanup state after a signal
655 * has been taken.  Reset signal mask and
656 * stack state from context left by sendsig (above).
657 * Return to previous pc and psl as specified by
658 * context left by sendsig. Check carefully to
659 * make sure that the user has not modified the
660 * state to gain improper privileges.
661 *
662 * MPSAFE
663 */
664#ifdef COMPAT_43
665int
666osigreturn(td, uap)
667	struct thread *td;
668	struct osigreturn_args /* {
669		struct osigcontext *sigcntxp;
670	} */ *uap;
671{
672	struct osigcontext sc;
673	struct trapframe *regs;
674	struct osigcontext *scp;
675	struct proc *p = td->td_proc;
676	int eflags, error;
677
678	regs = td->td_frame;
679	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
680	if (error != 0)
681		return (error);
682	scp = &sc;
683	eflags = scp->sc_ps;
684	if (eflags & PSL_VM) {
685		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
686		struct vm86_kernel *vm86;
687
688		/*
689		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
690		 * set up the vm86 area, and we can't enter vm86 mode.
691		 */
692		if (td->td_pcb->pcb_ext == 0)
693			return (EINVAL);
694		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
695		if (vm86->vm86_inited == 0)
696			return (EINVAL);
697
698		/* Go back to user mode if both flags are set. */
699		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
700			trapsignal(td, SIGBUS, 0);
701
702		if (vm86->vm86_has_vme) {
703			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
704			    (eflags & VME_USERCHANGE) | PSL_VM;
705		} else {
706			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
707			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
708			    (eflags & VM_USERCHANGE) | PSL_VM;
709		}
710		tf->tf_vm86_ds = scp->sc_ds;
711		tf->tf_vm86_es = scp->sc_es;
712		tf->tf_vm86_fs = scp->sc_fs;
713		tf->tf_vm86_gs = scp->sc_gs;
714		tf->tf_ds = _udatasel;
715		tf->tf_es = _udatasel;
716		tf->tf_fs = _udatasel;
717	} else {
718		/*
719		 * Don't allow users to change privileged or reserved flags.
720		 */
721		/*
722		 * XXX do allow users to change the privileged flag PSL_RF.
723		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
724		 * should sometimes set it there too.  tf_eflags is kept in
725		 * the signal context during signal handling and there is no
726		 * other place to remember it, so the PSL_RF bit may be
727		 * corrupted by the signal handler without us knowing.
728		 * Corruption of the PSL_RF bit at worst causes one more or
729		 * one less debugger trap, so allowing it is fairly harmless.
730		 */
731		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
732	    		return (EINVAL);
733		}
734
735		/*
736		 * Don't allow users to load a valid privileged %cs.  Let the
737		 * hardware check for invalid selectors, excess privilege in
738		 * other selectors, invalid %eip's and invalid %esp's.
739		 */
740		if (!CS_SECURE(scp->sc_cs)) {
741			trapsignal(td, SIGBUS, T_PROTFLT);
742			return (EINVAL);
743		}
744		regs->tf_ds = scp->sc_ds;
745		regs->tf_es = scp->sc_es;
746		regs->tf_fs = scp->sc_fs;
747	}
748
749	/* Restore remaining registers. */
750	regs->tf_eax = scp->sc_eax;
751	regs->tf_ebx = scp->sc_ebx;
752	regs->tf_ecx = scp->sc_ecx;
753	regs->tf_edx = scp->sc_edx;
754	regs->tf_esi = scp->sc_esi;
755	regs->tf_edi = scp->sc_edi;
756	regs->tf_cs = scp->sc_cs;
757	regs->tf_ss = scp->sc_ss;
758	regs->tf_isp = scp->sc_isp;
759	regs->tf_ebp = scp->sc_fp;
760	regs->tf_esp = scp->sc_sp;
761	regs->tf_eip = scp->sc_pc;
762	regs->tf_eflags = eflags;
763
764	PROC_LOCK(p);
765#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
766	if (scp->sc_onstack & 1)
767		p->p_sigstk.ss_flags |= SS_ONSTACK;
768	else
769		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
770#endif
771	SIGSETOLD(td->td_sigmask, scp->sc_mask);
772	SIG_CANTMASK(td->td_sigmask);
773	signotify(td);
774	PROC_UNLOCK(p);
775	return (EJUSTRETURN);
776}
777#endif /* COMPAT_43 */
778
779#ifdef COMPAT_FREEBSD4
780/*
781 * MPSAFE
782 */
783int
784freebsd4_sigreturn(td, uap)
785	struct thread *td;
786	struct freebsd4_sigreturn_args /* {
787		const ucontext4 *sigcntxp;
788	} */ *uap;
789{
790	struct ucontext4 uc;
791	struct proc *p = td->td_proc;
792	struct trapframe *regs;
793	const struct ucontext4 *ucp;
794	int cs, eflags, error;
795
796	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
797	if (error != 0)
798		return (error);
799	ucp = &uc;
800	regs = td->td_frame;
801	eflags = ucp->uc_mcontext.mc_eflags;
802	if (eflags & PSL_VM) {
803		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
804		struct vm86_kernel *vm86;
805
806		/*
807		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
808		 * set up the vm86 area, and we can't enter vm86 mode.
809		 */
810		if (td->td_pcb->pcb_ext == 0)
811			return (EINVAL);
812		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
813		if (vm86->vm86_inited == 0)
814			return (EINVAL);
815
816		/* Go back to user mode if both flags are set. */
817		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
818			trapsignal(td, SIGBUS, 0);
819
820		if (vm86->vm86_has_vme) {
821			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
822			    (eflags & VME_USERCHANGE) | PSL_VM;
823		} else {
824			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
825			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
826			    (eflags & VM_USERCHANGE) | PSL_VM;
827		}
828		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
829		tf->tf_eflags = eflags;
830		tf->tf_vm86_ds = tf->tf_ds;
831		tf->tf_vm86_es = tf->tf_es;
832		tf->tf_vm86_fs = tf->tf_fs;
833		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
834		tf->tf_ds = _udatasel;
835		tf->tf_es = _udatasel;
836		tf->tf_fs = _udatasel;
837	} else {
838		/*
839		 * Don't allow users to change privileged or reserved flags.
840		 */
841		/*
842		 * XXX do allow users to change the privileged flag PSL_RF.
843		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
844		 * should sometimes set it there too.  tf_eflags is kept in
845		 * the signal context during signal handling and there is no
846		 * other place to remember it, so the PSL_RF bit may be
847		 * corrupted by the signal handler without us knowing.
848		 * Corruption of the PSL_RF bit at worst causes one more or
849		 * one less debugger trap, so allowing it is fairly harmless.
850		 */
851		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
852			printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
853	    		return (EINVAL);
854		}
855
856		/*
857		 * Don't allow users to load a valid privileged %cs.  Let the
858		 * hardware check for invalid selectors, excess privilege in
859		 * other selectors, invalid %eip's and invalid %esp's.
860		 */
861		cs = ucp->uc_mcontext.mc_cs;
862		if (!CS_SECURE(cs)) {
863			printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
864			trapsignal(td, SIGBUS, T_PROTFLT);
865			return (EINVAL);
866		}
867
868		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
869	}
870
871	PROC_LOCK(p);
872#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
873	if (ucp->uc_mcontext.mc_onstack & 1)
874		p->p_sigstk.ss_flags |= SS_ONSTACK;
875	else
876		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
877#endif
878
879	td->td_sigmask = ucp->uc_sigmask;
880	SIG_CANTMASK(td->td_sigmask);
881	signotify(td);
882	PROC_UNLOCK(p);
883	return (EJUSTRETURN);
884}
885#endif	/* COMPAT_FREEBSD4 */
886
887/*
888 * MPSAFE
889 */
890int
891sigreturn(td, uap)
892	struct thread *td;
893	struct sigreturn_args /* {
894		const __ucontext *sigcntxp;
895	} */ *uap;
896{
897	ucontext_t uc;
898	struct proc *p = td->td_proc;
899	struct trapframe *regs;
900	const ucontext_t *ucp;
901	int cs, eflags, error, ret;
902
903	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
904	if (error != 0)
905		return (error);
906	ucp = &uc;
907	regs = td->td_frame;
908	eflags = ucp->uc_mcontext.mc_eflags;
909	if (eflags & PSL_VM) {
910		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
911		struct vm86_kernel *vm86;
912
913		/*
914		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
915		 * set up the vm86 area, and we can't enter vm86 mode.
916		 */
917		if (td->td_pcb->pcb_ext == 0)
918			return (EINVAL);
919		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
920		if (vm86->vm86_inited == 0)
921			return (EINVAL);
922
923		/* Go back to user mode if both flags are set. */
924		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
925			trapsignal(td, SIGBUS, 0);
926
927		if (vm86->vm86_has_vme) {
928			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
929			    (eflags & VME_USERCHANGE) | PSL_VM;
930		} else {
931			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
932			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
933			    (eflags & VM_USERCHANGE) | PSL_VM;
934		}
935		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
936		tf->tf_eflags = eflags;
937		tf->tf_vm86_ds = tf->tf_ds;
938		tf->tf_vm86_es = tf->tf_es;
939		tf->tf_vm86_fs = tf->tf_fs;
940		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
941		tf->tf_ds = _udatasel;
942		tf->tf_es = _udatasel;
943		tf->tf_fs = _udatasel;
944	} else {
945		/*
946		 * Don't allow users to change privileged or reserved flags.
947		 */
948		/*
949		 * XXX do allow users to change the privileged flag PSL_RF.
950		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
951		 * should sometimes set it there too.  tf_eflags is kept in
952		 * the signal context during signal handling and there is no
953		 * other place to remember it, so the PSL_RF bit may be
954		 * corrupted by the signal handler without us knowing.
955		 * Corruption of the PSL_RF bit at worst causes one more or
956		 * one less debugger trap, so allowing it is fairly harmless.
957		 */
958		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
959			printf("sigreturn: eflags = 0x%x\n", eflags);
960	    		return (EINVAL);
961		}
962
963		/*
964		 * Don't allow users to load a valid privileged %cs.  Let the
965		 * hardware check for invalid selectors, excess privilege in
966		 * other selectors, invalid %eip's and invalid %esp's.
967		 */
968		cs = ucp->uc_mcontext.mc_cs;
969		if (!CS_SECURE(cs)) {
970			printf("sigreturn: cs = 0x%x\n", cs);
971			trapsignal(td, SIGBUS, T_PROTFLT);
972			return (EINVAL);
973		}
974
975		ret = set_fpcontext(td, &ucp->uc_mcontext);
976		if (ret != 0)
977			return (ret);
978		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
979	}
980
981	PROC_LOCK(p);
982#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
983	if (ucp->uc_mcontext.mc_onstack & 1)
984		p->p_sigstk.ss_flags |= SS_ONSTACK;
985	else
986		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
987#endif
988
989	td->td_sigmask = ucp->uc_sigmask;
990	SIG_CANTMASK(td->td_sigmask);
991	signotify(td);
992	PROC_UNLOCK(p);
993	return (EJUSTRETURN);
994}
995
996/*
997 * Machine dependent boot() routine
998 *
999 * I haven't seen anything to put here yet
1000 * Possibly some stuff might be grafted back here from boot()
1001 */
1002void
1003cpu_boot(int howto)
1004{
1005}
1006
1007/*
1008 * Shutdown the CPU as much as possible
1009 */
1010void
1011cpu_halt(void)
1012{
1013	for (;;)
1014		__asm__ ("hlt");
1015}
1016
1017/*
1018 * Hook to idle the CPU when possible.  In the SMP case we default to
1019 * off because a halted cpu will not currently pick up a new thread in the
1020 * run queue until the next timer tick.  If turned on this will result in
1021 * approximately a 4.2% loss in real time performance in buildworld tests
1022 * (but improves user and sys times oddly enough), and saves approximately
1023 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
1024 *
1025 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
1026 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
1027 * Then we can have our cake and eat it too.
1028 *
1029 * XXX I'm turning it on for SMP as well by default for now.  It seems to
1030 * help lock contention somewhat, and this is critical for HTT. -Peter
1031 */
1032static int	cpu_idle_hlt = 1;
1033SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1034    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1035
1036/*
1037 * Note that we have to be careful here to avoid a race between checking
1038 * sched_runnable() and actually halting.  If we don't do this, we may waste
1039 * the time between calling hlt and the next interrupt even though there
1040 * is a runnable process.
1041 */
1042void
1043cpu_idle(void)
1044{
1045
1046#ifdef SMP
1047	if (mp_grab_cpu_hlt())
1048		return;
1049#endif
1050
1051	if (cpu_idle_hlt) {
1052		disable_intr();
1053  		if (sched_runnable()) {
1054			enable_intr();
1055		} else {
1056			/*
1057			 * we must absolutely guarentee that hlt is the
1058			 * absolute next instruction after sti or we
1059			 * introduce a timing window.
1060			 */
1061			__asm __volatile("sti; hlt");
1062		}
1063	}
1064}
1065
1066/*
1067 * Clear registers on exec
1068 */
1069void
1070exec_setregs(td, entry, stack, ps_strings)
1071	struct thread *td;
1072	u_long entry;
1073	u_long stack;
1074	u_long ps_strings;
1075{
1076	struct trapframe *regs = td->td_frame;
1077	struct pcb *pcb = td->td_pcb;
1078
1079	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1080	pcb->pcb_gs = _udatasel;
1081	load_gs(_udatasel);
1082
1083	if (td->td_proc->p_md.md_ldt)
1084		user_ldt_free(td);
1085
1086	bzero((char *)regs, sizeof(struct trapframe));
1087	regs->tf_eip = entry;
1088	regs->tf_esp = stack;
1089	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1090	regs->tf_ss = _udatasel;
1091	regs->tf_ds = _udatasel;
1092	regs->tf_es = _udatasel;
1093	regs->tf_fs = _udatasel;
1094	regs->tf_cs = _ucodesel;
1095
1096	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1097	regs->tf_ebx = ps_strings;
1098
1099        /*
1100         * Reset the hardware debug registers if they were in use.
1101         * They won't have any meaning for the newly exec'd process.
1102         */
1103        if (pcb->pcb_flags & PCB_DBREGS) {
1104                pcb->pcb_dr0 = 0;
1105                pcb->pcb_dr1 = 0;
1106                pcb->pcb_dr2 = 0;
1107                pcb->pcb_dr3 = 0;
1108                pcb->pcb_dr6 = 0;
1109                pcb->pcb_dr7 = 0;
1110                if (pcb == PCPU_GET(curpcb)) {
1111		        /*
1112			 * Clear the debug registers on the running
1113			 * CPU, otherwise they will end up affecting
1114			 * the next process we switch to.
1115			 */
1116		        reset_dbregs();
1117                }
1118                pcb->pcb_flags &= ~PCB_DBREGS;
1119        }
1120
1121	/*
1122	 * Initialize the math emulator (if any) for the current process.
1123	 * Actually, just clear the bit that says that the emulator has
1124	 * been initialized.  Initialization is delayed until the process
1125	 * traps to the emulator (if it is done at all) mainly because
1126	 * emulators don't provide an entry point for initialization.
1127	 */
1128	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1129
1130	/*
1131	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1132	 * for why fwait must be trapped at least if there is an npx or an
1133	 * emulator).  This is mainly to handle the case where npx0 is not
1134	 * configured, since the npx routines normally set up the trap
1135	 * otherwise.  It should be done only at boot time, but doing it
1136	 * here allows modifying `npx_exists' for testing the emulator on
1137	 * systems with an npx.
1138	 */
1139	load_cr0(rcr0() | CR0_MP | CR0_TS);
1140
1141	/* Initialize the npx (if any) for the current process. */
1142	/*
1143	 * XXX the above load_cr0() also initializes it and is a layering
1144	 * violation if NPX is configured.  It drops the npx partially
1145	 * and this would be fatal if we were interrupted now, and decided
1146	 * to force the state to the pcb, and checked the invariant
1147	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
1148	 * ALL of this can happen except the check.  The check used to
1149	 * happen and be fatal later when we didn't complete the drop
1150	 * before returning to user mode.  This should be fixed properly
1151	 * soon.
1152	 */
1153	fpstate_drop(td);
1154
1155	/*
1156	 * XXX - Linux emulator
1157	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1158	 * on it.
1159	 */
1160	td->td_retval[1] = 0;
1161}
1162
1163void
1164cpu_setregs(void)
1165{
1166	unsigned int cr0;
1167
1168	cr0 = rcr0();
1169#ifdef SMP
1170	cr0 |= CR0_NE;			/* Done by npxinit() */
1171#endif
1172	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1173#ifndef I386_CPU
1174	cr0 |= CR0_WP | CR0_AM;
1175#endif
1176	load_cr0(cr0);
1177	load_gs(_udatasel);
1178}
1179
1180static int
1181sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1182{
1183	int error;
1184	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1185		req);
1186	if (!error && req->newptr)
1187		resettodr();
1188	return (error);
1189}
1190
1191SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1192	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1193
1194SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1195	CTLFLAG_RW, &disable_rtc_set, 0, "");
1196
1197SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1198	CTLFLAG_RD, &bootinfo, bootinfo, "");
1199
1200SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1201	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1202
1203u_long bootdev;		/* not a dev_t - encoding is different */
1204SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1205	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in dev_t format)");
1206
1207/*
1208 * Initialize 386 and configure to run kernel
1209 */
1210
1211/*
1212 * Initialize segments & interrupt table
1213 */
1214
1215int _default_ldt;
1216union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1217static struct gate_descriptor idt0[NIDT];
1218struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1219union descriptor ldt[NLDT];		/* local descriptor table */
1220#ifdef SMP
1221/* table descriptors - used to load tables by microp */
1222struct region_descriptor r_gdt, r_idt;
1223#endif
1224
1225int private_tss;			/* flag indicating private tss */
1226
1227#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1228extern int has_f00f_bug;
1229#endif
1230
1231static struct i386tss dblfault_tss;
1232static char dblfault_stack[PAGE_SIZE];
1233
1234extern  struct user	*proc0uarea;
1235extern  vm_offset_t	proc0kstack;
1236
1237
1238/* software prototypes -- in more palatable form */
1239struct soft_segment_descriptor gdt_segs[] = {
1240/* GNULL_SEL	0 Null Descriptor */
1241{	0x0,			/* segment base address  */
1242	0x0,			/* length */
1243	0,			/* segment type */
1244	0,			/* segment descriptor priority level */
1245	0,			/* segment descriptor present */
1246	0, 0,
1247	0,			/* default 32 vs 16 bit size */
1248	0  			/* limit granularity (byte/page units)*/ },
1249/* GCODE_SEL	1 Code Descriptor for kernel */
1250{	0x0,			/* segment base address  */
1251	0xfffff,		/* length - all address space */
1252	SDT_MEMERA,		/* segment type */
1253	0,			/* segment descriptor priority level */
1254	1,			/* segment descriptor present */
1255	0, 0,
1256	1,			/* default 32 vs 16 bit size */
1257	1  			/* limit granularity (byte/page units)*/ },
1258/* GDATA_SEL	2 Data Descriptor for kernel */
1259{	0x0,			/* segment base address  */
1260	0xfffff,		/* length - all address space */
1261	SDT_MEMRWA,		/* segment type */
1262	0,			/* segment descriptor priority level */
1263	1,			/* segment descriptor present */
1264	0, 0,
1265	1,			/* default 32 vs 16 bit size */
1266	1  			/* limit granularity (byte/page units)*/ },
1267/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1268{	0x0,			/* segment base address  */
1269	0xfffff,		/* length - all address space */
1270	SDT_MEMRWA,		/* segment type */
1271	0,			/* segment descriptor priority level */
1272	1,			/* segment descriptor present */
1273	0, 0,
1274	1,			/* default 32 vs 16 bit size */
1275	1  			/* limit granularity (byte/page units)*/ },
1276/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1277{
1278	0x0,			/* segment base address */
1279	sizeof(struct i386tss)-1,/* length - all address space */
1280	SDT_SYS386TSS,		/* segment type */
1281	0,			/* segment descriptor priority level */
1282	1,			/* segment descriptor present */
1283	0, 0,
1284	0,			/* unused - default 32 vs 16 bit size */
1285	0  			/* limit granularity (byte/page units)*/ },
1286/* GLDT_SEL	5 LDT Descriptor */
1287{	(int) ldt,		/* segment base address  */
1288	sizeof(ldt)-1,		/* length - all address space */
1289	SDT_SYSLDT,		/* segment type */
1290	SEL_UPL,		/* segment descriptor priority level */
1291	1,			/* segment descriptor present */
1292	0, 0,
1293	0,			/* unused - default 32 vs 16 bit size */
1294	0  			/* limit granularity (byte/page units)*/ },
1295/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1296{	(int) ldt,		/* segment base address  */
1297	(512 * sizeof(union descriptor)-1),		/* length */
1298	SDT_SYSLDT,		/* segment type */
1299	0,			/* segment descriptor priority level */
1300	1,			/* segment descriptor present */
1301	0, 0,
1302	0,			/* unused - default 32 vs 16 bit size */
1303	0  			/* limit granularity (byte/page units)*/ },
1304/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1305{	0x0,			/* segment base address  */
1306	0x0,			/* length - all address space */
1307	0,			/* segment type */
1308	0,			/* segment descriptor priority level */
1309	0,			/* segment descriptor present */
1310	0, 0,
1311	0,			/* default 32 vs 16 bit size */
1312	0  			/* limit granularity (byte/page units)*/ },
1313/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1314{	0x400,			/* segment base address */
1315	0xfffff,		/* length */
1316	SDT_MEMRWA,		/* segment type */
1317	0,			/* segment descriptor priority level */
1318	1,			/* segment descriptor present */
1319	0, 0,
1320	1,			/* default 32 vs 16 bit size */
1321	1  			/* limit granularity (byte/page units)*/ },
1322/* GPANIC_SEL	9 Panic Tss Descriptor */
1323{	(int) &dblfault_tss,	/* segment base address  */
1324	sizeof(struct i386tss)-1,/* length - all address space */
1325	SDT_SYS386TSS,		/* segment type */
1326	0,			/* segment descriptor priority level */
1327	1,			/* segment descriptor present */
1328	0, 0,
1329	0,			/* unused - default 32 vs 16 bit size */
1330	0  			/* limit granularity (byte/page units)*/ },
1331/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1332{	0,			/* segment base address (overwritten)  */
1333	0xfffff,		/* length */
1334	SDT_MEMERA,		/* segment type */
1335	0,			/* segment descriptor priority level */
1336	1,			/* segment descriptor present */
1337	0, 0,
1338	0,			/* default 32 vs 16 bit size */
1339	1  			/* limit granularity (byte/page units)*/ },
1340/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1341{	0,			/* segment base address (overwritten)  */
1342	0xfffff,		/* length */
1343	SDT_MEMERA,		/* segment type */
1344	0,			/* segment descriptor priority level */
1345	1,			/* segment descriptor present */
1346	0, 0,
1347	0,			/* default 32 vs 16 bit size */
1348	1  			/* limit granularity (byte/page units)*/ },
1349/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1350{	0,			/* segment base address (overwritten) */
1351	0xfffff,		/* length */
1352	SDT_MEMRWA,		/* segment type */
1353	0,			/* segment descriptor priority level */
1354	1,			/* segment descriptor present */
1355	0, 0,
1356	1,			/* default 32 vs 16 bit size */
1357	1  			/* limit granularity (byte/page units)*/ },
1358/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1359{	0,			/* segment base address (overwritten) */
1360	0xfffff,		/* length */
1361	SDT_MEMRWA,		/* segment type */
1362	0,			/* segment descriptor priority level */
1363	1,			/* segment descriptor present */
1364	0, 0,
1365	0,			/* default 32 vs 16 bit size */
1366	1  			/* limit granularity (byte/page units)*/ },
1367/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1368{	0,			/* segment base address (overwritten) */
1369	0xfffff,		/* length */
1370	SDT_MEMRWA,		/* segment type */
1371	0,			/* segment descriptor priority level */
1372	1,			/* segment descriptor present */
1373	0, 0,
1374	0,			/* default 32 vs 16 bit size */
1375	1  			/* limit granularity (byte/page units)*/ },
1376};
1377
1378static struct soft_segment_descriptor ldt_segs[] = {
1379	/* Null Descriptor - overwritten by call gate */
1380{	0x0,			/* segment base address  */
1381	0x0,			/* length - all address space */
1382	0,			/* segment type */
1383	0,			/* segment descriptor priority level */
1384	0,			/* segment descriptor present */
1385	0, 0,
1386	0,			/* default 32 vs 16 bit size */
1387	0  			/* limit granularity (byte/page units)*/ },
1388	/* Null Descriptor - overwritten by call gate */
1389{	0x0,			/* segment base address  */
1390	0x0,			/* length - all address space */
1391	0,			/* segment type */
1392	0,			/* segment descriptor priority level */
1393	0,			/* segment descriptor present */
1394	0, 0,
1395	0,			/* default 32 vs 16 bit size */
1396	0  			/* limit granularity (byte/page units)*/ },
1397	/* Null Descriptor - overwritten by call gate */
1398{	0x0,			/* segment base address  */
1399	0x0,			/* length - all address space */
1400	0,			/* segment type */
1401	0,			/* segment descriptor priority level */
1402	0,			/* segment descriptor present */
1403	0, 0,
1404	0,			/* default 32 vs 16 bit size */
1405	0  			/* limit granularity (byte/page units)*/ },
1406	/* Code Descriptor for user */
1407{	0x0,			/* segment base address  */
1408	0xfffff,		/* length - all address space */
1409	SDT_MEMERA,		/* segment type */
1410	SEL_UPL,		/* segment descriptor priority level */
1411	1,			/* segment descriptor present */
1412	0, 0,
1413	1,			/* default 32 vs 16 bit size */
1414	1  			/* limit granularity (byte/page units)*/ },
1415	/* Null Descriptor - overwritten by call gate */
1416{	0x0,			/* segment base address  */
1417	0x0,			/* length - all address space */
1418	0,			/* segment type */
1419	0,			/* segment descriptor priority level */
1420	0,			/* segment descriptor present */
1421	0, 0,
1422	0,			/* default 32 vs 16 bit size */
1423	0  			/* limit granularity (byte/page units)*/ },
1424	/* Data Descriptor for user */
1425{	0x0,			/* segment base address  */
1426	0xfffff,		/* length - all address space */
1427	SDT_MEMRWA,		/* segment type */
1428	SEL_UPL,		/* segment descriptor priority level */
1429	1,			/* segment descriptor present */
1430	0, 0,
1431	1,			/* default 32 vs 16 bit size */
1432	1  			/* limit granularity (byte/page units)*/ },
1433};
1434
1435void
1436setidt(idx, func, typ, dpl, selec)
1437	int idx;
1438	inthand_t *func;
1439	int typ;
1440	int dpl;
1441	int selec;
1442{
1443	struct gate_descriptor *ip;
1444
1445	ip = idt + idx;
1446	ip->gd_looffset = (int)func;
1447	ip->gd_selector = selec;
1448	ip->gd_stkcpy = 0;
1449	ip->gd_xx = 0;
1450	ip->gd_type = typ;
1451	ip->gd_dpl = dpl;
1452	ip->gd_p = 1;
1453	ip->gd_hioffset = ((int)func)>>16 ;
1454}
1455
1456#define	IDTVEC(name)	__CONCAT(X,name)
1457
1458extern inthand_t
1459	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1460	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1461	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1462	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1463	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1464
1465void
1466sdtossd(sd, ssd)
1467	struct segment_descriptor *sd;
1468	struct soft_segment_descriptor *ssd;
1469{
1470	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1471	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1472	ssd->ssd_type  = sd->sd_type;
1473	ssd->ssd_dpl   = sd->sd_dpl;
1474	ssd->ssd_p     = sd->sd_p;
1475	ssd->ssd_def32 = sd->sd_def32;
1476	ssd->ssd_gran  = sd->sd_gran;
1477}
1478
1479#define PHYSMAP_SIZE	(2 * 8)
1480
1481/*
1482 * Populate the (physmap) array with base/bound pairs describing the
1483 * available physical memory in the system, then test this memory and
1484 * build the phys_avail array describing the actually-available memory.
1485 *
1486 * If we cannot accurately determine the physical memory map, then use
1487 * value from the 0xE801 call, and failing that, the RTC.
1488 *
1489 * Total memory size may be set by the kernel environment variable
1490 * hw.physmem or the compile-time define MAXMEM.
1491 *
1492 * XXX first should be vm_paddr_t.
1493 */
1494static void
1495getmemsize(int first)
1496{
1497	int i, physmap_idx, pa_indx;
1498	int hasbrokenint12;
1499	u_int basemem, extmem;
1500	struct vm86frame vmf;
1501	struct vm86context vmc;
1502	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1503	pt_entry_t *pte;
1504	char *cp;
1505	struct bios_smap *smap;
1506
1507	hasbrokenint12 = 0;
1508	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1509	bzero(&vmf, sizeof(struct vm86frame));
1510	bzero(physmap, sizeof(physmap));
1511	basemem = 0;
1512
1513	/*
1514	 * Some newer BIOSes has broken INT 12H implementation which cause
1515	 * kernel panic immediately. In this case, we need to scan SMAP
1516	 * with INT 15:E820 first, then determine base memory size.
1517	 */
1518	if (hasbrokenint12) {
1519		goto int15e820;
1520	}
1521
1522	/*
1523	 * Perform "base memory" related probes & setup
1524	 */
1525	vm86_intcall(0x12, &vmf);
1526	basemem = vmf.vmf_ax;
1527	if (basemem > 640) {
1528		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1529			basemem);
1530		basemem = 640;
1531	}
1532
1533	/*
1534	 * XXX if biosbasemem is now < 640, there is a `hole'
1535	 * between the end of base memory and the start of
1536	 * ISA memory.  The hole may be empty or it may
1537	 * contain BIOS code or data.  Map it read/write so
1538	 * that the BIOS can write to it.  (Memory from 0 to
1539	 * the physical end of the kernel is mapped read-only
1540	 * to begin with and then parts of it are remapped.
1541	 * The parts that aren't remapped form holes that
1542	 * remain read-only and are unused by the kernel.
1543	 * The base memory area is below the physical end of
1544	 * the kernel and right now forms a read-only hole.
1545	 * The part of it from PAGE_SIZE to
1546	 * (trunc_page(biosbasemem * 1024) - 1) will be
1547	 * remapped and used by the kernel later.)
1548	 *
1549	 * This code is similar to the code used in
1550	 * pmap_mapdev, but since no memory needs to be
1551	 * allocated we simply change the mapping.
1552	 */
1553	for (pa = trunc_page(basemem * 1024);
1554	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1555		pmap_kenter(KERNBASE + pa, pa);
1556
1557	/*
1558	 * if basemem != 640, map pages r/w into vm86 page table so
1559	 * that the bios can scribble on it.
1560	 */
1561	pte = (pt_entry_t *)vm86paddr;
1562	for (i = basemem / 4; i < 160; i++)
1563		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1564
1565int15e820:
1566	/*
1567	 * map page 1 R/W into the kernel page table so we can use it
1568	 * as a buffer.  The kernel will unmap this page later.
1569	 */
1570	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
1571
1572	/*
1573	 * get memory map with INT 15:E820
1574	 */
1575	vmc.npages = 0;
1576	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1577	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1578
1579	physmap_idx = 0;
1580	vmf.vmf_ebx = 0;
1581	do {
1582		vmf.vmf_eax = 0xE820;
1583		vmf.vmf_edx = SMAP_SIG;
1584		vmf.vmf_ecx = sizeof(struct bios_smap);
1585		i = vm86_datacall(0x15, &vmf, &vmc);
1586		if (i || vmf.vmf_eax != SMAP_SIG)
1587			break;
1588		if (boothowto & RB_VERBOSE)
1589			printf("SMAP type=%02x base=%016llx len=%016llx\n",
1590			    smap->type, smap->base, smap->length);
1591
1592		if (smap->type != 0x01)
1593			goto next_run;
1594
1595		if (smap->length == 0)
1596			goto next_run;
1597
1598#ifndef PAE
1599		if (smap->base >= 0xffffffff) {
1600			printf("%uK of memory above 4GB ignored\n",
1601			    (u_int)(smap->length / 1024));
1602			goto next_run;
1603		}
1604#endif
1605
1606		for (i = 0; i <= physmap_idx; i += 2) {
1607			if (smap->base < physmap[i + 1]) {
1608				if (boothowto & RB_VERBOSE)
1609					printf(
1610	"Overlapping or non-montonic memory region, ignoring second region\n");
1611				goto next_run;
1612			}
1613		}
1614
1615		if (smap->base == physmap[physmap_idx + 1]) {
1616			physmap[physmap_idx + 1] += smap->length;
1617			goto next_run;
1618		}
1619
1620		physmap_idx += 2;
1621		if (physmap_idx == PHYSMAP_SIZE) {
1622			printf(
1623		"Too many segments in the physical address map, giving up\n");
1624			break;
1625		}
1626		physmap[physmap_idx] = smap->base;
1627		physmap[physmap_idx + 1] = smap->base + smap->length;
1628next_run: ;
1629	} while (vmf.vmf_ebx != 0);
1630
1631	/*
1632	 * Perform "base memory" related probes & setup based on SMAP
1633	 */
1634	if (basemem == 0) {
1635		for (i = 0; i <= physmap_idx; i += 2) {
1636			if (physmap[i] == 0x00000000) {
1637				basemem = physmap[i + 1] / 1024;
1638				break;
1639			}
1640		}
1641
1642		if (basemem == 0) {
1643			basemem = 640;
1644		}
1645
1646		if (basemem > 640) {
1647			printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1648				basemem);
1649			basemem = 640;
1650		}
1651
1652		for (pa = trunc_page(basemem * 1024);
1653		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1654			pmap_kenter(KERNBASE + pa, pa);
1655
1656		pte = (pt_entry_t *)vm86paddr;
1657		for (i = basemem / 4; i < 160; i++)
1658			pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1659	}
1660
1661	if (physmap[1] != 0)
1662		goto physmap_done;
1663
1664	/*
1665	 * If we failed above, try memory map with INT 15:E801
1666	 */
1667	vmf.vmf_ax = 0xE801;
1668	if (vm86_intcall(0x15, &vmf) == 0) {
1669		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1670	} else {
1671#if 0
1672		vmf.vmf_ah = 0x88;
1673		vm86_intcall(0x15, &vmf);
1674		extmem = vmf.vmf_ax;
1675#else
1676		/*
1677		 * Prefer the RTC value for extended memory.
1678		 */
1679		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1680#endif
1681	}
1682
1683	/*
1684	 * Special hack for chipsets that still remap the 384k hole when
1685	 * there's 16MB of memory - this really confuses people that
1686	 * are trying to use bus mastering ISA controllers with the
1687	 * "16MB limit"; they only have 16MB, but the remapping puts
1688	 * them beyond the limit.
1689	 *
1690	 * If extended memory is between 15-16MB (16-17MB phys address range),
1691	 *	chop it to 15MB.
1692	 */
1693	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1694		extmem = 15 * 1024;
1695
1696	physmap[0] = 0;
1697	physmap[1] = basemem * 1024;
1698	physmap_idx = 2;
1699	physmap[physmap_idx] = 0x100000;
1700	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1701
1702physmap_done:
1703	/*
1704	 * Now, physmap contains a map of physical memory.
1705	 */
1706
1707#ifdef SMP
1708	/* make hole for AP bootstrap code */
1709	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1710
1711	/* look for the MP hardware - needed for apic addresses */
1712	i386_mp_probe();
1713#endif
1714
1715	/*
1716	 * Maxmem isn't the "maximum memory", it's one larger than the
1717	 * highest page of the physical address space.  It should be
1718	 * called something like "Maxphyspage".  We may adjust this
1719	 * based on ``hw.physmem'' and the results of the memory test.
1720	 */
1721	Maxmem = atop(physmap[physmap_idx + 1]);
1722
1723#ifdef MAXMEM
1724	Maxmem = MAXMEM / 4;
1725#endif
1726
1727	/*
1728	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1729	 * for the appropriate modifiers.  This overrides MAXMEM.
1730	 */
1731	if ((cp = getenv("hw.physmem")) != NULL) {
1732		u_int64_t AllowMem, sanity;
1733		char *ep;
1734
1735		sanity = AllowMem = strtouq(cp, &ep, 0);
1736		if ((ep != cp) && (*ep != 0)) {
1737			switch(*ep) {
1738			case 'g':
1739			case 'G':
1740				AllowMem <<= 10;
1741			case 'm':
1742			case 'M':
1743				AllowMem <<= 10;
1744			case 'k':
1745			case 'K':
1746				AllowMem <<= 10;
1747				break;
1748			default:
1749				AllowMem = sanity = 0;
1750			}
1751			if (AllowMem < sanity)
1752				AllowMem = 0;
1753		}
1754		if (AllowMem == 0)
1755			printf("Ignoring invalid memory size of '%s'\n", cp);
1756		else
1757			Maxmem = atop(AllowMem);
1758		freeenv(cp);
1759	}
1760
1761	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1762	    (boothowto & RB_VERBOSE))
1763		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1764
1765	/*
1766	 * If Maxmem has been increased beyond what the system has detected,
1767	 * extend the last memory segment to the new limit.
1768	 */
1769	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1770		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1771
1772	/* call pmap initialization to make new kernel address space */
1773	pmap_bootstrap(first, 0);
1774
1775	/*
1776	 * Size up each available chunk of physical memory.
1777	 */
1778	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1779	pa_indx = 0;
1780	phys_avail[pa_indx++] = physmap[0];
1781	phys_avail[pa_indx] = physmap[0];
1782	pte = CMAP1;
1783
1784	/*
1785	 * physmap is in bytes, so when converting to page boundaries,
1786	 * round up the start address and round down the end address.
1787	 */
1788	for (i = 0; i <= physmap_idx; i += 2) {
1789		vm_paddr_t end;
1790
1791		end = ptoa((vm_paddr_t)Maxmem);
1792		if (physmap[i + 1] < end)
1793			end = trunc_page(physmap[i + 1]);
1794		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1795			int tmp, page_bad;
1796			int *ptr = (int *)CADDR1;
1797
1798			/*
1799			 * block out kernel memory as not available.
1800			 */
1801			if (pa >= 0x100000 && pa < first)
1802				continue;
1803
1804			page_bad = FALSE;
1805
1806			/*
1807			 * map page into kernel: valid, read/write,non-cacheable
1808			 */
1809			*pte = pa | PG_V | PG_RW | PG_N;
1810			invltlb();
1811
1812			tmp = *(int *)ptr;
1813			/*
1814			 * Test for alternating 1's and 0's
1815			 */
1816			*(volatile int *)ptr = 0xaaaaaaaa;
1817			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1818				page_bad = TRUE;
1819			}
1820			/*
1821			 * Test for alternating 0's and 1's
1822			 */
1823			*(volatile int *)ptr = 0x55555555;
1824			if (*(volatile int *)ptr != 0x55555555) {
1825			page_bad = TRUE;
1826			}
1827			/*
1828			 * Test for all 1's
1829			 */
1830			*(volatile int *)ptr = 0xffffffff;
1831			if (*(volatile int *)ptr != 0xffffffff) {
1832				page_bad = TRUE;
1833			}
1834			/*
1835			 * Test for all 0's
1836			 */
1837			*(volatile int *)ptr = 0x0;
1838			if (*(volatile int *)ptr != 0x0) {
1839				page_bad = TRUE;
1840			}
1841			/*
1842			 * Restore original value.
1843			 */
1844			*(int *)ptr = tmp;
1845
1846			/*
1847			 * Adjust array of valid/good pages.
1848			 */
1849			if (page_bad == TRUE) {
1850				continue;
1851			}
1852			/*
1853			 * If this good page is a continuation of the
1854			 * previous set of good pages, then just increase
1855			 * the end pointer. Otherwise start a new chunk.
1856			 * Note that "end" points one higher than end,
1857			 * making the range >= start and < end.
1858			 * If we're also doing a speculative memory
1859			 * test and we at or past the end, bump up Maxmem
1860			 * so that we keep going. The first bad page
1861			 * will terminate the loop.
1862			 */
1863			if (phys_avail[pa_indx] == pa) {
1864				phys_avail[pa_indx] += PAGE_SIZE;
1865			} else {
1866				pa_indx++;
1867				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1868					printf(
1869		"Too many holes in the physical address space, giving up\n");
1870					pa_indx--;
1871					break;
1872				}
1873				phys_avail[pa_indx++] = pa;	/* start */
1874				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1875			}
1876			physmem++;
1877		}
1878	}
1879	*pte = 0;
1880	invltlb();
1881
1882	/*
1883	 * XXX
1884	 * The last chunk must contain at least one page plus the message
1885	 * buffer to avoid complicating other code (message buffer address
1886	 * calculation, etc.).
1887	 */
1888	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1889	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1890		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1891		phys_avail[pa_indx--] = 0;
1892		phys_avail[pa_indx--] = 0;
1893	}
1894
1895	Maxmem = atop(phys_avail[pa_indx]);
1896
1897	/* Trim off space for the message buffer. */
1898	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1899
1900	avail_end = phys_avail[pa_indx];
1901}
1902
1903void
1904init386(first)
1905	int first;
1906{
1907	struct gate_descriptor *gdp;
1908	int gsel_tss, metadata_missing, off, x;
1909#ifndef SMP
1910	/* table descriptors - used to load tables by microp */
1911	struct region_descriptor r_gdt, r_idt;
1912#endif
1913	struct pcpu *pc;
1914
1915	proc0.p_uarea = proc0uarea;
1916	thread0.td_kstack = proc0kstack;
1917	thread0.td_pcb = (struct pcb *)
1918	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1919	atdevbase = ISA_HOLE_START + KERNBASE;
1920
1921	/*
1922 	 * This may be done better later if it gets more high level
1923 	 * components in it. If so just link td->td_proc here.
1924	 */
1925	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1926
1927	metadata_missing = 0;
1928	if (bootinfo.bi_modulep) {
1929		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1930		preload_bootstrap_relocate(KERNBASE);
1931	} else {
1932		metadata_missing = 1;
1933	}
1934	if (envmode == 1)
1935		kern_envp = static_env;
1936	else if (bootinfo.bi_envp)
1937		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1938
1939	/* Init basic tunables, hz etc */
1940	init_param1();
1941
1942	/*
1943	 * make gdt memory segments, the code segment goes up to end of the
1944	 * page with etext in it, the data segment goes to the end of
1945	 * the address space
1946	 */
1947	/*
1948	 * XXX text protection is temporarily (?) disabled.  The limit was
1949	 * i386_btop(round_page(etext)) - 1.
1950	 */
1951	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1952	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1953#ifdef SMP
1954	pc = &SMP_prvspace[0].pcpu;
1955	gdt_segs[GPRIV_SEL].ssd_limit =
1956		atop(sizeof(struct privatespace) - 1);
1957#else
1958	pc = &__pcpu;
1959	gdt_segs[GPRIV_SEL].ssd_limit =
1960		atop(sizeof(struct pcpu) - 1);
1961#endif
1962	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
1963	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
1964
1965	for (x = 0; x < NGDT; x++)
1966		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1967
1968	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1969	r_gdt.rd_base =  (int) gdt;
1970	lgdt(&r_gdt);
1971
1972	pcpu_init(pc, 0, sizeof(struct pcpu));
1973	PCPU_SET(prvspace, pc);
1974	PCPU_SET(curthread, &thread0);
1975
1976	/*
1977	 * Initialize mutexes.
1978	 *
1979	 * icu_lock: in order to allow an interrupt to occur in a critical
1980	 * 	     section, to set pcpu->ipending (etc...) properly, we
1981	 *	     must be able to get the icu lock, so it can't be
1982	 *	     under witness.
1983	 */
1984	mutex_init();
1985	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1986	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1987
1988	/* make ldt memory segments */
1989	/*
1990	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1991	 * should be spelled ...MAX_USER...
1992	 */
1993	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1994	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1995	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1996		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1997
1998	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1999	lldt(_default_ldt);
2000	PCPU_SET(currentldt, _default_ldt);
2001
2002	/* exceptions */
2003	for (x = 0; x < NIDT; x++)
2004		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2005		    GSEL(GCODE_SEL, SEL_KPL));
2006	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2007	    GSEL(GCODE_SEL, SEL_KPL));
2008	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2009	    GSEL(GCODE_SEL, SEL_KPL));
2010	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
2011	    GSEL(GCODE_SEL, SEL_KPL));
2012 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2013	    GSEL(GCODE_SEL, SEL_KPL));
2014	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2015	    GSEL(GCODE_SEL, SEL_KPL));
2016	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2017	    GSEL(GCODE_SEL, SEL_KPL));
2018	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2019	    GSEL(GCODE_SEL, SEL_KPL));
2020	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2021	    , GSEL(GCODE_SEL, SEL_KPL));
2022	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2023	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2024	    GSEL(GCODE_SEL, SEL_KPL));
2025	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2026	    GSEL(GCODE_SEL, SEL_KPL));
2027	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2028	    GSEL(GCODE_SEL, SEL_KPL));
2029	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2030	    GSEL(GCODE_SEL, SEL_KPL));
2031	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2032	    GSEL(GCODE_SEL, SEL_KPL));
2033	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2034	    GSEL(GCODE_SEL, SEL_KPL));
2035	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
2036	    GSEL(GCODE_SEL, SEL_KPL));
2037	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2038	    GSEL(GCODE_SEL, SEL_KPL));
2039	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2040	    GSEL(GCODE_SEL, SEL_KPL));
2041	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2042	    GSEL(GCODE_SEL, SEL_KPL));
2043	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2044	    GSEL(GCODE_SEL, SEL_KPL));
2045 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2046	    GSEL(GCODE_SEL, SEL_KPL));
2047
2048	r_idt.rd_limit = sizeof(idt0) - 1;
2049	r_idt.rd_base = (int) idt;
2050	lidt(&r_idt);
2051
2052	/*
2053	 * Initialize the console before we print anything out.
2054	 */
2055	cninit();
2056
2057	if (metadata_missing)
2058		printf("WARNING: loader(8) metadata is missing!\n");
2059
2060#ifdef DEV_ISA
2061	isa_defaultirq();
2062#endif
2063
2064#ifdef DDB
2065	kdb_init();
2066	if (boothowto & RB_KDB)
2067		Debugger("Boot flags requested debugger");
2068#endif
2069
2070	finishidentcpu();	/* Final stage of CPU initialization */
2071	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2072	    GSEL(GCODE_SEL, SEL_KPL));
2073	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2074	    GSEL(GCODE_SEL, SEL_KPL));
2075	initializecpu();	/* Initialize CPU registers */
2076
2077	/* make an initial tss so cpu can get interrupt stack on syscall! */
2078	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2079	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2080	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
2081	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2082	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2083	private_tss = 0;
2084	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2085	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2086	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2087	ltr(gsel_tss);
2088
2089	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2090	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2091	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2092	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2093#ifdef PAE
2094	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2095#else
2096	dblfault_tss.tss_cr3 = (int)IdlePTD;
2097#endif
2098	dblfault_tss.tss_eip = (int)dblfault_handler;
2099	dblfault_tss.tss_eflags = PSL_KERNEL;
2100	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2101	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2102	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2103	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2104	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2105
2106	vm86_initialize();
2107	getmemsize(first);
2108	init_param2(physmem);
2109
2110	/* now running on new page tables, configured,and u/iom is accessible */
2111
2112	/* Map the message buffer. */
2113	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2114		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2115
2116	msgbufinit(msgbufp, MSGBUF_SIZE);
2117
2118	/* make a call gate to reenter kernel with */
2119	gdp = &ldt[LSYS5CALLS_SEL].gd;
2120
2121	x = (int) &IDTVEC(lcall_syscall);
2122	gdp->gd_looffset = x;
2123	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2124	gdp->gd_stkcpy = 1;
2125	gdp->gd_type = SDT_SYS386CGT;
2126	gdp->gd_dpl = SEL_UPL;
2127	gdp->gd_p = 1;
2128	gdp->gd_hioffset = x >> 16;
2129
2130	/* XXX does this work? */
2131	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2132	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2133
2134	/* transfer to user mode */
2135
2136	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2137	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2138
2139	/* setup proc 0's pcb */
2140	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
2141#ifdef PAE
2142	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2143#else
2144	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2145#endif
2146	thread0.td_pcb->pcb_ext = 0;
2147	thread0.td_frame = &proc0_tf;
2148}
2149
2150void
2151cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2152{
2153}
2154
2155#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2156static void f00f_hack(void *unused);
2157SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2158
2159static void
2160f00f_hack(void *unused) {
2161	struct gate_descriptor *new_idt;
2162#ifndef SMP
2163	struct region_descriptor r_idt;
2164#endif
2165	vm_offset_t tmp;
2166
2167	if (!has_f00f_bug)
2168		return;
2169
2170	GIANT_REQUIRED;
2171
2172	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2173
2174	r_idt.rd_limit = sizeof(idt0) - 1;
2175
2176	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2177	if (tmp == 0)
2178		panic("kmem_alloc returned 0");
2179	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2180		panic("kmem_alloc returned non-page-aligned memory");
2181	/* Put the first seven entries in the lower page */
2182	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2183	bcopy(idt, new_idt, sizeof(idt0));
2184	r_idt.rd_base = (int)new_idt;
2185	lidt(&r_idt);
2186	idt = new_idt;
2187	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2188			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2189		panic("vm_map_protect failed");
2190	return;
2191}
2192#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2193
2194int
2195ptrace_set_pc(struct thread *td, unsigned long addr)
2196{
2197	td->td_frame->tf_eip = addr;
2198	return (0);
2199}
2200
2201int
2202ptrace_single_step(struct thread *td)
2203{
2204	td->td_frame->tf_eflags |= PSL_T;
2205	return (0);
2206}
2207
2208int
2209fill_regs(struct thread *td, struct reg *regs)
2210{
2211	struct pcb *pcb;
2212	struct trapframe *tp;
2213
2214	tp = td->td_frame;
2215	regs->r_fs = tp->tf_fs;
2216	regs->r_es = tp->tf_es;
2217	regs->r_ds = tp->tf_ds;
2218	regs->r_edi = tp->tf_edi;
2219	regs->r_esi = tp->tf_esi;
2220	regs->r_ebp = tp->tf_ebp;
2221	regs->r_ebx = tp->tf_ebx;
2222	regs->r_edx = tp->tf_edx;
2223	regs->r_ecx = tp->tf_ecx;
2224	regs->r_eax = tp->tf_eax;
2225	regs->r_eip = tp->tf_eip;
2226	regs->r_cs = tp->tf_cs;
2227	regs->r_eflags = tp->tf_eflags;
2228	regs->r_esp = tp->tf_esp;
2229	regs->r_ss = tp->tf_ss;
2230	pcb = td->td_pcb;
2231	regs->r_gs = pcb->pcb_gs;
2232	return (0);
2233}
2234
2235int
2236set_regs(struct thread *td, struct reg *regs)
2237{
2238	struct pcb *pcb;
2239	struct trapframe *tp;
2240
2241	tp = td->td_frame;
2242	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2243	    !CS_SECURE(regs->r_cs))
2244		return (EINVAL);
2245	tp->tf_fs = regs->r_fs;
2246	tp->tf_es = regs->r_es;
2247	tp->tf_ds = regs->r_ds;
2248	tp->tf_edi = regs->r_edi;
2249	tp->tf_esi = regs->r_esi;
2250	tp->tf_ebp = regs->r_ebp;
2251	tp->tf_ebx = regs->r_ebx;
2252	tp->tf_edx = regs->r_edx;
2253	tp->tf_ecx = regs->r_ecx;
2254	tp->tf_eax = regs->r_eax;
2255	tp->tf_eip = regs->r_eip;
2256	tp->tf_cs = regs->r_cs;
2257	tp->tf_eflags = regs->r_eflags;
2258	tp->tf_esp = regs->r_esp;
2259	tp->tf_ss = regs->r_ss;
2260	pcb = td->td_pcb;
2261	pcb->pcb_gs = regs->r_gs;
2262	return (0);
2263}
2264
2265#ifdef CPU_ENABLE_SSE
2266static void
2267fill_fpregs_xmm(sv_xmm, sv_87)
2268	struct savexmm *sv_xmm;
2269	struct save87 *sv_87;
2270{
2271	register struct env87 *penv_87 = &sv_87->sv_env;
2272	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2273	int i;
2274
2275	bzero(sv_87, sizeof(*sv_87));
2276
2277	/* FPU control/status */
2278	penv_87->en_cw = penv_xmm->en_cw;
2279	penv_87->en_sw = penv_xmm->en_sw;
2280	penv_87->en_tw = penv_xmm->en_tw;
2281	penv_87->en_fip = penv_xmm->en_fip;
2282	penv_87->en_fcs = penv_xmm->en_fcs;
2283	penv_87->en_opcode = penv_xmm->en_opcode;
2284	penv_87->en_foo = penv_xmm->en_foo;
2285	penv_87->en_fos = penv_xmm->en_fos;
2286
2287	/* FPU registers */
2288	for (i = 0; i < 8; ++i)
2289		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2290}
2291
2292static void
2293set_fpregs_xmm(sv_87, sv_xmm)
2294	struct save87 *sv_87;
2295	struct savexmm *sv_xmm;
2296{
2297	register struct env87 *penv_87 = &sv_87->sv_env;
2298	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2299	int i;
2300
2301	/* FPU control/status */
2302	penv_xmm->en_cw = penv_87->en_cw;
2303	penv_xmm->en_sw = penv_87->en_sw;
2304	penv_xmm->en_tw = penv_87->en_tw;
2305	penv_xmm->en_fip = penv_87->en_fip;
2306	penv_xmm->en_fcs = penv_87->en_fcs;
2307	penv_xmm->en_opcode = penv_87->en_opcode;
2308	penv_xmm->en_foo = penv_87->en_foo;
2309	penv_xmm->en_fos = penv_87->en_fos;
2310
2311	/* FPU registers */
2312	for (i = 0; i < 8; ++i)
2313		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2314}
2315#endif /* CPU_ENABLE_SSE */
2316
2317int
2318fill_fpregs(struct thread *td, struct fpreg *fpregs)
2319{
2320#ifdef CPU_ENABLE_SSE
2321	if (cpu_fxsr) {
2322		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2323						(struct save87 *)fpregs);
2324		return (0);
2325	}
2326#endif /* CPU_ENABLE_SSE */
2327	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2328	return (0);
2329}
2330
2331int
2332set_fpregs(struct thread *td, struct fpreg *fpregs)
2333{
2334#ifdef CPU_ENABLE_SSE
2335	if (cpu_fxsr) {
2336		set_fpregs_xmm((struct save87 *)fpregs,
2337					   &td->td_pcb->pcb_save.sv_xmm);
2338		return (0);
2339	}
2340#endif /* CPU_ENABLE_SSE */
2341	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2342	return (0);
2343}
2344
2345/*
2346 * Get machine context.
2347 */
2348int
2349get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
2350{
2351	struct trapframe *tp;
2352
2353	tp = td->td_frame;
2354
2355	PROC_LOCK(curthread->td_proc);
2356	mcp->mc_onstack = sigonstack(tp->tf_esp);
2357	PROC_UNLOCK(curthread->td_proc);
2358	mcp->mc_gs = td->td_pcb->pcb_gs;
2359	mcp->mc_fs = tp->tf_fs;
2360	mcp->mc_es = tp->tf_es;
2361	mcp->mc_ds = tp->tf_ds;
2362	mcp->mc_edi = tp->tf_edi;
2363	mcp->mc_esi = tp->tf_esi;
2364	mcp->mc_ebp = tp->tf_ebp;
2365	mcp->mc_isp = tp->tf_isp;
2366	if (clear_ret != 0) {
2367		mcp->mc_eax = 0;
2368		mcp->mc_edx = 0;
2369	} else {
2370		mcp->mc_eax = tp->tf_eax;
2371		mcp->mc_edx = tp->tf_edx;
2372	}
2373	mcp->mc_ebx = tp->tf_ebx;
2374	mcp->mc_ecx = tp->tf_ecx;
2375	mcp->mc_eip = tp->tf_eip;
2376	mcp->mc_cs = tp->tf_cs;
2377	mcp->mc_eflags = tp->tf_eflags;
2378	mcp->mc_esp = tp->tf_esp;
2379	mcp->mc_ss = tp->tf_ss;
2380	mcp->mc_len = sizeof(*mcp);
2381	get_fpcontext(td, mcp);
2382	return (0);
2383}
2384
2385/*
2386 * Set machine context.
2387 *
2388 * However, we don't set any but the user modifiable flags, and we won't
2389 * touch the cs selector.
2390 */
2391int
2392set_mcontext(struct thread *td, const mcontext_t *mcp)
2393{
2394	struct trapframe *tp;
2395	int eflags, ret;
2396
2397	tp = td->td_frame;
2398	if (mcp->mc_len != sizeof(*mcp))
2399		return (EINVAL);
2400	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2401	    (tp->tf_eflags & ~PSL_USERCHANGE);
2402	if ((ret = set_fpcontext(td, mcp)) == 0) {
2403		tp->tf_fs = mcp->mc_fs;
2404		tp->tf_es = mcp->mc_es;
2405		tp->tf_ds = mcp->mc_ds;
2406		tp->tf_edi = mcp->mc_edi;
2407		tp->tf_esi = mcp->mc_esi;
2408		tp->tf_ebp = mcp->mc_ebp;
2409		tp->tf_ebx = mcp->mc_ebx;
2410		tp->tf_edx = mcp->mc_edx;
2411		tp->tf_ecx = mcp->mc_ecx;
2412		tp->tf_eax = mcp->mc_eax;
2413		tp->tf_eip = mcp->mc_eip;
2414		tp->tf_eflags = eflags;
2415		tp->tf_esp = mcp->mc_esp;
2416		tp->tf_ss = mcp->mc_ss;
2417		td->td_pcb->pcb_gs = mcp->mc_gs;
2418		ret = 0;
2419	}
2420	return (ret);
2421}
2422
2423static void
2424get_fpcontext(struct thread *td, mcontext_t *mcp)
2425{
2426#ifndef DEV_NPX
2427	mcp->mc_fpformat = _MC_FPFMT_NODEV;
2428	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
2429#else
2430	union savefpu *addr;
2431
2432	/*
2433	 * XXX mc_fpstate might be misaligned, since its declaration is not
2434	 * unportabilized using __attribute__((aligned(16))) like the
2435	 * declaration of struct savemm, and anyway, alignment doesn't work
2436	 * for auto variables since we don't use gcc's pessimal stack
2437	 * alignment.  Work around this by abusing the spare fields after
2438	 * mcp->mc_fpstate.
2439	 *
2440	 * XXX unpessimize most cases by only aligning when fxsave might be
2441	 * called, although this requires knowing too much about
2442	 * npxgetregs()'s internals.
2443	 */
2444	addr = (union savefpu *)&mcp->mc_fpstate;
2445	if (td == PCPU_GET(fpcurthread) &&
2446#ifdef CPU_ENABLE_SSE
2447	    cpu_fxsr &&
2448#endif
2449	    ((uintptr_t)(void *)addr & 0xF)) {
2450		do
2451			addr = (void *)((char *)addr + 4);
2452		while ((uintptr_t)(void *)addr & 0xF);
2453	}
2454	mcp->mc_ownedfp = npxgetregs(td, addr);
2455	if (addr != (union savefpu *)&mcp->mc_fpstate) {
2456		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
2457		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
2458	}
2459	mcp->mc_fpformat = npxformat();
2460#endif
2461}
2462
2463static int
2464set_fpcontext(struct thread *td, const mcontext_t *mcp)
2465{
2466	union savefpu *addr;
2467
2468	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2469		return (0);
2470	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
2471	    mcp->mc_fpformat != _MC_FPFMT_XMM)
2472		return (EINVAL);
2473	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2474		/* We don't care what state is left in the FPU or PCB. */
2475		fpstate_drop(td);
2476	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2477	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2478		/* XXX align as above. */
2479		addr = (union savefpu *)&mcp->mc_fpstate;
2480		if (td == PCPU_GET(fpcurthread) &&
2481#ifdef CPU_ENABLE_SSE
2482		    cpu_fxsr &&
2483#endif
2484		    ((uintptr_t)(void *)addr & 0xF)) {
2485			do
2486				addr = (void *)((char *)addr + 4);
2487			while ((uintptr_t)(void *)addr & 0xF);
2488			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
2489		}
2490#ifdef DEV_NPX
2491		/*
2492		 * XXX we violate the dubious requirement that npxsetregs()
2493		 * be called with interrupts disabled.
2494		 */
2495		npxsetregs(td, addr);
2496#endif
2497		/*
2498		 * Don't bother putting things back where they were in the
2499		 * misaligned case, since we know that the caller won't use
2500		 * them again.
2501		 */
2502	} else
2503		return (EINVAL);
2504	return (0);
2505}
2506
2507static void
2508fpstate_drop(struct thread *td)
2509{
2510	register_t s;
2511
2512	s = intr_disable();
2513#ifdef DEV_NPX
2514	if (PCPU_GET(fpcurthread) == td)
2515		npxdrop();
2516#endif
2517	/*
2518	 * XXX force a full drop of the npx.  The above only drops it if we
2519	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
2520	 *
2521	 * XXX I don't much like npxgetregs()'s semantics of doing a full
2522	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2523	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2524	 * sendsig() is the only caller of npxgetregs()... perhaps we just
2525	 * have too many layers.
2526	 */
2527	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
2528	intr_restore(s);
2529}
2530
2531int
2532fill_dbregs(struct thread *td, struct dbreg *dbregs)
2533{
2534	struct pcb *pcb;
2535
2536	if (td == NULL) {
2537		dbregs->dr[0] = rdr0();
2538		dbregs->dr[1] = rdr1();
2539		dbregs->dr[2] = rdr2();
2540		dbregs->dr[3] = rdr3();
2541		dbregs->dr[4] = rdr4();
2542		dbregs->dr[5] = rdr5();
2543		dbregs->dr[6] = rdr6();
2544		dbregs->dr[7] = rdr7();
2545	} else {
2546		pcb = td->td_pcb;
2547		dbregs->dr[0] = pcb->pcb_dr0;
2548		dbregs->dr[1] = pcb->pcb_dr1;
2549		dbregs->dr[2] = pcb->pcb_dr2;
2550		dbregs->dr[3] = pcb->pcb_dr3;
2551		dbregs->dr[4] = 0;
2552		dbregs->dr[5] = 0;
2553		dbregs->dr[6] = pcb->pcb_dr6;
2554		dbregs->dr[7] = pcb->pcb_dr7;
2555	}
2556	return (0);
2557}
2558
2559int
2560set_dbregs(struct thread *td, struct dbreg *dbregs)
2561{
2562	struct pcb *pcb;
2563	int i;
2564	u_int32_t mask1, mask2;
2565
2566	if (td == NULL) {
2567		load_dr0(dbregs->dr[0]);
2568		load_dr1(dbregs->dr[1]);
2569		load_dr2(dbregs->dr[2]);
2570		load_dr3(dbregs->dr[3]);
2571		load_dr4(dbregs->dr[4]);
2572		load_dr5(dbregs->dr[5]);
2573		load_dr6(dbregs->dr[6]);
2574		load_dr7(dbregs->dr[7]);
2575	} else {
2576		/*
2577		 * Don't let an illegal value for dr7 get set.	Specifically,
2578		 * check for undefined settings.  Setting these bit patterns
2579		 * result in undefined behaviour and can lead to an unexpected
2580		 * TRCTRAP.
2581		 */
2582		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2583		     i++, mask1 <<= 2, mask2 <<= 2)
2584			if ((dbregs->dr[7] & mask1) == mask2)
2585				return (EINVAL);
2586
2587		pcb = td->td_pcb;
2588
2589		/*
2590		 * Don't let a process set a breakpoint that is not within the
2591		 * process's address space.  If a process could do this, it
2592		 * could halt the system by setting a breakpoint in the kernel
2593		 * (if ddb was enabled).  Thus, we need to check to make sure
2594		 * that no breakpoints are being enabled for addresses outside
2595		 * process's address space, unless, perhaps, we were called by
2596		 * uid 0.
2597		 *
2598		 * XXX - what about when the watched area of the user's
2599		 * address space is written into from within the kernel
2600		 * ... wouldn't that still cause a breakpoint to be generated
2601		 * from within kernel mode?
2602		 */
2603
2604		if (suser(td) != 0) {
2605			if (dbregs->dr[7] & 0x3) {
2606				/* dr0 is enabled */
2607				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2608					return (EINVAL);
2609			}
2610
2611			if (dbregs->dr[7] & (0x3<<2)) {
2612				/* dr1 is enabled */
2613				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2614					return (EINVAL);
2615			}
2616
2617			if (dbregs->dr[7] & (0x3<<4)) {
2618				/* dr2 is enabled */
2619				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2620					return (EINVAL);
2621			}
2622
2623			if (dbregs->dr[7] & (0x3<<6)) {
2624				/* dr3 is enabled */
2625				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2626					return (EINVAL);
2627			}
2628		}
2629
2630		pcb->pcb_dr0 = dbregs->dr[0];
2631		pcb->pcb_dr1 = dbregs->dr[1];
2632		pcb->pcb_dr2 = dbregs->dr[2];
2633		pcb->pcb_dr3 = dbregs->dr[3];
2634		pcb->pcb_dr6 = dbregs->dr[6];
2635		pcb->pcb_dr7 = dbregs->dr[7];
2636
2637		pcb->pcb_flags |= PCB_DBREGS;
2638	}
2639
2640	return (0);
2641}
2642
2643/*
2644 * Return > 0 if a hardware breakpoint has been hit, and the
2645 * breakpoint was in user space.  Return 0, otherwise.
2646 */
2647int
2648user_dbreg_trap(void)
2649{
2650        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2651        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2652        int nbp;            /* number of breakpoints that triggered */
2653        caddr_t addr[4];    /* breakpoint addresses */
2654        int i;
2655
2656        dr7 = rdr7();
2657        if ((dr7 & 0x000000ff) == 0) {
2658                /*
2659                 * all GE and LE bits in the dr7 register are zero,
2660                 * thus the trap couldn't have been caused by the
2661                 * hardware debug registers
2662                 */
2663                return 0;
2664        }
2665
2666        nbp = 0;
2667        dr6 = rdr6();
2668        bp = dr6 & 0x0000000f;
2669
2670        if (!bp) {
2671                /*
2672                 * None of the breakpoint bits are set meaning this
2673                 * trap was not caused by any of the debug registers
2674                 */
2675                return 0;
2676        }
2677
2678        /*
2679         * at least one of the breakpoints were hit, check to see
2680         * which ones and if any of them are user space addresses
2681         */
2682
2683        if (bp & 0x01) {
2684                addr[nbp++] = (caddr_t)rdr0();
2685        }
2686        if (bp & 0x02) {
2687                addr[nbp++] = (caddr_t)rdr1();
2688        }
2689        if (bp & 0x04) {
2690                addr[nbp++] = (caddr_t)rdr2();
2691        }
2692        if (bp & 0x08) {
2693                addr[nbp++] = (caddr_t)rdr3();
2694        }
2695
2696        for (i=0; i<nbp; i++) {
2697                if (addr[i] <
2698                    (caddr_t)VM_MAXUSER_ADDRESS) {
2699                        /*
2700                         * addr[i] is in user space
2701                         */
2702                        return nbp;
2703                }
2704        }
2705
2706        /*
2707         * None of the breakpoints are in user space.
2708         */
2709        return 0;
2710}
2711
2712
2713#ifndef DDB
2714void
2715Debugger(const char *msg)
2716{
2717	printf("Debugger(\"%s\") called.\n", msg);
2718}
2719#endif /* no DDB */
2720
2721#ifdef DDB
2722
2723/*
2724 * Provide inb() and outb() as functions.  They are normally only
2725 * available as macros calling inlined functions, thus cannot be
2726 * called inside DDB.
2727 *
2728 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2729 */
2730
2731#undef inb
2732#undef outb
2733
2734/* silence compiler warnings */
2735u_char inb(u_int);
2736void outb(u_int, u_char);
2737
2738u_char
2739inb(u_int port)
2740{
2741	u_char	data;
2742	/*
2743	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2744	 * %edx, while gcc generates inferior code (movw instead of movl)
2745	 * if we tell it to load (u_short) port.
2746	 */
2747	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2748	return (data);
2749}
2750
2751void
2752outb(u_int port, u_char data)
2753{
2754	u_char	al;
2755	/*
2756	 * Use an unnecessary assignment to help gcc's register allocator.
2757	 * This make a large difference for gcc-1.40 and a tiny difference
2758	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2759	 * best results.  gcc-2.6.0 can't handle this.
2760	 */
2761	al = data;
2762	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2763}
2764
2765#endif /* DDB */
2766