if_wpi.c revision 216522
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 216522 2010-12-18 15:35:10Z bschmidt $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char name[IFNAMSIZ], int unit, int opmode,
161		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static void	wpi_newassoc(struct ieee80211_node *, int);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239		    int);
240static void	wpi_calib_timeout(void *);
241static void	wpi_power_calibration(struct wpi_softc *, int);
242static int	wpi_get_power_index(struct wpi_softc *,
243		    struct wpi_power_group *, struct ieee80211_channel *, int);
244#ifdef WPI_DEBUG
245static const char *wpi_cmd_str(int);
246#endif
247static int wpi_probe(device_t);
248static int wpi_attach(device_t);
249static int wpi_detach(device_t);
250static int wpi_shutdown(device_t);
251static int wpi_suspend(device_t);
252static int wpi_resume(device_t);
253
254
255static device_method_t wpi_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		wpi_probe),
258	DEVMETHOD(device_attach,	wpi_attach),
259	DEVMETHOD(device_detach,	wpi_detach),
260	DEVMETHOD(device_shutdown,	wpi_shutdown),
261	DEVMETHOD(device_suspend,	wpi_suspend),
262	DEVMETHOD(device_resume,	wpi_resume),
263
264	{ 0, 0 }
265};
266
267static driver_t wpi_driver = {
268	"wpi",
269	wpi_methods,
270	sizeof (struct wpi_softc)
271};
272
273static devclass_t wpi_devclass;
274
275DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277static const uint8_t wpi_ridx_to_plcp[] = {
278	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279	/* R1-R4 (ral/ural is R4-R1) */
280	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281	/* CCK: device-dependent */
282	10, 20, 55, 110
283};
284static const uint8_t wpi_ridx_to_rate[] = {
285	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286	2, 4, 11, 22 /*CCK */
287};
288
289
290static int
291wpi_probe(device_t dev)
292{
293	const struct wpi_ident *ident;
294
295	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296		if (pci_get_vendor(dev) == ident->vendor &&
297		    pci_get_device(dev) == ident->device) {
298			device_set_desc(dev, ident->name);
299			return 0;
300		}
301	}
302	return ENXIO;
303}
304
305/**
306 * Load the firmare image from disk to the allocated dma buffer.
307 * we also maintain the reference to the firmware pointer as there
308 * is times where we may need to reload the firmware but we are not
309 * in a context that can access the filesystem (ie taskq cause by restart)
310 *
311 * @return 0 on success, an errno on failure
312 */
313static int
314wpi_load_firmware(struct wpi_softc *sc)
315{
316	const struct firmware *fp;
317	struct wpi_dma_info *dma = &sc->fw_dma;
318	const struct wpi_firmware_hdr *hdr;
319	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321	int error;
322
323	DPRINTFN(WPI_DEBUG_FIRMWARE,
324	    ("Attempting Loading Firmware from wpi_fw module\n"));
325
326	WPI_UNLOCK(sc);
327
328	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329		device_printf(sc->sc_dev,
330		    "could not load firmware image 'wpifw'\n");
331		error = ENOENT;
332		WPI_LOCK(sc);
333		goto fail;
334	}
335
336	fp = sc->fw_fp;
337
338	WPI_LOCK(sc);
339
340	/* Validate the firmware is minimum a particular version */
341	if (fp->version < WPI_FW_MINVERSION) {
342	    device_printf(sc->sc_dev,
343			   "firmware version is too old. Need %d, got %d\n",
344			   WPI_FW_MINVERSION,
345			   fp->version);
346	    error = ENXIO;
347	    goto fail;
348	}
349
350	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351		device_printf(sc->sc_dev,
352		    "firmware file too short: %zu bytes\n", fp->datasize);
353		error = ENXIO;
354		goto fail;
355	}
356
357	hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362	rtextsz = le32toh(hdr->rtextsz);
363	rdatasz = le32toh(hdr->rdatasz);
364	itextsz = le32toh(hdr->itextsz);
365	idatasz = le32toh(hdr->idatasz);
366	btextsz = le32toh(hdr->btextsz);
367
368	/* check that all firmware segments are present */
369	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371		device_printf(sc->sc_dev,
372		    "firmware file too short: %zu bytes\n", fp->datasize);
373		error = ENXIO; /* XXX appropriate error code? */
374		goto fail;
375	}
376
377	/* get pointers to firmware segments */
378	rtext = (const uint8_t *)(hdr + 1);
379	rdata = rtext + rtextsz;
380	itext = rdata + rdatasz;
381	idata = itext + itextsz;
382	btext = idata + idatasz;
383
384	DPRINTFN(WPI_DEBUG_FIRMWARE,
385	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387	     (le32toh(hdr->version) & 0xff000000) >> 24,
388	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389	     (le32toh(hdr->version) & 0x0000ffff),
390	     rtextsz, rdatasz,
391	     itextsz, idatasz, btextsz));
392
393	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399	/* sanity checks */
400	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405	    (btextsz & 3) != 0) {
406		device_printf(sc->sc_dev, "firmware invalid\n");
407		error = EINVAL;
408		goto fail;
409	}
410
411	/* copy initialization images into pre-allocated DMA-safe memory */
412	memcpy(dma->vaddr, idata, idatasz);
413	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417	/* tell adapter where to find initialization images */
418	wpi_mem_lock(sc);
419	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424	wpi_mem_unlock(sc);
425
426	/* load firmware boot code */
427	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429	    goto fail;
430	}
431
432	/* now press "execute" */
433	WPI_WRITE(sc, WPI_RESET, 0);
434
435	/* wait at most one second for the first alive notification */
436	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437		device_printf(sc->sc_dev,
438		    "timeout waiting for adapter to initialize\n");
439		goto fail;
440	}
441
442	/* copy runtime images into pre-allocated DMA-sage memory */
443	memcpy(dma->vaddr, rdata, rdatasz);
444	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447	/* tell adapter where to find runtime images */
448	wpi_mem_lock(sc);
449	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454	wpi_mem_unlock(sc);
455
456	/* wait at most one second for the first alive notification */
457	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458		device_printf(sc->sc_dev,
459		    "timeout waiting for adapter to initialize2\n");
460		goto fail;
461	}
462
463	DPRINTFN(WPI_DEBUG_FIRMWARE,
464	    ("Firmware loaded to driver successfully\n"));
465	return error;
466fail:
467	wpi_unload_firmware(sc);
468	return error;
469}
470
471/**
472 * Free the referenced firmware image
473 */
474static void
475wpi_unload_firmware(struct wpi_softc *sc)
476{
477
478	if (sc->fw_fp) {
479		WPI_UNLOCK(sc);
480		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481		WPI_LOCK(sc);
482		sc->fw_fp = NULL;
483	}
484}
485
486static int
487wpi_attach(device_t dev)
488{
489	struct wpi_softc *sc = device_get_softc(dev);
490	struct ifnet *ifp;
491	struct ieee80211com *ic;
492	int ac, error, supportsa = 1;
493	uint32_t tmp;
494	const struct wpi_ident *ident;
495	uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/* Create the tasks that can be queued */
516	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519	WPI_LOCK_INIT(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525		device_printf(dev, "chip is in D%d power mode "
526		    "-- setting to D0\n", pci_get_powerstate(dev));
527		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528	}
529
530	/* disable the retry timeout register */
531	pci_write_config(dev, 0x41, 0, 1);
532
533	/* enable bus-mastering */
534	pci_enable_busmaster(dev);
535
536	sc->mem_rid = PCIR_BAR(0);
537	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538	    RF_ACTIVE);
539	if (sc->mem == NULL) {
540		device_printf(dev, "could not allocate memory resource\n");
541		error = ENOMEM;
542		goto fail;
543	}
544
545	sc->sc_st = rman_get_bustag(sc->mem);
546	sc->sc_sh = rman_get_bushandle(sc->mem);
547
548	sc->irq_rid = 0;
549	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550	    RF_ACTIVE | RF_SHAREABLE);
551	if (sc->irq == NULL) {
552		device_printf(dev, "could not allocate interrupt resource\n");
553		error = ENOMEM;
554		goto fail;
555	}
556
557	/*
558	 * Allocate DMA memory for firmware transfers.
559	 */
560	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561		printf(": could not allocate firmware memory\n");
562		error = ENOMEM;
563		goto fail;
564	}
565
566	/*
567	 * Put adapter into a known state.
568	 */
569	if ((error = wpi_reset(sc)) != 0) {
570		device_printf(dev, "could not reset adapter\n");
571		goto fail;
572	}
573
574	wpi_mem_lock(sc);
575	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576	if (bootverbose || WPI_DEBUG_SET)
577	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579	wpi_mem_unlock(sc);
580
581	/* Allocate shared page */
582	if ((error = wpi_alloc_shared(sc)) != 0) {
583		device_printf(dev, "could not allocate shared page\n");
584		goto fail;
585	}
586
587	/* tx data queues  - 4 for QoS purposes */
588	for (ac = 0; ac < WME_NUM_AC; ac++) {
589		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590		if (error != 0) {
591		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592		    goto fail;
593		}
594	}
595
596	/* command queue to talk to the card's firmware */
597	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598	if (error != 0) {
599		device_printf(dev, "could not allocate command ring\n");
600		goto fail;
601	}
602
603	/* receive data queue */
604	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605	if (error != 0) {
606		device_printf(dev, "could not allocate Rx ring\n");
607		goto fail;
608	}
609
610	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611	if (ifp == NULL) {
612		device_printf(dev, "can not if_alloc()\n");
613		error = ENOMEM;
614		goto fail;
615	}
616	ic = ifp->if_l2com;
617
618	ic->ic_ifp = ifp;
619	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
620	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
621
622	/* set device capabilities */
623	ic->ic_caps =
624		  IEEE80211_C_STA		/* station mode supported */
625		| IEEE80211_C_MONITOR		/* monitor mode supported */
626		| IEEE80211_C_TXPMGT		/* tx power management */
627		| IEEE80211_C_SHSLOT		/* short slot time supported */
628		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
629		| IEEE80211_C_WPA		/* 802.11i */
630/* XXX looks like WME is partly supported? */
631#if 0
632		| IEEE80211_C_IBSS		/* IBSS mode support */
633		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
634		| IEEE80211_C_WME		/* 802.11e */
635		| IEEE80211_C_HOSTAP		/* Host access point mode */
636#endif
637		;
638
639	/*
640	 * Read in the eeprom and also setup the channels for
641	 * net80211. We don't set the rates as net80211 does this for us
642	 */
643	wpi_read_eeprom(sc, macaddr);
644
645	if (bootverbose || WPI_DEBUG_SET) {
646	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
648			  sc->type > 1 ? 'B': '?');
649	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652			  supportsa ? "does" : "does not");
653
654	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655	       what sc->rev really represents - benjsc 20070615 */
656	}
657
658	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659	ifp->if_softc = sc;
660	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661	ifp->if_init = wpi_init;
662	ifp->if_ioctl = wpi_ioctl;
663	ifp->if_start = wpi_start;
664	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666	IFQ_SET_READY(&ifp->if_snd);
667
668	ieee80211_ifattach(ic, macaddr);
669	/* override default methods */
670	ic->ic_raw_xmit = wpi_raw_xmit;
671	ic->ic_newassoc = wpi_newassoc;
672	ic->ic_wme.wme_update = wpi_wme_update;
673	ic->ic_scan_start = wpi_scan_start;
674	ic->ic_scan_end = wpi_scan_end;
675	ic->ic_set_channel = wpi_set_channel;
676	ic->ic_scan_curchan = wpi_scan_curchan;
677	ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679	ic->ic_vap_create = wpi_vap_create;
680	ic->ic_vap_delete = wpi_vap_delete;
681
682	ieee80211_radiotap_attach(ic,
683	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684		WPI_TX_RADIOTAP_PRESENT,
685	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686		WPI_RX_RADIOTAP_PRESENT);
687
688	/*
689	 * Hook our interrupt after all initialization is complete.
690	 */
691	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692	    NULL, wpi_intr, sc, &sc->sc_ih);
693	if (error != 0) {
694		device_printf(dev, "could not set up interrupt\n");
695		goto fail;
696	}
697
698	if (bootverbose)
699		ieee80211_announce(ic);
700#ifdef XXX_DEBUG
701	ieee80211_announce_channels(ic);
702#endif
703	return 0;
704
705fail:	wpi_detach(dev);
706	return ENXIO;
707}
708
709static int
710wpi_detach(device_t dev)
711{
712	struct wpi_softc *sc = device_get_softc(dev);
713	struct ifnet *ifp = sc->sc_ifp;
714	struct ieee80211com *ic;
715	int ac;
716
717	if (ifp != NULL) {
718		ic = ifp->if_l2com;
719
720		ieee80211_draintask(ic, &sc->sc_restarttask);
721		ieee80211_draintask(ic, &sc->sc_radiotask);
722		wpi_stop(sc);
723		callout_drain(&sc->watchdog_to);
724		callout_drain(&sc->calib_to);
725		ieee80211_ifdetach(ic);
726	}
727
728	WPI_LOCK(sc);
729	if (sc->txq[0].data_dmat) {
730		for (ac = 0; ac < WME_NUM_AC; ac++)
731			wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733		wpi_free_tx_ring(sc, &sc->cmdq);
734		wpi_free_rx_ring(sc, &sc->rxq);
735		wpi_free_shared(sc);
736	}
737
738	if (sc->fw_fp != NULL) {
739		wpi_unload_firmware(sc);
740	}
741
742	if (sc->fw_dma.tag)
743		wpi_free_fwmem(sc);
744	WPI_UNLOCK(sc);
745
746	if (sc->irq != NULL) {
747		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749	}
750
751	if (sc->mem != NULL)
752		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754	if (ifp != NULL)
755		if_free(ifp);
756
757	WPI_LOCK_DESTROY(sc);
758
759	return 0;
760}
761
762static struct ieee80211vap *
763wpi_vap_create(struct ieee80211com *ic,
764	const char name[IFNAMSIZ], int unit, int opmode, int flags,
765	const uint8_t bssid[IEEE80211_ADDR_LEN],
766	const uint8_t mac[IEEE80211_ADDR_LEN])
767{
768	struct wpi_vap *wvp;
769	struct ieee80211vap *vap;
770
771	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772		return NULL;
773	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774	    M_80211_VAP, M_NOWAIT | M_ZERO);
775	if (wvp == NULL)
776		return NULL;
777	vap = &wvp->vap;
778	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779	/* override with driver methods */
780	wvp->newstate = vap->iv_newstate;
781	vap->iv_newstate = wpi_newstate;
782
783	ieee80211_ratectl_init(vap);
784	/* complete setup */
785	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786	ic->ic_opmode = opmode;
787	return vap;
788}
789
790static void
791wpi_vap_delete(struct ieee80211vap *vap)
792{
793	struct wpi_vap *wvp = WPI_VAP(vap);
794
795	ieee80211_ratectl_deinit(vap);
796	ieee80211_vap_detach(vap);
797	free(wvp, M_80211_VAP);
798}
799
800static void
801wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803	if (error != 0)
804		return;
805
806	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808	*(bus_addr_t *)arg = segs[0].ds_addr;
809}
810
811/*
812 * Allocates a contiguous block of dma memory of the requested size and
813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814 * allocations greater than 4096 may fail. Hence if the requested alignment is
815 * greater we allocate 'alignment' size extra memory and shift the vaddr and
816 * paddr after the dma load. This bypasses the problem at the cost of a little
817 * more memory.
818 */
819static int
820wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822{
823	int error;
824	bus_size_t align;
825	bus_size_t reqsize;
826
827	DPRINTFN(WPI_DEBUG_DMA,
828	    ("Size: %zd - alignment %zd\n", size, alignment));
829
830	dma->size = size;
831	dma->tag = NULL;
832
833	if (alignment > 4096) {
834		align = PAGE_SIZE;
835		reqsize = size + alignment;
836	} else {
837		align = alignment;
838		reqsize = size;
839	}
840	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842	    NULL, NULL, reqsize,
843	    1, reqsize, flags,
844	    NULL, NULL, &dma->tag);
845	if (error != 0) {
846		device_printf(sc->sc_dev,
847		    "could not create shared page DMA tag\n");
848		goto fail;
849	}
850	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851	    flags | BUS_DMA_ZERO, &dma->map);
852	if (error != 0) {
853		device_printf(sc->sc_dev,
854		    "could not allocate shared page DMA memory\n");
855		goto fail;
856	}
857
858	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861	/* Save the original pointers so we can free all the memory */
862	dma->paddr = dma->paddr_start;
863	dma->vaddr = dma->vaddr_start;
864
865	/*
866	 * Check the alignment and increment by 4096 until we get the
867	 * requested alignment. Fail if can't obtain the alignment
868	 * we requested.
869	 */
870	if ((dma->paddr & (alignment -1 )) != 0) {
871		int i;
872
873		for (i = 0; i < alignment / 4096; i++) {
874			if ((dma->paddr & (alignment - 1 )) == 0)
875				break;
876			dma->paddr += 4096;
877			dma->vaddr += 4096;
878		}
879		if (i == alignment / 4096) {
880			device_printf(sc->sc_dev,
881			    "alignment requirement was not satisfied\n");
882			goto fail;
883		}
884	}
885
886	if (error != 0) {
887		device_printf(sc->sc_dev,
888		    "could not load shared page DMA map\n");
889		goto fail;
890	}
891
892	if (kvap != NULL)
893		*kvap = dma->vaddr;
894
895	return 0;
896
897fail:
898	wpi_dma_contig_free(dma);
899	return error;
900}
901
902static void
903wpi_dma_contig_free(struct wpi_dma_info *dma)
904{
905	if (dma->tag) {
906		if (dma->map != NULL) {
907			if (dma->paddr_start != 0) {
908				bus_dmamap_sync(dma->tag, dma->map,
909				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910				bus_dmamap_unload(dma->tag, dma->map);
911			}
912			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913		}
914		bus_dma_tag_destroy(dma->tag);
915	}
916}
917
918/*
919 * Allocate a shared page between host and NIC.
920 */
921static int
922wpi_alloc_shared(struct wpi_softc *sc)
923{
924	int error;
925
926	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927	    (void **)&sc->shared, sizeof (struct wpi_shared),
928	    PAGE_SIZE,
929	    BUS_DMA_NOWAIT);
930
931	if (error != 0) {
932		device_printf(sc->sc_dev,
933		    "could not allocate shared area DMA memory\n");
934	}
935
936	return error;
937}
938
939static void
940wpi_free_shared(struct wpi_softc *sc)
941{
942	wpi_dma_contig_free(&sc->shared_dma);
943}
944
945static int
946wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947{
948
949	int i, error;
950
951	ring->cur = 0;
952
953	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957	if (error != 0) {
958		device_printf(sc->sc_dev,
959		    "%s: could not allocate rx ring DMA memory, error %d\n",
960		    __func__, error);
961		goto fail;
962	}
963
964        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965	    BUS_SPACE_MAXADDR_32BIT,
966            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968        if (error != 0) {
969                device_printf(sc->sc_dev,
970		    "%s: bus_dma_tag_create_failed, error %d\n",
971		    __func__, error);
972                goto fail;
973        }
974
975	/*
976	 * Setup Rx buffers.
977	 */
978	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979		struct wpi_rx_data *data = &ring->data[i];
980		struct mbuf *m;
981		bus_addr_t paddr;
982
983		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984		if (error != 0) {
985			device_printf(sc->sc_dev,
986			    "%s: bus_dmamap_create failed, error %d\n",
987			    __func__, error);
988			goto fail;
989		}
990		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991		if (m == NULL) {
992			device_printf(sc->sc_dev,
993			   "%s: could not allocate rx mbuf\n", __func__);
994			error = ENOMEM;
995			goto fail;
996		}
997		/* map page */
998		error = bus_dmamap_load(ring->data_dmat, data->map,
999		    mtod(m, caddr_t), MJUMPAGESIZE,
1000		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001		if (error != 0 && error != EFBIG) {
1002			device_printf(sc->sc_dev,
1003			    "%s: bus_dmamap_load failed, error %d\n",
1004			    __func__, error);
1005			m_freem(m);
1006			error = ENOMEM;	/* XXX unique code */
1007			goto fail;
1008		}
1009		bus_dmamap_sync(ring->data_dmat, data->map,
1010		    BUS_DMASYNC_PREWRITE);
1011
1012		data->m = m;
1013		ring->desc[i] = htole32(paddr);
1014	}
1015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016	    BUS_DMASYNC_PREWRITE);
1017	return 0;
1018fail:
1019	wpi_free_rx_ring(sc, ring);
1020	return error;
1021}
1022
1023static void
1024wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025{
1026	int ntries;
1027
1028	wpi_mem_lock(sc);
1029
1030	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032	for (ntries = 0; ntries < 100; ntries++) {
1033		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034			break;
1035		DELAY(10);
1036	}
1037
1038	wpi_mem_unlock(sc);
1039
1040#ifdef WPI_DEBUG
1041	if (ntries == 100 && wpi_debug > 0)
1042		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043#endif
1044
1045	ring->cur = 0;
1046}
1047
1048static void
1049wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050{
1051	int i;
1052
1053	wpi_dma_contig_free(&ring->desc_dma);
1054
1055	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056		if (ring->data[i].m != NULL)
1057			m_freem(ring->data[i].m);
1058}
1059
1060static int
1061wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062	int qid)
1063{
1064	struct wpi_tx_data *data;
1065	int i, error;
1066
1067	ring->qid = qid;
1068	ring->count = count;
1069	ring->queued = 0;
1070	ring->cur = 0;
1071	ring->data = NULL;
1072
1073	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076
1077	if (error != 0) {
1078	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079	    goto fail;
1080	}
1081
1082	/* update shared page with ring's base address */
1083	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084
1085	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087		BUS_DMA_NOWAIT);
1088
1089	if (error != 0) {
1090		device_printf(sc->sc_dev,
1091		    "could not allocate tx command DMA memory\n");
1092		goto fail;
1093	}
1094
1095	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096	    M_NOWAIT | M_ZERO);
1097	if (ring->data == NULL) {
1098		device_printf(sc->sc_dev,
1099		    "could not allocate tx data slots\n");
1100		goto fail;
1101	}
1102
1103	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106	    &ring->data_dmat);
1107	if (error != 0) {
1108		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109		goto fail;
1110	}
1111
1112	for (i = 0; i < count; i++) {
1113		data = &ring->data[i];
1114
1115		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116		if (error != 0) {
1117			device_printf(sc->sc_dev,
1118			    "could not create tx buf DMA map\n");
1119			goto fail;
1120		}
1121		bus_dmamap_sync(ring->data_dmat, data->map,
1122		    BUS_DMASYNC_PREWRITE);
1123	}
1124
1125	return 0;
1126
1127fail:
1128	wpi_free_tx_ring(sc, ring);
1129	return error;
1130}
1131
1132static void
1133wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134{
1135	struct wpi_tx_data *data;
1136	int i, ntries;
1137
1138	wpi_mem_lock(sc);
1139
1140	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141	for (ntries = 0; ntries < 100; ntries++) {
1142		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143			break;
1144		DELAY(10);
1145	}
1146#ifdef WPI_DEBUG
1147	if (ntries == 100 && wpi_debug > 0)
1148		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149		    ring->qid);
1150#endif
1151	wpi_mem_unlock(sc);
1152
1153	for (i = 0; i < ring->count; i++) {
1154		data = &ring->data[i];
1155
1156		if (data->m != NULL) {
1157			bus_dmamap_unload(ring->data_dmat, data->map);
1158			m_freem(data->m);
1159			data->m = NULL;
1160		}
1161	}
1162
1163	ring->queued = 0;
1164	ring->cur = 0;
1165}
1166
1167static void
1168wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169{
1170	struct wpi_tx_data *data;
1171	int i;
1172
1173	wpi_dma_contig_free(&ring->desc_dma);
1174	wpi_dma_contig_free(&ring->cmd_dma);
1175
1176	if (ring->data != NULL) {
1177		for (i = 0; i < ring->count; i++) {
1178			data = &ring->data[i];
1179
1180			if (data->m != NULL) {
1181				bus_dmamap_sync(ring->data_dmat, data->map,
1182				    BUS_DMASYNC_POSTWRITE);
1183				bus_dmamap_unload(ring->data_dmat, data->map);
1184				m_freem(data->m);
1185				data->m = NULL;
1186			}
1187		}
1188		free(ring->data, M_DEVBUF);
1189	}
1190
1191	if (ring->data_dmat != NULL)
1192		bus_dma_tag_destroy(ring->data_dmat);
1193}
1194
1195static int
1196wpi_shutdown(device_t dev)
1197{
1198	struct wpi_softc *sc = device_get_softc(dev);
1199
1200	WPI_LOCK(sc);
1201	wpi_stop_locked(sc);
1202	wpi_unload_firmware(sc);
1203	WPI_UNLOCK(sc);
1204
1205	return 0;
1206}
1207
1208static int
1209wpi_suspend(device_t dev)
1210{
1211	struct wpi_softc *sc = device_get_softc(dev);
1212
1213	wpi_stop(sc);
1214	return 0;
1215}
1216
1217static int
1218wpi_resume(device_t dev)
1219{
1220	struct wpi_softc *sc = device_get_softc(dev);
1221	struct ifnet *ifp = sc->sc_ifp;
1222
1223	pci_write_config(dev, 0x41, 0, 1);
1224
1225	if (ifp->if_flags & IFF_UP) {
1226		wpi_init(ifp->if_softc);
1227		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228			wpi_start(ifp);
1229	}
1230	return 0;
1231}
1232
1233/**
1234 * Called by net80211 when ever there is a change to 80211 state machine
1235 */
1236static int
1237wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238{
1239	struct wpi_vap *wvp = WPI_VAP(vap);
1240	struct ieee80211com *ic = vap->iv_ic;
1241	struct ifnet *ifp = ic->ic_ifp;
1242	struct wpi_softc *sc = ifp->if_softc;
1243	int error;
1244
1245	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246		ieee80211_state_name[vap->iv_state],
1247		ieee80211_state_name[nstate], sc->flags));
1248
1249	IEEE80211_UNLOCK(ic);
1250	WPI_LOCK(sc);
1251	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1252		/*
1253		 * On !INIT -> SCAN transitions, we need to clear any possible
1254		 * knowledge about associations.
1255		 */
1256		error = wpi_config(sc);
1257		if (error != 0) {
1258			device_printf(sc->sc_dev,
1259			    "%s: device config failed, error %d\n",
1260			    __func__, error);
1261		}
1262	}
1263	if (nstate == IEEE80211_S_AUTH ||
1264	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1265		/*
1266		 * The node must be registered in the firmware before auth.
1267		 * Also the associd must be cleared on RUN -> ASSOC
1268		 * transitions.
1269		 */
1270		error = wpi_auth(sc, vap);
1271		if (error != 0) {
1272			device_printf(sc->sc_dev,
1273			    "%s: could not move to auth state, error %d\n",
1274			    __func__, error);
1275		}
1276	}
1277	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278		error = wpi_run(sc, vap);
1279		if (error != 0) {
1280			device_printf(sc->sc_dev,
1281			    "%s: could not move to run state, error %d\n",
1282			    __func__, error);
1283		}
1284	}
1285	if (nstate == IEEE80211_S_RUN) {
1286		/* RUN -> RUN transition; just restart the timers */
1287		wpi_calib_timeout(sc);
1288		/* XXX split out rate control timer */
1289	}
1290	WPI_UNLOCK(sc);
1291	IEEE80211_LOCK(ic);
1292	return wvp->newstate(vap, nstate, arg);
1293}
1294
1295/*
1296 * Grab exclusive access to NIC memory.
1297 */
1298static void
1299wpi_mem_lock(struct wpi_softc *sc)
1300{
1301	int ntries;
1302	uint32_t tmp;
1303
1304	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306
1307	/* spin until we actually get the lock */
1308	for (ntries = 0; ntries < 100; ntries++) {
1309		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311			break;
1312		DELAY(10);
1313	}
1314	if (ntries == 100)
1315		device_printf(sc->sc_dev, "could not lock memory\n");
1316}
1317
1318/*
1319 * Release lock on NIC memory.
1320 */
1321static void
1322wpi_mem_unlock(struct wpi_softc *sc)
1323{
1324	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326}
1327
1328static uint32_t
1329wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330{
1331	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332	return WPI_READ(sc, WPI_READ_MEM_DATA);
1333}
1334
1335static void
1336wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337{
1338	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340}
1341
1342static void
1343wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344    const uint32_t *data, int wlen)
1345{
1346	for (; wlen > 0; wlen--, data++, addr+=4)
1347		wpi_mem_write(sc, addr, *data);
1348}
1349
1350/*
1351 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352 * using the traditional bit-bang method. Data is read up until len bytes have
1353 * been obtained.
1354 */
1355static uint16_t
1356wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357{
1358	int ntries;
1359	uint32_t val;
1360	uint8_t *out = data;
1361
1362	wpi_mem_lock(sc);
1363
1364	for (; len > 0; len -= 2, addr++) {
1365		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366
1367		for (ntries = 0; ntries < 10; ntries++) {
1368			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369				break;
1370			DELAY(5);
1371		}
1372
1373		if (ntries == 10) {
1374			device_printf(sc->sc_dev, "could not read EEPROM\n");
1375			return ETIMEDOUT;
1376		}
1377
1378		*out++= val >> 16;
1379		if (len > 1)
1380			*out ++= val >> 24;
1381	}
1382
1383	wpi_mem_unlock(sc);
1384
1385	return 0;
1386}
1387
1388/*
1389 * The firmware text and data segments are transferred to the NIC using DMA.
1390 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391 * where to find it.  Once the NIC has copied the firmware into its internal
1392 * memory, we can free our local copy in the driver.
1393 */
1394static int
1395wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396{
1397	int error, ntries;
1398
1399	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400
1401	size /= sizeof(uint32_t);
1402
1403	wpi_mem_lock(sc);
1404
1405	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406	    (const uint32_t *)fw, size);
1407
1408	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411
1412	/* run microcode */
1413	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414
1415	/* wait while the adapter is busy copying the firmware */
1416	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418		DPRINTFN(WPI_DEBUG_HW,
1419		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421		if (status & WPI_TX_IDLE(6)) {
1422			DPRINTFN(WPI_DEBUG_HW,
1423			    ("Status Match! - ntries = %d\n", ntries));
1424			break;
1425		}
1426		DELAY(10);
1427	}
1428	if (ntries == 1000) {
1429		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430		error = ETIMEDOUT;
1431	}
1432
1433	/* start the microcode executing */
1434	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435
1436	wpi_mem_unlock(sc);
1437
1438	return (error);
1439}
1440
1441static void
1442wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443	struct wpi_rx_data *data)
1444{
1445	struct ifnet *ifp = sc->sc_ifp;
1446	struct ieee80211com *ic = ifp->if_l2com;
1447	struct wpi_rx_ring *ring = &sc->rxq;
1448	struct wpi_rx_stat *stat;
1449	struct wpi_rx_head *head;
1450	struct wpi_rx_tail *tail;
1451	struct ieee80211_node *ni;
1452	struct mbuf *m, *mnew;
1453	bus_addr_t paddr;
1454	int error;
1455
1456	stat = (struct wpi_rx_stat *)(desc + 1);
1457
1458	if (stat->len > WPI_STAT_MAXLEN) {
1459		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460		ifp->if_ierrors++;
1461		return;
1462	}
1463
1464	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466
1467	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470	    (uintmax_t)le64toh(tail->tstamp)));
1471
1472	/* discard Rx frames with bad CRC early */
1473	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475		    le32toh(tail->flags)));
1476		ifp->if_ierrors++;
1477		return;
1478	}
1479	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481		    le16toh(head->len)));
1482		ifp->if_ierrors++;
1483		return;
1484	}
1485
1486	/* XXX don't need mbuf, just dma buffer */
1487	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488	if (mnew == NULL) {
1489		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490		    __func__));
1491		ifp->if_ierrors++;
1492		return;
1493	}
1494	error = bus_dmamap_load(ring->data_dmat, data->map,
1495	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1496	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497	if (error != 0 && error != EFBIG) {
1498		device_printf(sc->sc_dev,
1499		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500		m_freem(mnew);
1501		ifp->if_ierrors++;
1502		return;
1503	}
1504	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505
1506	/* finalize mbuf and swap in new one */
1507	m = data->m;
1508	m->m_pkthdr.rcvif = ifp;
1509	m->m_data = (caddr_t)(head + 1);
1510	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511
1512	data->m = mnew;
1513	/* update Rx descriptor */
1514	ring->desc[ring->cur] = htole32(paddr);
1515
1516	if (ieee80211_radiotap_active(ic)) {
1517		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518
1519		tap->wr_flags = 0;
1520		tap->wr_chan_freq =
1521			htole16(ic->ic_channels[head->chan].ic_freq);
1522		tap->wr_chan_flags =
1523			htole16(ic->ic_channels[head->chan].ic_flags);
1524		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526		tap->wr_tsft = tail->tstamp;
1527		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528		switch (head->rate) {
1529		/* CCK rates */
1530		case  10: tap->wr_rate =   2; break;
1531		case  20: tap->wr_rate =   4; break;
1532		case  55: tap->wr_rate =  11; break;
1533		case 110: tap->wr_rate =  22; break;
1534		/* OFDM rates */
1535		case 0xd: tap->wr_rate =  12; break;
1536		case 0xf: tap->wr_rate =  18; break;
1537		case 0x5: tap->wr_rate =  24; break;
1538		case 0x7: tap->wr_rate =  36; break;
1539		case 0x9: tap->wr_rate =  48; break;
1540		case 0xb: tap->wr_rate =  72; break;
1541		case 0x1: tap->wr_rate =  96; break;
1542		case 0x3: tap->wr_rate = 108; break;
1543		/* unknown rate: should not happen */
1544		default:  tap->wr_rate =   0;
1545		}
1546		if (le16toh(head->flags) & 0x4)
1547			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548	}
1549
1550	WPI_UNLOCK(sc);
1551
1552	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553	if (ni != NULL) {
1554		(void) ieee80211_input(ni, m, stat->rssi, 0);
1555		ieee80211_free_node(ni);
1556	} else
1557		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558
1559	WPI_LOCK(sc);
1560}
1561
1562static void
1563wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564{
1565	struct ifnet *ifp = sc->sc_ifp;
1566	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569	struct ieee80211_node *ni = txdata->ni;
1570	struct ieee80211vap *vap = ni->ni_vap;
1571	int retrycnt = 0;
1572
1573	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1574	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1575	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1576	    le32toh(stat->status)));
1577
1578	/*
1579	 * Update rate control statistics for the node.
1580	 * XXX we should not count mgmt frames since they're always sent at
1581	 * the lowest available bit-rate.
1582	 * XXX frames w/o ACK shouldn't be used either
1583	 */
1584	if (stat->ntries > 0) {
1585		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1586		retrycnt = 1;
1587	}
1588	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1589	    &retrycnt, NULL);
1590
1591	/* XXX oerrors should only count errors !maxtries */
1592	if ((le32toh(stat->status) & 0xff) != 1)
1593		ifp->if_oerrors++;
1594	else
1595		ifp->if_opackets++;
1596
1597	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1598	bus_dmamap_unload(ring->data_dmat, txdata->map);
1599	/* XXX handle M_TXCB? */
1600	m_freem(txdata->m);
1601	txdata->m = NULL;
1602	ieee80211_free_node(txdata->ni);
1603	txdata->ni = NULL;
1604
1605	ring->queued--;
1606
1607	sc->sc_tx_timer = 0;
1608	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1609	wpi_start_locked(ifp);
1610}
1611
1612static void
1613wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1614{
1615	struct wpi_tx_ring *ring = &sc->cmdq;
1616	struct wpi_tx_data *data;
1617
1618	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1619				 "type=%s len=%d\n", desc->qid, desc->idx,
1620				 desc->flags, wpi_cmd_str(desc->type),
1621				 le32toh(desc->len)));
1622
1623	if ((desc->qid & 7) != 4)
1624		return;	/* not a command ack */
1625
1626	data = &ring->data[desc->idx];
1627
1628	/* if the command was mapped in a mbuf, free it */
1629	if (data->m != NULL) {
1630		bus_dmamap_unload(ring->data_dmat, data->map);
1631		m_freem(data->m);
1632		data->m = NULL;
1633	}
1634
1635	sc->flags &= ~WPI_FLAG_BUSY;
1636	wakeup(&ring->cmd[desc->idx]);
1637}
1638
1639static void
1640wpi_notif_intr(struct wpi_softc *sc)
1641{
1642	struct ifnet *ifp = sc->sc_ifp;
1643	struct ieee80211com *ic = ifp->if_l2com;
1644	struct wpi_rx_desc *desc;
1645	struct wpi_rx_data *data;
1646	uint32_t hw;
1647
1648	hw = le32toh(sc->shared->next);
1649	while (sc->rxq.cur != hw) {
1650		data = &sc->rxq.data[sc->rxq.cur];
1651		desc = (void *)data->m->m_ext.ext_buf;
1652
1653		DPRINTFN(WPI_DEBUG_NOTIFY,
1654			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1655			  desc->qid,
1656			  desc->idx,
1657			  desc->flags,
1658			  desc->type,
1659			  le32toh(desc->len)));
1660
1661		if (!(desc->qid & 0x80))	/* reply to a command */
1662			wpi_cmd_intr(sc, desc);
1663
1664		switch (desc->type) {
1665		case WPI_RX_DONE:
1666			/* a 802.11 frame was received */
1667			wpi_rx_intr(sc, desc, data);
1668			break;
1669
1670		case WPI_TX_DONE:
1671			/* a 802.11 frame has been transmitted */
1672			wpi_tx_intr(sc, desc);
1673			break;
1674
1675		case WPI_UC_READY:
1676		{
1677			struct wpi_ucode_info *uc =
1678				(struct wpi_ucode_info *)(desc + 1);
1679
1680			/* the microcontroller is ready */
1681			DPRINTF(("microcode alive notification version %x "
1682				"alive %x\n", le32toh(uc->version),
1683				le32toh(uc->valid)));
1684
1685			if (le32toh(uc->valid) != 1) {
1686				device_printf(sc->sc_dev,
1687				    "microcontroller initialization failed\n");
1688				wpi_stop_locked(sc);
1689			}
1690			break;
1691		}
1692		case WPI_STATE_CHANGED:
1693		{
1694			uint32_t *status = (uint32_t *)(desc + 1);
1695
1696			/* enabled/disabled notification */
1697			DPRINTF(("state changed to %x\n", le32toh(*status)));
1698
1699			if (le32toh(*status) & 1) {
1700				device_printf(sc->sc_dev,
1701				    "Radio transmitter is switched off\n");
1702				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1703				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1704				/* Disable firmware commands */
1705				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1706			}
1707			break;
1708		}
1709		case WPI_START_SCAN:
1710		{
1711#ifdef WPI_DEBUG
1712			struct wpi_start_scan *scan =
1713				(struct wpi_start_scan *)(desc + 1);
1714#endif
1715
1716			DPRINTFN(WPI_DEBUG_SCANNING,
1717				 ("scanning channel %d status %x\n",
1718			    scan->chan, le32toh(scan->status)));
1719			break;
1720		}
1721		case WPI_STOP_SCAN:
1722		{
1723#ifdef WPI_DEBUG
1724			struct wpi_stop_scan *scan =
1725				(struct wpi_stop_scan *)(desc + 1);
1726#endif
1727			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1728
1729			DPRINTFN(WPI_DEBUG_SCANNING,
1730			    ("scan finished nchan=%d status=%d chan=%d\n",
1731			     scan->nchan, scan->status, scan->chan));
1732
1733			sc->sc_scan_timer = 0;
1734			ieee80211_scan_next(vap);
1735			break;
1736		}
1737		case WPI_MISSED_BEACON:
1738		{
1739			struct wpi_missed_beacon *beacon =
1740				(struct wpi_missed_beacon *)(desc + 1);
1741			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1742
1743			if (le32toh(beacon->consecutive) >=
1744			    vap->iv_bmissthreshold) {
1745				DPRINTF(("Beacon miss: %u >= %u\n",
1746					 le32toh(beacon->consecutive),
1747					 vap->iv_bmissthreshold));
1748				ieee80211_beacon_miss(ic);
1749			}
1750			break;
1751		}
1752		}
1753
1754		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1755	}
1756
1757	/* tell the firmware what we have processed */
1758	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1759	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1760}
1761
1762static void
1763wpi_intr(void *arg)
1764{
1765	struct wpi_softc *sc = arg;
1766	uint32_t r;
1767
1768	WPI_LOCK(sc);
1769
1770	r = WPI_READ(sc, WPI_INTR);
1771	if (r == 0 || r == 0xffffffff) {
1772		WPI_UNLOCK(sc);
1773		return;
1774	}
1775
1776	/* disable interrupts */
1777	WPI_WRITE(sc, WPI_MASK, 0);
1778	/* ack interrupts */
1779	WPI_WRITE(sc, WPI_INTR, r);
1780
1781	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1782		struct ifnet *ifp = sc->sc_ifp;
1783		struct ieee80211com *ic = ifp->if_l2com;
1784		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1785
1786		device_printf(sc->sc_dev, "fatal firmware error\n");
1787		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1788				"(Hardware Error)"));
1789		if (vap != NULL)
1790			ieee80211_cancel_scan(vap);
1791		ieee80211_runtask(ic, &sc->sc_restarttask);
1792		sc->flags &= ~WPI_FLAG_BUSY;
1793		WPI_UNLOCK(sc);
1794		return;
1795	}
1796
1797	if (r & WPI_RX_INTR)
1798		wpi_notif_intr(sc);
1799
1800	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1801		wakeup(sc);
1802
1803	/* re-enable interrupts */
1804	if (sc->sc_ifp->if_flags & IFF_UP)
1805		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1806
1807	WPI_UNLOCK(sc);
1808}
1809
1810static uint8_t
1811wpi_plcp_signal(int rate)
1812{
1813	switch (rate) {
1814	/* CCK rates (returned values are device-dependent) */
1815	case 2:		return 10;
1816	case 4:		return 20;
1817	case 11:	return 55;
1818	case 22:	return 110;
1819
1820	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1821	/* R1-R4 (ral/ural is R4-R1) */
1822	case 12:	return 0xd;
1823	case 18:	return 0xf;
1824	case 24:	return 0x5;
1825	case 36:	return 0x7;
1826	case 48:	return 0x9;
1827	case 72:	return 0xb;
1828	case 96:	return 0x1;
1829	case 108:	return 0x3;
1830
1831	/* unsupported rates (should not get there) */
1832	default:	return 0;
1833	}
1834}
1835
1836/* quickly determine if a given rate is CCK or OFDM */
1837#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1838
1839/*
1840 * Construct the data packet for a transmit buffer and acutally put
1841 * the buffer onto the transmit ring, kicking the card to process the
1842 * the buffer.
1843 */
1844static int
1845wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1846	int ac)
1847{
1848	struct ieee80211vap *vap = ni->ni_vap;
1849	struct ifnet *ifp = sc->sc_ifp;
1850	struct ieee80211com *ic = ifp->if_l2com;
1851	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1852	struct wpi_tx_ring *ring = &sc->txq[ac];
1853	struct wpi_tx_desc *desc;
1854	struct wpi_tx_data *data;
1855	struct wpi_tx_cmd *cmd;
1856	struct wpi_cmd_data *tx;
1857	struct ieee80211_frame *wh;
1858	const struct ieee80211_txparam *tp;
1859	struct ieee80211_key *k;
1860	struct mbuf *mnew;
1861	int i, error, nsegs, rate, hdrlen, ismcast;
1862	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1863
1864	desc = &ring->desc[ring->cur];
1865	data = &ring->data[ring->cur];
1866
1867	wh = mtod(m0, struct ieee80211_frame *);
1868
1869	hdrlen = ieee80211_hdrsize(wh);
1870	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1871
1872	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1873		k = ieee80211_crypto_encap(ni, m0);
1874		if (k == NULL) {
1875			m_freem(m0);
1876			return ENOBUFS;
1877		}
1878		/* packet header may have moved, reset our local pointer */
1879		wh = mtod(m0, struct ieee80211_frame *);
1880	}
1881
1882	cmd = &ring->cmd[ring->cur];
1883	cmd->code = WPI_CMD_TX_DATA;
1884	cmd->flags = 0;
1885	cmd->qid = ring->qid;
1886	cmd->idx = ring->cur;
1887
1888	tx = (struct wpi_cmd_data *)cmd->data;
1889	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1890	tx->timeout = htole16(0);
1891	tx->ofdm_mask = 0xff;
1892	tx->cck_mask = 0x0f;
1893	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1894	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1895	tx->len = htole16(m0->m_pkthdr.len);
1896
1897	if (!ismcast) {
1898		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1899		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1900			tx->flags |= htole32(WPI_TX_NEED_ACK);
1901		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1902			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1903			tx->rts_ntries = 7;
1904		}
1905	}
1906	/* pick a rate */
1907	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1908	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1909		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1910		/* tell h/w to set timestamp in probe responses */
1911		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1912			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1913		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1914		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1915			tx->timeout = htole16(3);
1916		else
1917			tx->timeout = htole16(2);
1918		rate = tp->mgmtrate;
1919	} else if (ismcast) {
1920		rate = tp->mcastrate;
1921	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1922		rate = tp->ucastrate;
1923	} else {
1924		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1925		rate = ni->ni_txrate;
1926	}
1927	tx->rate = wpi_plcp_signal(rate);
1928
1929	/* be very persistant at sending frames out */
1930#if 0
1931	tx->data_ntries = tp->maxretry;
1932#else
1933	tx->data_ntries = 15;		/* XXX way too high */
1934#endif
1935
1936	if (ieee80211_radiotap_active_vap(vap)) {
1937		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1938		tap->wt_flags = 0;
1939		tap->wt_rate = rate;
1940		tap->wt_hwqueue = ac;
1941		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1942			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1943
1944		ieee80211_radiotap_tx(vap, m0);
1945	}
1946
1947	/* save and trim IEEE802.11 header */
1948	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1949	m_adj(m0, hdrlen);
1950
1951	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1952	    &nsegs, BUS_DMA_NOWAIT);
1953	if (error != 0 && error != EFBIG) {
1954		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1955		    error);
1956		m_freem(m0);
1957		return error;
1958	}
1959	if (error != 0) {
1960		/* XXX use m_collapse */
1961		mnew = m_defrag(m0, M_DONTWAIT);
1962		if (mnew == NULL) {
1963			device_printf(sc->sc_dev,
1964			    "could not defragment mbuf\n");
1965			m_freem(m0);
1966			return ENOBUFS;
1967		}
1968		m0 = mnew;
1969
1970		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1971		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1972		if (error != 0) {
1973			device_printf(sc->sc_dev,
1974			    "could not map mbuf (error %d)\n", error);
1975			m_freem(m0);
1976			return error;
1977		}
1978	}
1979
1980	data->m = m0;
1981	data->ni = ni;
1982
1983	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1984	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1985
1986	/* first scatter/gather segment is used by the tx data command */
1987	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1988	    (1 + nsegs) << 24);
1989	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1990	    ring->cur * sizeof (struct wpi_tx_cmd));
1991	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1992	for (i = 1; i <= nsegs; i++) {
1993		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1994		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1995	}
1996
1997	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1998	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1999	    BUS_DMASYNC_PREWRITE);
2000
2001	ring->queued++;
2002
2003	/* kick ring */
2004	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2005	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2006
2007	return 0;
2008}
2009
2010/**
2011 * Process data waiting to be sent on the IFNET output queue
2012 */
2013static void
2014wpi_start(struct ifnet *ifp)
2015{
2016	struct wpi_softc *sc = ifp->if_softc;
2017
2018	WPI_LOCK(sc);
2019	wpi_start_locked(ifp);
2020	WPI_UNLOCK(sc);
2021}
2022
2023static void
2024wpi_start_locked(struct ifnet *ifp)
2025{
2026	struct wpi_softc *sc = ifp->if_softc;
2027	struct ieee80211_node *ni;
2028	struct mbuf *m;
2029	int ac;
2030
2031	WPI_LOCK_ASSERT(sc);
2032
2033	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2034		return;
2035
2036	for (;;) {
2037		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2038		if (m == NULL)
2039			break;
2040		ac = M_WME_GETAC(m);
2041		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2042			/* there is no place left in this ring */
2043			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2044			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2045			break;
2046		}
2047		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2048		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2049			ieee80211_free_node(ni);
2050			ifp->if_oerrors++;
2051			break;
2052		}
2053		sc->sc_tx_timer = 5;
2054	}
2055}
2056
2057static int
2058wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2059	const struct ieee80211_bpf_params *params)
2060{
2061	struct ieee80211com *ic = ni->ni_ic;
2062	struct ifnet *ifp = ic->ic_ifp;
2063	struct wpi_softc *sc = ifp->if_softc;
2064
2065	/* prevent management frames from being sent if we're not ready */
2066	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2067		m_freem(m);
2068		ieee80211_free_node(ni);
2069		return ENETDOWN;
2070	}
2071	WPI_LOCK(sc);
2072
2073	/* management frames go into ring 0 */
2074	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2075		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2076		m_freem(m);
2077		WPI_UNLOCK(sc);
2078		ieee80211_free_node(ni);
2079		return ENOBUFS;		/* XXX */
2080	}
2081
2082	ifp->if_opackets++;
2083	if (wpi_tx_data(sc, m, ni, 0) != 0)
2084		goto bad;
2085	sc->sc_tx_timer = 5;
2086	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2087
2088	WPI_UNLOCK(sc);
2089	return 0;
2090bad:
2091	ifp->if_oerrors++;
2092	WPI_UNLOCK(sc);
2093	ieee80211_free_node(ni);
2094	return EIO;		/* XXX */
2095}
2096
2097static int
2098wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2099{
2100	struct wpi_softc *sc = ifp->if_softc;
2101	struct ieee80211com *ic = ifp->if_l2com;
2102	struct ifreq *ifr = (struct ifreq *) data;
2103	int error = 0, startall = 0;
2104
2105	switch (cmd) {
2106	case SIOCSIFFLAGS:
2107		WPI_LOCK(sc);
2108		if ((ifp->if_flags & IFF_UP)) {
2109			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2110				wpi_init_locked(sc, 0);
2111				startall = 1;
2112			}
2113		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2114			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2115			wpi_stop_locked(sc);
2116		WPI_UNLOCK(sc);
2117		if (startall)
2118			ieee80211_start_all(ic);
2119		break;
2120	case SIOCGIFMEDIA:
2121		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2122		break;
2123	case SIOCGIFADDR:
2124		error = ether_ioctl(ifp, cmd, data);
2125		break;
2126	default:
2127		error = EINVAL;
2128		break;
2129	}
2130	return error;
2131}
2132
2133/*
2134 * Extract various information from EEPROM.
2135 */
2136static void
2137wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2138{
2139	int i;
2140
2141	/* read the hardware capabilities, revision and SKU type */
2142	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2143	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2144	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2145
2146	/* read the regulatory domain */
2147	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2148
2149	/* read in the hw MAC address */
2150	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2151
2152	/* read the list of authorized channels */
2153	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2154		wpi_read_eeprom_channels(sc,i);
2155
2156	/* read the power level calibration info for each group */
2157	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2158		wpi_read_eeprom_group(sc,i);
2159}
2160
2161/*
2162 * Send a command to the firmware.
2163 */
2164static int
2165wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2166{
2167	struct wpi_tx_ring *ring = &sc->cmdq;
2168	struct wpi_tx_desc *desc;
2169	struct wpi_tx_cmd *cmd;
2170
2171#ifdef WPI_DEBUG
2172	if (!async) {
2173		WPI_LOCK_ASSERT(sc);
2174	}
2175#endif
2176
2177	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2178		    async));
2179
2180	if (sc->flags & WPI_FLAG_BUSY) {
2181		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2182		    __func__, code);
2183		return EAGAIN;
2184	}
2185	sc->flags|= WPI_FLAG_BUSY;
2186
2187	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2188	    code, size));
2189
2190	desc = &ring->desc[ring->cur];
2191	cmd = &ring->cmd[ring->cur];
2192
2193	cmd->code = code;
2194	cmd->flags = 0;
2195	cmd->qid = ring->qid;
2196	cmd->idx = ring->cur;
2197	memcpy(cmd->data, buf, size);
2198
2199	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2200	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2201		ring->cur * sizeof (struct wpi_tx_cmd));
2202	desc->segs[0].len  = htole32(4 + size);
2203
2204	/* kick cmd ring */
2205	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2206	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2207
2208	if (async) {
2209		sc->flags &= ~ WPI_FLAG_BUSY;
2210		return 0;
2211	}
2212
2213	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2214}
2215
2216static int
2217wpi_wme_update(struct ieee80211com *ic)
2218{
2219#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2220#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2221	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2222	const struct wmeParams *wmep;
2223	struct wpi_wme_setup wme;
2224	int ac;
2225
2226	/* don't override default WME values if WME is not actually enabled */
2227	if (!(ic->ic_flags & IEEE80211_F_WME))
2228		return 0;
2229
2230	wme.flags = 0;
2231	for (ac = 0; ac < WME_NUM_AC; ac++) {
2232		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2233		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2234		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2235		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2236		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2237
2238		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2239		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2240		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2241	}
2242	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2243#undef WPI_USEC
2244#undef WPI_EXP2
2245}
2246
2247/*
2248 * Configure h/w multi-rate retries.
2249 */
2250static int
2251wpi_mrr_setup(struct wpi_softc *sc)
2252{
2253	struct ifnet *ifp = sc->sc_ifp;
2254	struct ieee80211com *ic = ifp->if_l2com;
2255	struct wpi_mrr_setup mrr;
2256	int i, error;
2257
2258	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2259
2260	/* CCK rates (not used with 802.11a) */
2261	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2262		mrr.rates[i].flags = 0;
2263		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2264		/* fallback to the immediate lower CCK rate (if any) */
2265		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2266		/* try one time at this rate before falling back to "next" */
2267		mrr.rates[i].ntries = 1;
2268	}
2269
2270	/* OFDM rates (not used with 802.11b) */
2271	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2272		mrr.rates[i].flags = 0;
2273		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2274		/* fallback to the immediate lower OFDM rate (if any) */
2275		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2276		mrr.rates[i].next = (i == WPI_OFDM6) ?
2277		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2278			WPI_OFDM6 : WPI_CCK2) :
2279		    i - 1;
2280		/* try one time at this rate before falling back to "next" */
2281		mrr.rates[i].ntries = 1;
2282	}
2283
2284	/* setup MRR for control frames */
2285	mrr.which = htole32(WPI_MRR_CTL);
2286	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2287	if (error != 0) {
2288		device_printf(sc->sc_dev,
2289		    "could not setup MRR for control frames\n");
2290		return error;
2291	}
2292
2293	/* setup MRR for data frames */
2294	mrr.which = htole32(WPI_MRR_DATA);
2295	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2296	if (error != 0) {
2297		device_printf(sc->sc_dev,
2298		    "could not setup MRR for data frames\n");
2299		return error;
2300	}
2301
2302	return 0;
2303}
2304
2305static void
2306wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2307{
2308	struct wpi_cmd_led led;
2309
2310	led.which = which;
2311	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2312	led.off = off;
2313	led.on = on;
2314
2315	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2316}
2317
2318static void
2319wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2320{
2321	struct wpi_cmd_tsf tsf;
2322	uint64_t val, mod;
2323
2324	memset(&tsf, 0, sizeof tsf);
2325	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2326	tsf.bintval = htole16(ni->ni_intval);
2327	tsf.lintval = htole16(10);
2328
2329	/* compute remaining time until next beacon */
2330	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2331	mod = le64toh(tsf.tstamp) % val;
2332	tsf.binitval = htole32((uint32_t)(val - mod));
2333
2334	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2335		device_printf(sc->sc_dev, "could not enable TSF\n");
2336}
2337
2338#if 0
2339/*
2340 * Build a beacon frame that the firmware will broadcast periodically in
2341 * IBSS or HostAP modes.
2342 */
2343static int
2344wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2345{
2346	struct ifnet *ifp = sc->sc_ifp;
2347	struct ieee80211com *ic = ifp->if_l2com;
2348	struct wpi_tx_ring *ring = &sc->cmdq;
2349	struct wpi_tx_desc *desc;
2350	struct wpi_tx_data *data;
2351	struct wpi_tx_cmd *cmd;
2352	struct wpi_cmd_beacon *bcn;
2353	struct ieee80211_beacon_offsets bo;
2354	struct mbuf *m0;
2355	bus_addr_t physaddr;
2356	int error;
2357
2358	desc = &ring->desc[ring->cur];
2359	data = &ring->data[ring->cur];
2360
2361	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2362	if (m0 == NULL) {
2363		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2364		return ENOMEM;
2365	}
2366
2367	cmd = &ring->cmd[ring->cur];
2368	cmd->code = WPI_CMD_SET_BEACON;
2369	cmd->flags = 0;
2370	cmd->qid = ring->qid;
2371	cmd->idx = ring->cur;
2372
2373	bcn = (struct wpi_cmd_beacon *)cmd->data;
2374	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2375	bcn->id = WPI_ID_BROADCAST;
2376	bcn->ofdm_mask = 0xff;
2377	bcn->cck_mask = 0x0f;
2378	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2379	bcn->len = htole16(m0->m_pkthdr.len);
2380	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2381		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2382	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2383
2384	/* save and trim IEEE802.11 header */
2385	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2386	m_adj(m0, sizeof (struct ieee80211_frame));
2387
2388	/* assume beacon frame is contiguous */
2389	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2390	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2391	if (error != 0) {
2392		device_printf(sc->sc_dev, "could not map beacon\n");
2393		m_freem(m0);
2394		return error;
2395	}
2396
2397	data->m = m0;
2398
2399	/* first scatter/gather segment is used by the beacon command */
2400	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2401	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2402		ring->cur * sizeof (struct wpi_tx_cmd));
2403	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2404	desc->segs[1].addr = htole32(physaddr);
2405	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2406
2407	/* kick cmd ring */
2408	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2409	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2410
2411	return 0;
2412}
2413#endif
2414
2415static int
2416wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2417{
2418	struct ieee80211com *ic = vap->iv_ic;
2419	struct ieee80211_node *ni = vap->iv_bss;
2420	struct wpi_node_info node;
2421	int error;
2422
2423
2424	/* update adapter's configuration */
2425	sc->config.associd = 0;
2426	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2427	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2428	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2429	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2430		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2431		    WPI_CONFIG_24GHZ);
2432	} else {
2433		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2434		    WPI_CONFIG_24GHZ);
2435	}
2436	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2437		sc->config.cck_mask  = 0;
2438		sc->config.ofdm_mask = 0x15;
2439	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2440		sc->config.cck_mask  = 0x03;
2441		sc->config.ofdm_mask = 0;
2442	} else {
2443		/* XXX assume 802.11b/g */
2444		sc->config.cck_mask  = 0x0f;
2445		sc->config.ofdm_mask = 0x15;
2446	}
2447
2448	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2449		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2450	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2451		sizeof (struct wpi_config), 1);
2452	if (error != 0) {
2453		device_printf(sc->sc_dev, "could not configure\n");
2454		return error;
2455	}
2456
2457	/* configuration has changed, set Tx power accordingly */
2458	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2459		device_printf(sc->sc_dev, "could not set Tx power\n");
2460		return error;
2461	}
2462
2463	/* add default node */
2464	memset(&node, 0, sizeof node);
2465	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2466	node.id = WPI_ID_BSS;
2467	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2468	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2469	node.action = htole32(WPI_ACTION_SET_RATE);
2470	node.antenna = WPI_ANTENNA_BOTH;
2471	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2472	if (error != 0)
2473		device_printf(sc->sc_dev, "could not add BSS node\n");
2474
2475	return (error);
2476}
2477
2478static int
2479wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2480{
2481	struct ieee80211com *ic = vap->iv_ic;
2482	struct ieee80211_node *ni = vap->iv_bss;
2483	int error;
2484
2485	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2486		/* link LED blinks while monitoring */
2487		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2488		return 0;
2489	}
2490
2491	wpi_enable_tsf(sc, ni);
2492
2493	/* update adapter's configuration */
2494	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2495	/* short preamble/slot time are negotiated when associating */
2496	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2497	    WPI_CONFIG_SHSLOT);
2498	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2499		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2500	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2501		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2502	sc->config.filter |= htole32(WPI_FILTER_BSS);
2503
2504	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2505
2506	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2507		    sc->config.flags));
2508	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2509		    wpi_config), 1);
2510	if (error != 0) {
2511		device_printf(sc->sc_dev, "could not update configuration\n");
2512		return error;
2513	}
2514
2515	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2516	if (error != 0) {
2517		device_printf(sc->sc_dev, "could set txpower\n");
2518		return error;
2519	}
2520
2521	/* link LED always on while associated */
2522	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2523
2524	/* start automatic rate control timer */
2525	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2526
2527	return (error);
2528}
2529
2530/*
2531 * Send a scan request to the firmware.  Since this command is huge, we map it
2532 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2533 * much of this code is similar to that in wpi_cmd but because we must manually
2534 * construct the probe & channels, we duplicate what's needed here. XXX In the
2535 * future, this function should be modified to use wpi_cmd to help cleanup the
2536 * code base.
2537 */
2538static int
2539wpi_scan(struct wpi_softc *sc)
2540{
2541	struct ifnet *ifp = sc->sc_ifp;
2542	struct ieee80211com *ic = ifp->if_l2com;
2543	struct ieee80211_scan_state *ss = ic->ic_scan;
2544	struct wpi_tx_ring *ring = &sc->cmdq;
2545	struct wpi_tx_desc *desc;
2546	struct wpi_tx_data *data;
2547	struct wpi_tx_cmd *cmd;
2548	struct wpi_scan_hdr *hdr;
2549	struct wpi_scan_chan *chan;
2550	struct ieee80211_frame *wh;
2551	struct ieee80211_rateset *rs;
2552	struct ieee80211_channel *c;
2553	enum ieee80211_phymode mode;
2554	uint8_t *frm;
2555	int nrates, pktlen, error, i, nssid;
2556	bus_addr_t physaddr;
2557
2558	desc = &ring->desc[ring->cur];
2559	data = &ring->data[ring->cur];
2560
2561	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2562	if (data->m == NULL) {
2563		device_printf(sc->sc_dev,
2564		    "could not allocate mbuf for scan command\n");
2565		return ENOMEM;
2566	}
2567
2568	cmd = mtod(data->m, struct wpi_tx_cmd *);
2569	cmd->code = WPI_CMD_SCAN;
2570	cmd->flags = 0;
2571	cmd->qid = ring->qid;
2572	cmd->idx = ring->cur;
2573
2574	hdr = (struct wpi_scan_hdr *)cmd->data;
2575	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2576
2577	/*
2578	 * Move to the next channel if no packets are received within 5 msecs
2579	 * after sending the probe request (this helps to reduce the duration
2580	 * of active scans).
2581	 */
2582	hdr->quiet = htole16(5);
2583	hdr->threshold = htole16(1);
2584
2585	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2586		/* send probe requests at 6Mbps */
2587		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2588
2589		/* Enable crc checking */
2590		hdr->promotion = htole16(1);
2591	} else {
2592		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2593		/* send probe requests at 1Mbps */
2594		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2595	}
2596	hdr->tx.id = WPI_ID_BROADCAST;
2597	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2598	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2599
2600	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2601	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2602	for (i = 0; i < nssid; i++) {
2603		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2604		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2605		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2606		    hdr->scan_essids[i].esslen);
2607#ifdef WPI_DEBUG
2608		if (wpi_debug & WPI_DEBUG_SCANNING) {
2609			printf("Scanning Essid: ");
2610			ieee80211_print_essid(hdr->scan_essids[i].essid,
2611			    hdr->scan_essids[i].esslen);
2612			printf("\n");
2613		}
2614#endif
2615	}
2616
2617	/*
2618	 * Build a probe request frame.  Most of the following code is a
2619	 * copy & paste of what is done in net80211.
2620	 */
2621	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2622	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2623		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2624	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2625	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2626	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2627	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2628	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2629	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2630
2631	frm = (uint8_t *)(wh + 1);
2632
2633	/* add essid IE, the hardware will fill this in for us */
2634	*frm++ = IEEE80211_ELEMID_SSID;
2635	*frm++ = 0;
2636
2637	mode = ieee80211_chan2mode(ic->ic_curchan);
2638	rs = &ic->ic_sup_rates[mode];
2639
2640	/* add supported rates IE */
2641	*frm++ = IEEE80211_ELEMID_RATES;
2642	nrates = rs->rs_nrates;
2643	if (nrates > IEEE80211_RATE_SIZE)
2644		nrates = IEEE80211_RATE_SIZE;
2645	*frm++ = nrates;
2646	memcpy(frm, rs->rs_rates, nrates);
2647	frm += nrates;
2648
2649	/* add supported xrates IE */
2650	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2651		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2652		*frm++ = IEEE80211_ELEMID_XRATES;
2653		*frm++ = nrates;
2654		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2655		frm += nrates;
2656	}
2657
2658	/* setup length of probe request */
2659	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2660
2661	/*
2662	 * Construct information about the channel that we
2663	 * want to scan. The firmware expects this to be directly
2664	 * after the scan probe request
2665	 */
2666	c = ic->ic_curchan;
2667	chan = (struct wpi_scan_chan *)frm;
2668	chan->chan = ieee80211_chan2ieee(ic, c);
2669	chan->flags = 0;
2670	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2671		chan->flags |= WPI_CHAN_ACTIVE;
2672		if (nssid != 0)
2673			chan->flags |= WPI_CHAN_DIRECT;
2674	}
2675	chan->gain_dsp = 0x6e; /* Default level */
2676	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2677		chan->active = htole16(10);
2678		chan->passive = htole16(ss->ss_maxdwell);
2679		chan->gain_radio = 0x3b;
2680	} else {
2681		chan->active = htole16(20);
2682		chan->passive = htole16(ss->ss_maxdwell);
2683		chan->gain_radio = 0x28;
2684	}
2685
2686	DPRINTFN(WPI_DEBUG_SCANNING,
2687	    ("Scanning %u Passive: %d\n",
2688	     chan->chan,
2689	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2690
2691	hdr->nchan++;
2692	chan++;
2693
2694	frm += sizeof (struct wpi_scan_chan);
2695#if 0
2696	// XXX All Channels....
2697	for (c  = &ic->ic_channels[1];
2698	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2699		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2700			continue;
2701
2702		chan->chan = ieee80211_chan2ieee(ic, c);
2703		chan->flags = 0;
2704		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2705		    chan->flags |= WPI_CHAN_ACTIVE;
2706		    if (ic->ic_des_ssid[0].len != 0)
2707			chan->flags |= WPI_CHAN_DIRECT;
2708		}
2709		chan->gain_dsp = 0x6e; /* Default level */
2710		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2711			chan->active = htole16(10);
2712			chan->passive = htole16(110);
2713			chan->gain_radio = 0x3b;
2714		} else {
2715			chan->active = htole16(20);
2716			chan->passive = htole16(120);
2717			chan->gain_radio = 0x28;
2718		}
2719
2720		DPRINTFN(WPI_DEBUG_SCANNING,
2721			 ("Scanning %u Passive: %d\n",
2722			  chan->chan,
2723			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2724
2725		hdr->nchan++;
2726		chan++;
2727
2728		frm += sizeof (struct wpi_scan_chan);
2729	}
2730#endif
2731
2732	hdr->len = htole16(frm - (uint8_t *)hdr);
2733	pktlen = frm - (uint8_t *)cmd;
2734
2735	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2736	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2737	if (error != 0) {
2738		device_printf(sc->sc_dev, "could not map scan command\n");
2739		m_freem(data->m);
2740		data->m = NULL;
2741		return error;
2742	}
2743
2744	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2745	desc->segs[0].addr = htole32(physaddr);
2746	desc->segs[0].len  = htole32(pktlen);
2747
2748	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2749	    BUS_DMASYNC_PREWRITE);
2750	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2751
2752	/* kick cmd ring */
2753	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2754	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2755
2756	sc->sc_scan_timer = 5;
2757	return 0;	/* will be notified async. of failure/success */
2758}
2759
2760/**
2761 * Configure the card to listen to a particular channel, this transisions the
2762 * card in to being able to receive frames from remote devices.
2763 */
2764static int
2765wpi_config(struct wpi_softc *sc)
2766{
2767	struct ifnet *ifp = sc->sc_ifp;
2768	struct ieee80211com *ic = ifp->if_l2com;
2769	struct wpi_power power;
2770	struct wpi_bluetooth bluetooth;
2771	struct wpi_node_info node;
2772	int error;
2773
2774	/* set power mode */
2775	memset(&power, 0, sizeof power);
2776	power.flags = htole32(WPI_POWER_CAM|0x8);
2777	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2778	if (error != 0) {
2779		device_printf(sc->sc_dev, "could not set power mode\n");
2780		return error;
2781	}
2782
2783	/* configure bluetooth coexistence */
2784	memset(&bluetooth, 0, sizeof bluetooth);
2785	bluetooth.flags = 3;
2786	bluetooth.lead = 0xaa;
2787	bluetooth.kill = 1;
2788	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2789	    0);
2790	if (error != 0) {
2791		device_printf(sc->sc_dev,
2792		    "could not configure bluetooth coexistence\n");
2793		return error;
2794	}
2795
2796	/* configure adapter */
2797	memset(&sc->config, 0, sizeof (struct wpi_config));
2798	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2799	/*set default channel*/
2800	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2801	sc->config.flags = htole32(WPI_CONFIG_TSF);
2802	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2803		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2804		    WPI_CONFIG_24GHZ);
2805	}
2806	sc->config.filter = 0;
2807	switch (ic->ic_opmode) {
2808	case IEEE80211_M_STA:
2809	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2810		sc->config.mode = WPI_MODE_STA;
2811		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2812		break;
2813	case IEEE80211_M_IBSS:
2814	case IEEE80211_M_AHDEMO:
2815		sc->config.mode = WPI_MODE_IBSS;
2816		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2817					     WPI_FILTER_MULTICAST);
2818		break;
2819	case IEEE80211_M_HOSTAP:
2820		sc->config.mode = WPI_MODE_HOSTAP;
2821		break;
2822	case IEEE80211_M_MONITOR:
2823		sc->config.mode = WPI_MODE_MONITOR;
2824		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2825			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2826		break;
2827	default:
2828		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2829		return EINVAL;
2830	}
2831	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2832	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2833	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2834		sizeof (struct wpi_config), 0);
2835	if (error != 0) {
2836		device_printf(sc->sc_dev, "configure command failed\n");
2837		return error;
2838	}
2839
2840	/* configuration has changed, set Tx power accordingly */
2841	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2842	    device_printf(sc->sc_dev, "could not set Tx power\n");
2843	    return error;
2844	}
2845
2846	/* add broadcast node */
2847	memset(&node, 0, sizeof node);
2848	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2849	node.id = WPI_ID_BROADCAST;
2850	node.rate = wpi_plcp_signal(2);
2851	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2852	if (error != 0) {
2853		device_printf(sc->sc_dev, "could not add broadcast node\n");
2854		return error;
2855	}
2856
2857	/* Setup rate scalling */
2858	error = wpi_mrr_setup(sc);
2859	if (error != 0) {
2860		device_printf(sc->sc_dev, "could not setup MRR\n");
2861		return error;
2862	}
2863
2864	return 0;
2865}
2866
2867static void
2868wpi_stop_master(struct wpi_softc *sc)
2869{
2870	uint32_t tmp;
2871	int ntries;
2872
2873	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2874
2875	tmp = WPI_READ(sc, WPI_RESET);
2876	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2877
2878	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2879	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2880		return;	/* already asleep */
2881
2882	for (ntries = 0; ntries < 100; ntries++) {
2883		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2884			break;
2885		DELAY(10);
2886	}
2887	if (ntries == 100) {
2888		device_printf(sc->sc_dev, "timeout waiting for master\n");
2889	}
2890}
2891
2892static int
2893wpi_power_up(struct wpi_softc *sc)
2894{
2895	uint32_t tmp;
2896	int ntries;
2897
2898	wpi_mem_lock(sc);
2899	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2900	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2901	wpi_mem_unlock(sc);
2902
2903	for (ntries = 0; ntries < 5000; ntries++) {
2904		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2905			break;
2906		DELAY(10);
2907	}
2908	if (ntries == 5000) {
2909		device_printf(sc->sc_dev,
2910		    "timeout waiting for NIC to power up\n");
2911		return ETIMEDOUT;
2912	}
2913	return 0;
2914}
2915
2916static int
2917wpi_reset(struct wpi_softc *sc)
2918{
2919	uint32_t tmp;
2920	int ntries;
2921
2922	DPRINTFN(WPI_DEBUG_HW,
2923	    ("Resetting the card - clearing any uploaded firmware\n"));
2924
2925	/* clear any pending interrupts */
2926	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2927
2928	tmp = WPI_READ(sc, WPI_PLL_CTL);
2929	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2930
2931	tmp = WPI_READ(sc, WPI_CHICKEN);
2932	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2933
2934	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2935	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2936
2937	/* wait for clock stabilization */
2938	for (ntries = 0; ntries < 25000; ntries++) {
2939		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2940			break;
2941		DELAY(10);
2942	}
2943	if (ntries == 25000) {
2944		device_printf(sc->sc_dev,
2945		    "timeout waiting for clock stabilization\n");
2946		return ETIMEDOUT;
2947	}
2948
2949	/* initialize EEPROM */
2950	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2951
2952	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2953		device_printf(sc->sc_dev, "EEPROM not found\n");
2954		return EIO;
2955	}
2956	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2957
2958	return 0;
2959}
2960
2961static void
2962wpi_hw_config(struct wpi_softc *sc)
2963{
2964	uint32_t rev, hw;
2965
2966	/* voodoo from the Linux "driver".. */
2967	hw = WPI_READ(sc, WPI_HWCONFIG);
2968
2969	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2970	if ((rev & 0xc0) == 0x40)
2971		hw |= WPI_HW_ALM_MB;
2972	else if (!(rev & 0x80))
2973		hw |= WPI_HW_ALM_MM;
2974
2975	if (sc->cap == 0x80)
2976		hw |= WPI_HW_SKU_MRC;
2977
2978	hw &= ~WPI_HW_REV_D;
2979	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2980		hw |= WPI_HW_REV_D;
2981
2982	if (sc->type > 1)
2983		hw |= WPI_HW_TYPE_B;
2984
2985	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2986}
2987
2988static void
2989wpi_rfkill_resume(struct wpi_softc *sc)
2990{
2991	struct ifnet *ifp = sc->sc_ifp;
2992	struct ieee80211com *ic = ifp->if_l2com;
2993	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2994	int ntries;
2995
2996	/* enable firmware again */
2997	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2998	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2999
3000	/* wait for thermal sensors to calibrate */
3001	for (ntries = 0; ntries < 1000; ntries++) {
3002		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3003			break;
3004		DELAY(10);
3005	}
3006
3007	if (ntries == 1000) {
3008		device_printf(sc->sc_dev,
3009		    "timeout waiting for thermal calibration\n");
3010		return;
3011	}
3012	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3013
3014	if (wpi_config(sc) != 0) {
3015		device_printf(sc->sc_dev, "device config failed\n");
3016		return;
3017	}
3018
3019	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3020	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3021	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3022
3023	if (vap != NULL) {
3024		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3025			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3026				ieee80211_beacon_miss(ic);
3027				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3028			} else
3029				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3030		} else {
3031			ieee80211_scan_next(vap);
3032			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3033		}
3034	}
3035
3036	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3037}
3038
3039static void
3040wpi_init_locked(struct wpi_softc *sc, int force)
3041{
3042	struct ifnet *ifp = sc->sc_ifp;
3043	uint32_t tmp;
3044	int ntries, qid;
3045
3046	wpi_stop_locked(sc);
3047	(void)wpi_reset(sc);
3048
3049	wpi_mem_lock(sc);
3050	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051	DELAY(20);
3052	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054	wpi_mem_unlock(sc);
3055
3056	(void)wpi_power_up(sc);
3057	wpi_hw_config(sc);
3058
3059	/* init Rx ring */
3060	wpi_mem_lock(sc);
3061	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063	    offsetof(struct wpi_shared, next));
3064	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066	wpi_mem_unlock(sc);
3067
3068	/* init Tx rings */
3069	wpi_mem_lock(sc);
3070	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077
3078	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080
3081	for (qid = 0; qid < 6; qid++) {
3082		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085	}
3086	wpi_mem_unlock(sc);
3087
3088	/* clear "radio off" and "disable command" bits (reversed logic) */
3089	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092
3093	/* clear any pending interrupts */
3094	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095
3096	/* enable interrupts */
3097	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098
3099	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101
3102	if ((wpi_load_firmware(sc)) != 0) {
3103	    device_printf(sc->sc_dev,
3104		"A problem occurred loading the firmware to the driver\n");
3105	    return;
3106	}
3107
3108	/* At this point the firmware is up and running. If the hardware
3109	 * RF switch is turned off thermal calibration will fail, though
3110	 * the card is still happy to continue to accept commands, catch
3111	 * this case and schedule a task to watch for it to be turned on.
3112	 */
3113	wpi_mem_lock(sc);
3114	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115	wpi_mem_unlock(sc);
3116
3117	if (!(tmp & 0x1)) {
3118		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120		goto out;
3121	}
3122
3123	/* wait for thermal sensors to calibrate */
3124	for (ntries = 0; ntries < 1000; ntries++) {
3125		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126			break;
3127		DELAY(10);
3128	}
3129
3130	if (ntries == 1000) {
3131		device_printf(sc->sc_dev,
3132		    "timeout waiting for thermal sensors calibration\n");
3133		return;
3134	}
3135	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136
3137	if (wpi_config(sc) != 0) {
3138		device_printf(sc->sc_dev, "device config failed\n");
3139		return;
3140	}
3141
3142	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144out:
3145	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146}
3147
3148static void
3149wpi_init(void *arg)
3150{
3151	struct wpi_softc *sc = arg;
3152	struct ifnet *ifp = sc->sc_ifp;
3153	struct ieee80211com *ic = ifp->if_l2com;
3154
3155	WPI_LOCK(sc);
3156	wpi_init_locked(sc, 0);
3157	WPI_UNLOCK(sc);
3158
3159	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3160		ieee80211_start_all(ic);		/* start all vaps */
3161}
3162
3163static void
3164wpi_stop_locked(struct wpi_softc *sc)
3165{
3166	struct ifnet *ifp = sc->sc_ifp;
3167	uint32_t tmp;
3168	int ac;
3169
3170	sc->sc_tx_timer = 0;
3171	sc->sc_scan_timer = 0;
3172	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3173	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3174	callout_stop(&sc->watchdog_to);
3175	callout_stop(&sc->calib_to);
3176
3177
3178	/* disable interrupts */
3179	WPI_WRITE(sc, WPI_MASK, 0);
3180	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183
3184	wpi_mem_lock(sc);
3185	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186	wpi_mem_unlock(sc);
3187
3188	/* reset all Tx rings */
3189	for (ac = 0; ac < 4; ac++)
3190		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191	wpi_reset_tx_ring(sc, &sc->cmdq);
3192
3193	/* reset Rx ring */
3194	wpi_reset_rx_ring(sc, &sc->rxq);
3195
3196	wpi_mem_lock(sc);
3197	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198	wpi_mem_unlock(sc);
3199
3200	DELAY(5);
3201
3202	wpi_stop_master(sc);
3203
3204	tmp = WPI_READ(sc, WPI_RESET);
3205	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206	sc->flags &= ~WPI_FLAG_BUSY;
3207}
3208
3209static void
3210wpi_stop(struct wpi_softc *sc)
3211{
3212	WPI_LOCK(sc);
3213	wpi_stop_locked(sc);
3214	WPI_UNLOCK(sc);
3215}
3216
3217static void
3218wpi_newassoc(struct ieee80211_node *ni, int isnew)
3219{
3220
3221	/* XXX move */
3222	ieee80211_ratectl_node_init(ni);
3223}
3224
3225static void
3226wpi_calib_timeout(void *arg)
3227{
3228	struct wpi_softc *sc = arg;
3229	struct ifnet *ifp = sc->sc_ifp;
3230	struct ieee80211com *ic = ifp->if_l2com;
3231	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3232	int temp;
3233
3234	if (vap->iv_state != IEEE80211_S_RUN)
3235		return;
3236
3237	/* update sensor data */
3238	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3239	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3240
3241	wpi_power_calibration(sc, temp);
3242
3243	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3244}
3245
3246/*
3247 * This function is called periodically (every 60 seconds) to adjust output
3248 * power to temperature changes.
3249 */
3250static void
3251wpi_power_calibration(struct wpi_softc *sc, int temp)
3252{
3253	struct ifnet *ifp = sc->sc_ifp;
3254	struct ieee80211com *ic = ifp->if_l2com;
3255	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3256
3257	/* sanity-check read value */
3258	if (temp < -260 || temp > 25) {
3259		/* this can't be correct, ignore */
3260		DPRINTFN(WPI_DEBUG_TEMP,
3261		    ("out-of-range temperature reported: %d\n", temp));
3262		return;
3263	}
3264
3265	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3266
3267	/* adjust Tx power if need be */
3268	if (abs(temp - sc->temp) <= 6)
3269		return;
3270
3271	sc->temp = temp;
3272
3273	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3274		/* just warn, too bad for the automatic calibration... */
3275		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3276	}
3277}
3278
3279/**
3280 * Read the eeprom to find out what channels are valid for the given
3281 * band and update net80211 with what we find.
3282 */
3283static void
3284wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3285{
3286	struct ifnet *ifp = sc->sc_ifp;
3287	struct ieee80211com *ic = ifp->if_l2com;
3288	const struct wpi_chan_band *band = &wpi_bands[n];
3289	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3290	struct ieee80211_channel *c;
3291	int chan, i, passive;
3292
3293	wpi_read_prom_data(sc, band->addr, channels,
3294	    band->nchan * sizeof (struct wpi_eeprom_chan));
3295
3296	for (i = 0; i < band->nchan; i++) {
3297		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3298			DPRINTFN(WPI_DEBUG_HW,
3299			    ("Channel Not Valid: %d, band %d\n",
3300			     band->chan[i],n));
3301			continue;
3302		}
3303
3304		passive = 0;
3305		chan = band->chan[i];
3306		c = &ic->ic_channels[ic->ic_nchans++];
3307
3308		/* is active scan allowed on this channel? */
3309		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3310			passive = IEEE80211_CHAN_PASSIVE;
3311		}
3312
3313		if (n == 0) {	/* 2GHz band */
3314			c->ic_ieee = chan;
3315			c->ic_freq = ieee80211_ieee2mhz(chan,
3316			    IEEE80211_CHAN_2GHZ);
3317			c->ic_flags = IEEE80211_CHAN_B | passive;
3318
3319			c = &ic->ic_channels[ic->ic_nchans++];
3320			c->ic_ieee = chan;
3321			c->ic_freq = ieee80211_ieee2mhz(chan,
3322			    IEEE80211_CHAN_2GHZ);
3323			c->ic_flags = IEEE80211_CHAN_G | passive;
3324
3325		} else {	/* 5GHz band */
3326			/*
3327			 * Some 3945ABG adapters support channels 7, 8, 11
3328			 * and 12 in the 2GHz *and* 5GHz bands.
3329			 * Because of limitations in our net80211(9) stack,
3330			 * we can't support these channels in 5GHz band.
3331			 * XXX not true; just need to map to proper frequency
3332			 */
3333			if (chan <= 14)
3334				continue;
3335
3336			c->ic_ieee = chan;
3337			c->ic_freq = ieee80211_ieee2mhz(chan,
3338			    IEEE80211_CHAN_5GHZ);
3339			c->ic_flags = IEEE80211_CHAN_A | passive;
3340		}
3341
3342		/* save maximum allowed power for this channel */
3343		sc->maxpwr[chan] = channels[i].maxpwr;
3344
3345#if 0
3346		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3347		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3348		//ic->ic_channels[chan].ic_minpower...
3349		//ic->ic_channels[chan].ic_maxregtxpower...
3350#endif
3351
3352		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3353		    " passive=%d, offset %d\n", chan, c->ic_freq,
3354		    channels[i].flags, sc->maxpwr[chan],
3355		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3356		    ic->ic_nchans));
3357	}
3358}
3359
3360static void
3361wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3362{
3363	struct wpi_power_group *group = &sc->groups[n];
3364	struct wpi_eeprom_group rgroup;
3365	int i;
3366
3367	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3368	    sizeof rgroup);
3369
3370	/* save power group information */
3371	group->chan   = rgroup.chan;
3372	group->maxpwr = rgroup.maxpwr;
3373	/* temperature at which the samples were taken */
3374	group->temp   = (int16_t)le16toh(rgroup.temp);
3375
3376	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3377		    group->chan, group->maxpwr, group->temp));
3378
3379	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3380		group->samples[i].index = rgroup.samples[i].index;
3381		group->samples[i].power = rgroup.samples[i].power;
3382
3383		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3384			    group->samples[i].index, group->samples[i].power));
3385	}
3386}
3387
3388/*
3389 * Update Tx power to match what is defined for channel `c'.
3390 */
3391static int
3392wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3393{
3394	struct ifnet *ifp = sc->sc_ifp;
3395	struct ieee80211com *ic = ifp->if_l2com;
3396	struct wpi_power_group *group;
3397	struct wpi_cmd_txpower txpower;
3398	u_int chan;
3399	int i;
3400
3401	/* get channel number */
3402	chan = ieee80211_chan2ieee(ic, c);
3403
3404	/* find the power group to which this channel belongs */
3405	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3406		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3407			if (chan <= group->chan)
3408				break;
3409	} else
3410		group = &sc->groups[0];
3411
3412	memset(&txpower, 0, sizeof txpower);
3413	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3414	txpower.channel = htole16(chan);
3415
3416	/* set Tx power for all OFDM and CCK rates */
3417	for (i = 0; i <= 11 ; i++) {
3418		/* retrieve Tx power for this channel/rate combination */
3419		int idx = wpi_get_power_index(sc, group, c,
3420		    wpi_ridx_to_rate[i]);
3421
3422		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3423
3424		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3425			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3426			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3427		} else {
3428			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3429			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3430		}
3431		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3432			    chan, wpi_ridx_to_rate[i], idx));
3433	}
3434
3435	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3436}
3437
3438/*
3439 * Determine Tx power index for a given channel/rate combination.
3440 * This takes into account the regulatory information from EEPROM and the
3441 * current temperature.
3442 */
3443static int
3444wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3445    struct ieee80211_channel *c, int rate)
3446{
3447/* fixed-point arithmetic division using a n-bit fractional part */
3448#define fdivround(a, b, n)      \
3449	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3450
3451/* linear interpolation */
3452#define interpolate(x, x1, y1, x2, y2, n)       \
3453	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3454
3455	struct ifnet *ifp = sc->sc_ifp;
3456	struct ieee80211com *ic = ifp->if_l2com;
3457	struct wpi_power_sample *sample;
3458	int pwr, idx;
3459	u_int chan;
3460
3461	/* get channel number */
3462	chan = ieee80211_chan2ieee(ic, c);
3463
3464	/* default power is group's maximum power - 3dB */
3465	pwr = group->maxpwr / 2;
3466
3467	/* decrease power for highest OFDM rates to reduce distortion */
3468	switch (rate) {
3469		case 72:	/* 36Mb/s */
3470			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3471			break;
3472		case 96:	/* 48Mb/s */
3473			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3474			break;
3475		case 108:	/* 54Mb/s */
3476			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3477			break;
3478	}
3479
3480	/* never exceed channel's maximum allowed Tx power */
3481	pwr = min(pwr, sc->maxpwr[chan]);
3482
3483	/* retrieve power index into gain tables from samples */
3484	for (sample = group->samples; sample < &group->samples[3]; sample++)
3485		if (pwr > sample[1].power)
3486			break;
3487	/* fixed-point linear interpolation using a 19-bit fractional part */
3488	idx = interpolate(pwr, sample[0].power, sample[0].index,
3489	    sample[1].power, sample[1].index, 19);
3490
3491	/*
3492	 *  Adjust power index based on current temperature
3493	 *	- if colder than factory-calibrated: decreate output power
3494	 *	- if warmer than factory-calibrated: increase output power
3495	 */
3496	idx -= (sc->temp - group->temp) * 11 / 100;
3497
3498	/* decrease power for CCK rates (-5dB) */
3499	if (!WPI_RATE_IS_OFDM(rate))
3500		idx += 10;
3501
3502	/* keep power index in a valid range */
3503	if (idx < 0)
3504		return 0;
3505	if (idx > WPI_MAX_PWR_INDEX)
3506		return WPI_MAX_PWR_INDEX;
3507	return idx;
3508
3509#undef interpolate
3510#undef fdivround
3511}
3512
3513/**
3514 * Called by net80211 framework to indicate that a scan
3515 * is starting. This function doesn't actually do the scan,
3516 * wpi_scan_curchan starts things off. This function is more
3517 * of an early warning from the framework we should get ready
3518 * for the scan.
3519 */
3520static void
3521wpi_scan_start(struct ieee80211com *ic)
3522{
3523	struct ifnet *ifp = ic->ic_ifp;
3524	struct wpi_softc *sc = ifp->if_softc;
3525
3526	WPI_LOCK(sc);
3527	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3528	WPI_UNLOCK(sc);
3529}
3530
3531/**
3532 * Called by the net80211 framework, indicates that the
3533 * scan has ended. If there is a scan in progress on the card
3534 * then it should be aborted.
3535 */
3536static void
3537wpi_scan_end(struct ieee80211com *ic)
3538{
3539	/* XXX ignore */
3540}
3541
3542/**
3543 * Called by the net80211 framework to indicate to the driver
3544 * that the channel should be changed
3545 */
3546static void
3547wpi_set_channel(struct ieee80211com *ic)
3548{
3549	struct ifnet *ifp = ic->ic_ifp;
3550	struct wpi_softc *sc = ifp->if_softc;
3551	int error;
3552
3553	/*
3554	 * Only need to set the channel in Monitor mode. AP scanning and auth
3555	 * are already taken care of by their respective firmware commands.
3556	 */
3557	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3558		error = wpi_config(sc);
3559		if (error != 0)
3560			device_printf(sc->sc_dev,
3561			    "error %d settting channel\n", error);
3562	}
3563}
3564
3565/**
3566 * Called by net80211 to indicate that we need to scan the current
3567 * channel. The channel is previously be set via the wpi_set_channel
3568 * callback.
3569 */
3570static void
3571wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3572{
3573	struct ieee80211vap *vap = ss->ss_vap;
3574	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3575	struct wpi_softc *sc = ifp->if_softc;
3576
3577	WPI_LOCK(sc);
3578	if (wpi_scan(sc))
3579		ieee80211_cancel_scan(vap);
3580	WPI_UNLOCK(sc);
3581}
3582
3583/**
3584 * Called by the net80211 framework to indicate
3585 * the minimum dwell time has been met, terminate the scan.
3586 * We don't actually terminate the scan as the firmware will notify
3587 * us when it's finished and we have no way to interrupt it.
3588 */
3589static void
3590wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3591{
3592	/* NB: don't try to abort scan; wait for firmware to finish */
3593}
3594
3595static void
3596wpi_hwreset(void *arg, int pending)
3597{
3598	struct wpi_softc *sc = arg;
3599
3600	WPI_LOCK(sc);
3601	wpi_init_locked(sc, 0);
3602	WPI_UNLOCK(sc);
3603}
3604
3605static void
3606wpi_rfreset(void *arg, int pending)
3607{
3608	struct wpi_softc *sc = arg;
3609
3610	WPI_LOCK(sc);
3611	wpi_rfkill_resume(sc);
3612	WPI_UNLOCK(sc);
3613}
3614
3615/*
3616 * Allocate DMA-safe memory for firmware transfer.
3617 */
3618static int
3619wpi_alloc_fwmem(struct wpi_softc *sc)
3620{
3621	/* allocate enough contiguous space to store text and data */
3622	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3623	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3624	    BUS_DMA_NOWAIT);
3625}
3626
3627static void
3628wpi_free_fwmem(struct wpi_softc *sc)
3629{
3630	wpi_dma_contig_free(&sc->fw_dma);
3631}
3632
3633/**
3634 * Called every second, wpi_watchdog used by the watch dog timer
3635 * to check that the card is still alive
3636 */
3637static void
3638wpi_watchdog(void *arg)
3639{
3640	struct wpi_softc *sc = arg;
3641	struct ifnet *ifp = sc->sc_ifp;
3642	struct ieee80211com *ic = ifp->if_l2com;
3643	uint32_t tmp;
3644
3645	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3646
3647	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3648		/* No need to lock firmware memory */
3649		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3650
3651		if ((tmp & 0x1) == 0) {
3652			/* Radio kill switch is still off */
3653			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3654			return;
3655		}
3656
3657		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3658		ieee80211_runtask(ic, &sc->sc_radiotask);
3659		return;
3660	}
3661
3662	if (sc->sc_tx_timer > 0) {
3663		if (--sc->sc_tx_timer == 0) {
3664			device_printf(sc->sc_dev,"device timeout\n");
3665			ifp->if_oerrors++;
3666			ieee80211_runtask(ic, &sc->sc_restarttask);
3667		}
3668	}
3669	if (sc->sc_scan_timer > 0) {
3670		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3671		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3672			device_printf(sc->sc_dev,"scan timeout\n");
3673			ieee80211_cancel_scan(vap);
3674			ieee80211_runtask(ic, &sc->sc_restarttask);
3675		}
3676	}
3677
3678	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3679		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3680}
3681
3682#ifdef WPI_DEBUG
3683static const char *wpi_cmd_str(int cmd)
3684{
3685	switch (cmd) {
3686	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3687	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3688	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3689	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3690	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3691	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3692	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3693	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3694	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3695	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3696	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3697	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3698	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3699	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3700
3701	default:
3702		KASSERT(1, ("Unknown Command: %d\n", cmd));
3703		return "UNKNOWN CMD";	/* Make the compiler happy */
3704	}
3705}
3706#endif
3707
3708MODULE_DEPEND(wpi, pci,  1, 1, 1);
3709MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3710MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3711