null_vnops.c revision 76166
14546Sjkh/*
2327Sjkh * Copyright (c) 1992, 1993
3327Sjkh *	The Regents of the University of California.  All rights reserved.
4327Sjkh *
5327Sjkh * This code is derived from software contributed to Berkeley by
6327Sjkh * John Heidemann of the UCLA Ficus project.
7327Sjkh *
8327Sjkh * Redistribution and use in source and binary forms, with or without
9327Sjkh * modification, are permitted provided that the following conditions
10327Sjkh * are met:
11327Sjkh * 1. Redistributions of source code must retain the above copyright
12327Sjkh *    notice, this list of conditions and the following disclaimer.
13327Sjkh * 2. Redistributions in binary form must reproduce the above copyright
14327Sjkh *    notice, this list of conditions and the following disclaimer in the
15327Sjkh *    documentation and/or other materials provided with the distribution.
16327Sjkh * 3. All advertising materials mentioning features or use of this software
17327Sjkh *    must display the following acknowledgement:
18327Sjkh *	This product includes software developed by the University of
19327Sjkh *	California, Berkeley and its contributors.
20327Sjkh * 4. Neither the name of the University nor the names of its contributors
21327Sjkh *    may be used to endorse or promote products derived from this software
22327Sjkh *    without specific prior written permission.
23327Sjkh *
24327Sjkh * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25327Sjkh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26327Sjkh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27327Sjkh * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28327Sjkh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29327Sjkh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30327Sjkh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31327Sjkh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32327Sjkh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33327Sjkh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34327Sjkh * SUCH DAMAGE.
35327Sjkh *
36327Sjkh *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37327Sjkh *
38327Sjkh * Ancestors:
39327Sjkh *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40327Sjkh *	...and...
41327Sjkh *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
42327Sjkh *
43327Sjkh * $FreeBSD: head/sys/fs/nullfs/null_vnops.c 76166 2001-05-01 08:13:21Z markm $
44327Sjkh */
45327Sjkh
46327Sjkh/*
47327Sjkh * Null Layer
48327Sjkh *
49327Sjkh * (See mount_null(8) for more information.)
501338Sjkh *
511338Sjkh * The null layer duplicates a portion of the file system
521338Sjkh * name space under a new name.  In this respect, it is
53327Sjkh * similar to the loopback file system.  It differs from
54327Sjkh * the loopback fs in two respects:  it is implemented using
55327Sjkh * a stackable layers techniques, and its "null-node"s stack above
56327Sjkh * all lower-layer vnodes, not just over directory vnodes.
57327Sjkh *
58327Sjkh * The null layer has two purposes.  First, it serves as a demonstration
59327Sjkh * of layering by proving a layer which does nothing.  (It actually
60327Sjkh * does everything the loopback file system does, which is slightly
61327Sjkh * more than nothing.)  Second, the null layer can serve as a prototype
62327Sjkh * layer.  Since it provides all necessary layer framework,
63327Sjkh * new file system layers can be created very easily be starting
64327Sjkh * with a null layer.
65327Sjkh *
66327Sjkh * The remainder of this man page examines the null layer as a basis
67327Sjkh * for constructing new layers.
68327Sjkh *
69327Sjkh *
70327Sjkh * INSTANTIATING NEW NULL LAYERS
71327Sjkh *
721550Sasami * New null layers are created with mount_null(8).
731550Sasami * Mount_null(8) takes two arguments, the pathname
74479Sjkh * of the lower vfs (target-pn) and the pathname where the null
75327Sjkh * layer will appear in the namespace (alias-pn).  After
76327Sjkh * the null layer is put into place, the contents
77327Sjkh * of target-pn subtree will be aliased under alias-pn.
782331Sjkh *
79327Sjkh *
80327Sjkh * OPERATION OF A NULL LAYER
81327Sjkh *
82327Sjkh * The null layer is the minimum file system layer,
83327Sjkh * simply bypassing all possible operations to the lower layer
84327Sjkh * for processing there.  The majority of its activity centers
85327Sjkh * on the bypass routine, through which nearly all vnode operations
86327Sjkh * pass.
87327Sjkh *
88327Sjkh * The bypass routine accepts arbitrary vnode operations for
89327Sjkh * handling by the lower layer.  It begins by examing vnode
90327Sjkh * operation arguments and replacing any null-nodes by their
91327Sjkh * lower-layer equivlants.  It then invokes the operation
92327Sjkh * on the lower layer.  Finally, it replaces the null-nodes
93327Sjkh * in the arguments and, if a vnode is return by the operation,
94327Sjkh * stacks a null-node on top of the returned vnode.
95327Sjkh *
96327Sjkh * Although bypass handles most operations, vop_getattr, vop_lock,
97327Sjkh * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
98327Sjkh * bypassed. Vop_getattr must change the fsid being returned.
99327Sjkh * Vop_lock and vop_unlock must handle any locking for the
100327Sjkh * current vnode as well as pass the lock request down.
101327Sjkh * Vop_inactive and vop_reclaim are not bypassed so that
1023364Sjkh * they can handle freeing null-layer specific data. Vop_print
103327Sjkh * is not bypassed to avoid excessive debugging information.
104383Sjkh * Also, certain vnode operations change the locking state within
105327Sjkh * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
106327Sjkh * and symlink). Ideally these operations should not change the
107327Sjkh * lock state, but should be changed to let the caller of the
108327Sjkh * function unlock them. Otherwise all intermediate vnode layers
109327Sjkh * (such as union, umapfs, etc) must catch these functions to do
110327Sjkh * the necessary locking at their layer.
111327Sjkh *
1124546Sjkh *
113327Sjkh * INSTANTIATING VNODE STACKS
114327Sjkh *
115327Sjkh * Mounting associates the null layer with a lower layer,
116327Sjkh * effect stacking two VFSes.  Vnode stacks are instead
117327Sjkh * created on demand as files are accessed.
118327Sjkh *
119327Sjkh * The initial mount creates a single vnode stack for the
120327Sjkh * root of the new null layer.  All other vnode stacks
121327Sjkh * are created as a result of vnode operations on
122327Sjkh * this or other null vnode stacks.
123327Sjkh *
124479Sjkh * New vnode stacks come into existance as a result of
125327Sjkh * an operation which returns a vnode.
126327Sjkh * The bypass routine stacks a null-node above the new
127327Sjkh * vnode before returning it to the caller.
128327Sjkh *
129327Sjkh * For example, imagine mounting a null layer with
130327Sjkh * "mount_null /usr/include /dev/layer/null".
131327Sjkh * Changing directory to /dev/layer/null will assign
132327Sjkh * the root null-node (which was created when the null layer was mounted).
133327Sjkh * Now consider opening "sys".  A vop_lookup would be
134327Sjkh * done on the root null-node.  This operation would bypass through
1351547Sjkh * to the lower layer which would return a vnode representing
136383Sjkh * the UFS "sys".  Null_bypass then builds a null-node
137327Sjkh * aliasing the UFS "sys" and returns this to the caller.
138327Sjkh * Later operations on the null-node "sys" will repeat this
139327Sjkh * process when constructing other vnode stacks.
140379Sjkh *
141379Sjkh *
142327Sjkh * CREATING OTHER FILE SYSTEM LAYERS
143327Sjkh *
144327Sjkh * One of the easiest ways to construct new file system layers is to make
1453198Sjkh * a copy of the null layer, rename all files and variables, and
146327Sjkh * then begin modifing the copy.  Sed can be used to easily rename
147327Sjkh * all variables.
148327Sjkh *
149327Sjkh * The umap layer is an example of a layer descended from the
150327Sjkh * null layer.
151327Sjkh *
152327Sjkh *
153327Sjkh * INVOKING OPERATIONS ON LOWER LAYERS
1541338Sjkh *
155327Sjkh * There are two techniques to invoke operations on a lower layer
156327Sjkh * when the operation cannot be completely bypassed.  Each method
157 * is appropriate in different situations.  In both cases,
158 * it is the responsibility of the aliasing layer to make
159 * the operation arguments "correct" for the lower layer
160 * by mapping an vnode arguments to the lower layer.
161 *
162 * The first approach is to call the aliasing layer's bypass routine.
163 * This method is most suitable when you wish to invoke the operation
164 * currently being handled on the lower layer.  It has the advantage
165 * that the bypass routine already must do argument mapping.
166 * An example of this is null_getattrs in the null layer.
167 *
168 * A second approach is to directly invoke vnode operations on
169 * the lower layer with the VOP_OPERATIONNAME interface.
170 * The advantage of this method is that it is easy to invoke
171 * arbitrary operations on the lower layer.  The disadvantage
172 * is that vnode arguments must be manualy mapped.
173 *
174 */
175
176#include <sys/param.h>
177#include <sys/systm.h>
178#include <sys/conf.h>
179#include <sys/kernel.h>
180#include <sys/lock.h>
181#include <sys/malloc.h>
182#include <sys/mount.h>
183#include <sys/mutex.h>
184#include <sys/namei.h>
185#include <sys/sysctl.h>
186#include <sys/vnode.h>
187
188#include <miscfs/nullfs/null.h>
189
190#include <vm/vm.h>
191#include <vm/vm_extern.h>
192#include <vm/vm_object.h>
193#include <vm/vnode_pager.h>
194
195static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
196SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
197	&null_bug_bypass, 0, "");
198
199static int	null_access(struct vop_access_args *ap);
200static int	null_createvobject(struct vop_createvobject_args *ap);
201static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
202static int	null_getattr(struct vop_getattr_args *ap);
203static int	null_getvobject(struct vop_getvobject_args *ap);
204static int	null_inactive(struct vop_inactive_args *ap);
205static int	null_islocked(struct vop_islocked_args *ap);
206static int	null_lock(struct vop_lock_args *ap);
207static int	null_lookup(struct vop_lookup_args *ap);
208static int	null_open(struct vop_open_args *ap);
209static int	null_print(struct vop_print_args *ap);
210static int	null_reclaim(struct vop_reclaim_args *ap);
211static int	null_rename(struct vop_rename_args *ap);
212static int	null_setattr(struct vop_setattr_args *ap);
213static int	null_unlock(struct vop_unlock_args *ap);
214
215/*
216 * This is the 10-Apr-92 bypass routine.
217 *    This version has been optimized for speed, throwing away some
218 * safety checks.  It should still always work, but it's not as
219 * robust to programmer errors.
220 *
221 * In general, we map all vnodes going down and unmap them on the way back.
222 * As an exception to this, vnodes can be marked "unmapped" by setting
223 * the Nth bit in operation's vdesc_flags.
224 *
225 * Also, some BSD vnode operations have the side effect of vrele'ing
226 * their arguments.  With stacking, the reference counts are held
227 * by the upper node, not the lower one, so we must handle these
228 * side-effects here.  This is not of concern in Sun-derived systems
229 * since there are no such side-effects.
230 *
231 * This makes the following assumptions:
232 * - only one returned vpp
233 * - no INOUT vpp's (Sun's vop_open has one of these)
234 * - the vnode operation vector of the first vnode should be used
235 *   to determine what implementation of the op should be invoked
236 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
237 *   problems on rmdir'ing mount points and renaming?)
238 */
239int
240null_bypass(ap)
241	struct vop_generic_args /* {
242		struct vnodeop_desc *a_desc;
243		<other random data follows, presumably>
244	} */ *ap;
245{
246	register struct vnode **this_vp_p;
247	int error;
248	struct vnode *old_vps[VDESC_MAX_VPS];
249	struct vnode **vps_p[VDESC_MAX_VPS];
250	struct vnode ***vppp;
251	struct vnodeop_desc *descp = ap->a_desc;
252	int reles, i;
253
254	if (null_bug_bypass)
255		printf ("null_bypass: %s\n", descp->vdesc_name);
256
257#ifdef DIAGNOSTIC
258	/*
259	 * We require at least one vp.
260	 */
261	if (descp->vdesc_vp_offsets == NULL ||
262	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
263		panic ("null_bypass: no vp's in map");
264#endif
265
266	/*
267	 * Map the vnodes going in.
268	 * Later, we'll invoke the operation based on
269	 * the first mapped vnode's operation vector.
270	 */
271	reles = descp->vdesc_flags;
272	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
273		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
274			break;   /* bail out at end of list */
275		vps_p[i] = this_vp_p =
276			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
277		/*
278		 * We're not guaranteed that any but the first vnode
279		 * are of our type.  Check for and don't map any
280		 * that aren't.  (We must always map first vp or vclean fails.)
281		 */
282		if (i && (*this_vp_p == NULLVP ||
283		    (*this_vp_p)->v_op != null_vnodeop_p)) {
284			old_vps[i] = NULLVP;
285		} else {
286			old_vps[i] = *this_vp_p;
287			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
288			/*
289			 * XXX - Several operations have the side effect
290			 * of vrele'ing their vp's.  We must account for
291			 * that.  (This should go away in the future.)
292			 */
293			if (reles & VDESC_VP0_WILLRELE)
294				VREF(*this_vp_p);
295		}
296
297	}
298
299	/*
300	 * Call the operation on the lower layer
301	 * with the modified argument structure.
302	 */
303	if (vps_p[0] && *vps_p[0])
304		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
305	else {
306		printf("null_bypass: no map for %s\n", descp->vdesc_name);
307		error = EINVAL;
308	}
309
310	/*
311	 * Maintain the illusion of call-by-value
312	 * by restoring vnodes in the argument structure
313	 * to their original value.
314	 */
315	reles = descp->vdesc_flags;
316	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
317		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
318			break;   /* bail out at end of list */
319		if (old_vps[i]) {
320			*(vps_p[i]) = old_vps[i];
321#if 0
322			if (reles & VDESC_VP0_WILLUNLOCK)
323				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curproc);
324#endif
325			if (reles & VDESC_VP0_WILLRELE)
326				vrele(*(vps_p[i]));
327		}
328	}
329
330	/*
331	 * Map the possible out-going vpp
332	 * (Assumes that the lower layer always returns
333	 * a VREF'ed vpp unless it gets an error.)
334	 */
335	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
336	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
337	    !error) {
338		/*
339		 * XXX - even though some ops have vpp returned vp's,
340		 * several ops actually vrele this before returning.
341		 * We must avoid these ops.
342		 * (This should go away when these ops are regularized.)
343		 */
344		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
345			goto out;
346		vppp = VOPARG_OFFSETTO(struct vnode***,
347				 descp->vdesc_vpp_offset,ap);
348		if (*vppp)
349			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
350	}
351
352 out:
353	return (error);
354}
355
356/*
357 * We have to carry on the locking protocol on the null layer vnodes
358 * as we progress through the tree. We also have to enforce read-only
359 * if this layer is mounted read-only.
360 */
361static int
362null_lookup(ap)
363	struct vop_lookup_args /* {
364		struct vnode * a_dvp;
365		struct vnode ** a_vpp;
366		struct componentname * a_cnp;
367	} */ *ap;
368{
369	struct componentname *cnp = ap->a_cnp;
370	struct vnode *dvp = ap->a_dvp;
371	struct proc *p = cnp->cn_proc;
372	int flags = cnp->cn_flags;
373	struct vnode *vp, *ldvp, *lvp;
374	int error;
375
376	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
377	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
378		return (EROFS);
379	/*
380	 * Although it is possible to call null_bypass(), we'll do
381	 * a direct call to reduce overhead
382	 */
383	ldvp = NULLVPTOLOWERVP(dvp);
384	vp = lvp = NULL;
385	error = VOP_LOOKUP(ldvp, &lvp, cnp);
386	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
387	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
388	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
389		error = EROFS;
390
391	/*
392	 * Rely only on the PDIRUNLOCK flag which should be carefully
393	 * tracked by underlying filesystem.
394	 */
395	if (cnp->cn_flags & PDIRUNLOCK)
396		VOP_UNLOCK(dvp, LK_THISLAYER, p);
397	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
398		if (ldvp == lvp) {
399			*ap->a_vpp = dvp;
400			VREF(dvp);
401			vrele(lvp);
402		} else {
403			error = null_node_create(dvp->v_mount, lvp, &vp);
404			if (error == 0)
405				*ap->a_vpp = vp;
406		}
407	}
408	return (error);
409}
410
411/*
412 * Setattr call. Disallow write attempts if the layer is mounted read-only.
413 */
414int
415null_setattr(ap)
416	struct vop_setattr_args /* {
417		struct vnodeop_desc *a_desc;
418		struct vnode *a_vp;
419		struct vattr *a_vap;
420		struct ucred *a_cred;
421		struct proc *a_p;
422	} */ *ap;
423{
424	struct vnode *vp = ap->a_vp;
425	struct vattr *vap = ap->a_vap;
426
427  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
428	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
429	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
430	    (vp->v_mount->mnt_flag & MNT_RDONLY))
431		return (EROFS);
432	if (vap->va_size != VNOVAL) {
433 		switch (vp->v_type) {
434 		case VDIR:
435 			return (EISDIR);
436 		case VCHR:
437 		case VBLK:
438 		case VSOCK:
439 		case VFIFO:
440			if (vap->va_flags != VNOVAL)
441				return (EOPNOTSUPP);
442			return (0);
443		case VREG:
444		case VLNK:
445 		default:
446			/*
447			 * Disallow write attempts if the filesystem is
448			 * mounted read-only.
449			 */
450			if (vp->v_mount->mnt_flag & MNT_RDONLY)
451				return (EROFS);
452		}
453	}
454
455	return (null_bypass((struct vop_generic_args *)ap));
456}
457
458/*
459 *  We handle getattr only to change the fsid.
460 */
461static int
462null_getattr(ap)
463	struct vop_getattr_args /* {
464		struct vnode *a_vp;
465		struct vattr *a_vap;
466		struct ucred *a_cred;
467		struct proc *a_p;
468	} */ *ap;
469{
470	int error;
471
472	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
473		return (error);
474
475	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
476	return (0);
477}
478
479/*
480 * Handle to disallow write access if mounted read-only.
481 */
482static int
483null_access(ap)
484	struct vop_access_args /* {
485		struct vnode *a_vp;
486		int  a_mode;
487		struct ucred *a_cred;
488		struct proc *a_p;
489	} */ *ap;
490{
491	struct vnode *vp = ap->a_vp;
492	mode_t mode = ap->a_mode;
493
494	/*
495	 * Disallow write attempts on read-only layers;
496	 * unless the file is a socket, fifo, or a block or
497	 * character device resident on the file system.
498	 */
499	if (mode & VWRITE) {
500		switch (vp->v_type) {
501		case VDIR:
502		case VLNK:
503		case VREG:
504			if (vp->v_mount->mnt_flag & MNT_RDONLY)
505				return (EROFS);
506			break;
507		default:
508			break;
509		}
510	}
511	return (null_bypass((struct vop_generic_args *)ap));
512}
513
514/*
515 * We must handle open to be able to catch MNT_NODEV and friends.
516 */
517static int
518null_open(ap)
519	struct vop_open_args /* {
520		struct vnode *a_vp;
521		int  a_mode;
522		struct ucred *a_cred;
523		struct proc *a_p;
524	} */ *ap;
525{
526	struct vnode *vp = ap->a_vp;
527	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
528
529	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
530	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
531		return ENXIO;
532
533	return (null_bypass((struct vop_generic_args *)ap));
534}
535
536/*
537 * We handle this to eliminate null FS to lower FS
538 * file moving. Don't know why we don't allow this,
539 * possibly we should.
540 */
541static int
542null_rename(ap)
543	struct vop_rename_args /* {
544		struct vnode *a_fdvp;
545		struct vnode *a_fvp;
546		struct componentname *a_fcnp;
547		struct vnode *a_tdvp;
548		struct vnode *a_tvp;
549		struct componentname *a_tcnp;
550	} */ *ap;
551{
552	struct vnode *tdvp = ap->a_tdvp;
553	struct vnode *fvp = ap->a_fvp;
554	struct vnode *fdvp = ap->a_fdvp;
555	struct vnode *tvp = ap->a_tvp;
556
557	/* Check for cross-device rename. */
558	if ((fvp->v_mount != tdvp->v_mount) ||
559	    (tvp && (fvp->v_mount != tvp->v_mount))) {
560		if (tdvp == tvp)
561			vrele(tdvp);
562		else
563			vput(tdvp);
564		if (tvp)
565			vput(tvp);
566		vrele(fdvp);
567		vrele(fvp);
568		return (EXDEV);
569	}
570
571	return (null_bypass((struct vop_generic_args *)ap));
572}
573
574/*
575 * We need to process our own vnode lock and then clear the
576 * interlock flag as it applies only to our vnode, not the
577 * vnodes below us on the stack.
578 */
579static int
580null_lock(ap)
581	struct vop_lock_args /* {
582		struct vnode *a_vp;
583		int a_flags;
584		struct proc *a_p;
585	} */ *ap;
586{
587	struct vnode *vp = ap->a_vp;
588	int flags = ap->a_flags;
589	struct proc *p = ap->a_p;
590	struct vnode *lvp;
591	int error;
592
593	if (flags & LK_THISLAYER) {
594		if (vp->v_vnlock != NULL)
595			return 0;	/* lock is shared across layers */
596		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
597		    &vp->v_interlock, p);
598		return (error);
599	}
600
601	if (vp->v_vnlock != NULL) {
602		/*
603		 * The lower level has exported a struct lock to us. Use
604		 * it so that all vnodes in the stack lock and unlock
605		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
606		 * decommissions the lock - just because our vnode is
607		 * going away doesn't mean the struct lock below us is.
608		 * LK_EXCLUSIVE is fine.
609		 */
610		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
611			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
612			return(lockmgr(vp->v_vnlock,
613				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
614				&vp->v_interlock, p));
615		}
616		return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock, p));
617	} else {
618		/*
619		 * To prevent race conditions involving doing a lookup
620		 * on "..", we have to lock the lower node, then lock our
621		 * node. Most of the time it won't matter that we lock our
622		 * node (as any locking would need the lower one locked
623		 * first). But we can LK_DRAIN the upper lock as a step
624		 * towards decomissioning it.
625		 */
626		lvp = NULLVPTOLOWERVP(vp);
627		if (lvp == NULL)
628			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, p));
629		if (flags & LK_INTERLOCK) {
630			mtx_unlock(&vp->v_interlock);
631			flags &= ~LK_INTERLOCK;
632		}
633		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
634			error = VOP_LOCK(lvp,
635				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, p);
636		} else
637			error = VOP_LOCK(lvp, flags, p);
638		if (error)
639			return (error);
640		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, p);
641		if (error)
642			VOP_UNLOCK(lvp, 0, p);
643		return (error);
644	}
645}
646
647/*
648 * We need to process our own vnode unlock and then clear the
649 * interlock flag as it applies only to our vnode, not the
650 * vnodes below us on the stack.
651 */
652static int
653null_unlock(ap)
654	struct vop_unlock_args /* {
655		struct vnode *a_vp;
656		int a_flags;
657		struct proc *a_p;
658	} */ *ap;
659{
660	struct vnode *vp = ap->a_vp;
661	int flags = ap->a_flags;
662	struct proc *p = ap->a_p;
663	struct vnode *lvp;
664
665	if (vp->v_vnlock != NULL) {
666		if (flags & LK_THISLAYER)
667			return 0;	/* the lock is shared across layers */
668		flags &= ~LK_THISLAYER;
669		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
670			&vp->v_interlock, p));
671	}
672	lvp = NULLVPTOLOWERVP(vp);
673	if (lvp == NULL)
674		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
675	if ((flags & LK_THISLAYER) == 0) {
676		if (flags & LK_INTERLOCK) {
677			mtx_unlock(&vp->v_interlock);
678			flags &= ~LK_INTERLOCK;
679		}
680		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, p);
681	} else
682		flags &= ~LK_THISLAYER;
683	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, p));
684}
685
686static int
687null_islocked(ap)
688	struct vop_islocked_args /* {
689		struct vnode *a_vp;
690		struct proc *a_p;
691	} */ *ap;
692{
693	struct vnode *vp = ap->a_vp;
694	struct proc *p = ap->a_p;
695
696	if (vp->v_vnlock != NULL)
697		return (lockstatus(vp->v_vnlock, p));
698	return (lockstatus(&vp->v_lock, p));
699}
700
701/*
702 * There is no way to tell that someone issued remove/rmdir operation
703 * on the underlying filesystem. For now we just have to release lowevrp
704 * as soon as possible.
705 */
706static int
707null_inactive(ap)
708	struct vop_inactive_args /* {
709		struct vnode *a_vp;
710		struct proc *a_p;
711	} */ *ap;
712{
713	struct vnode *vp = ap->a_vp;
714	struct proc *p = ap->a_p;
715	struct null_node *xp = VTONULL(vp);
716	struct vnode *lowervp = xp->null_lowervp;
717
718	lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, p);
719	LIST_REMOVE(xp, null_hash);
720	lockmgr(&null_hashlock, LK_RELEASE, NULL, p);
721
722	xp->null_lowervp = NULLVP;
723	if (vp->v_vnlock != NULL) {
724		vp->v_vnlock = &vp->v_lock;	/* we no longer share the lock */
725	} else
726		VOP_UNLOCK(vp, LK_THISLAYER, p);
727
728	vput(lowervp);
729	/*
730	 * Now it is safe to drop references to the lower vnode.
731	 * VOP_INACTIVE() will be called by vrele() if necessary.
732	 */
733	vrele (lowervp);
734
735	return (0);
736}
737
738/*
739 * We can free memory in null_inactive, but we do this
740 * here. (Possible to guard vp->v_data to point somewhere)
741 */
742static int
743null_reclaim(ap)
744	struct vop_reclaim_args /* {
745		struct vnode *a_vp;
746		struct proc *a_p;
747	} */ *ap;
748{
749	struct vnode *vp = ap->a_vp;
750	void *vdata = vp->v_data;
751
752	vp->v_data = NULL;
753	FREE(vdata, M_NULLFSNODE);
754
755	return (0);
756}
757
758static int
759null_print(ap)
760	struct vop_print_args /* {
761		struct vnode *a_vp;
762	} */ *ap;
763{
764	register struct vnode *vp = ap->a_vp;
765	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
766	return (0);
767}
768
769/*
770 * Let an underlying filesystem do the work
771 */
772static int
773null_createvobject(ap)
774	struct vop_createvobject_args /* {
775		struct vnode *vp;
776		struct ucred *cred;
777		struct proc *p;
778	} */ *ap;
779{
780	struct vnode *vp = ap->a_vp;
781	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
782	int error;
783
784	if (vp->v_type == VNON || lowervp == NULL)
785		return 0;
786	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_p);
787	if (error)
788		return (error);
789	vp->v_flag |= VOBJBUF;
790	return (0);
791}
792
793/*
794 * We have nothing to destroy and this operation shouldn't be bypassed.
795 */
796static int
797null_destroyvobject(ap)
798	struct vop_destroyvobject_args /* {
799		struct vnode *vp;
800	} */ *ap;
801{
802	struct vnode *vp = ap->a_vp;
803
804	vp->v_flag &= ~VOBJBUF;
805	return (0);
806}
807
808static int
809null_getvobject(ap)
810	struct vop_getvobject_args /* {
811		struct vnode *vp;
812		struct vm_object **objpp;
813	} */ *ap;
814{
815	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
816
817	if (lvp == NULL)
818		return EINVAL;
819	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
820}
821
822/*
823 * Global vfs data structures
824 */
825vop_t **null_vnodeop_p;
826static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
827	{ &vop_default_desc,		(vop_t *) null_bypass },
828
829	{ &vop_access_desc,		(vop_t *) null_access },
830	{ &vop_bmap_desc,		(vop_t *) vop_eopnotsupp },
831	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
832	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
833	{ &vop_getattr_desc,		(vop_t *) null_getattr },
834	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
835	{ &vop_getwritemount_desc,	(vop_t *) vop_stdgetwritemount},
836	{ &vop_inactive_desc,		(vop_t *) null_inactive },
837	{ &vop_islocked_desc,		(vop_t *) null_islocked },
838	{ &vop_lock_desc,		(vop_t *) null_lock },
839	{ &vop_lookup_desc,		(vop_t *) null_lookup },
840	{ &vop_open_desc,		(vop_t *) null_open },
841	{ &vop_print_desc,		(vop_t *) null_print },
842	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
843	{ &vop_rename_desc,		(vop_t *) null_rename },
844	{ &vop_setattr_desc,		(vop_t *) null_setattr },
845	{ &vop_strategy_desc,		(vop_t *) vop_eopnotsupp },
846	{ &vop_unlock_desc,		(vop_t *) null_unlock },
847	{ NULL, NULL }
848};
849static struct vnodeopv_desc null_vnodeop_opv_desc =
850	{ &null_vnodeop_p, null_vnodeop_entries };
851
852VNODEOP_SET(null_vnodeop_opv_desc);
853