ar5413.c revision 185380
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5413.c,v 1.8 2008/11/15 22:15:46 sam Exp $
18 */
19#include "opt_ah.h"
20
21#ifdef AH_SUPPORT_5413
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ah_eeprom_v3.h"
27
28#include "ar5212/ar5212.h"
29#include "ar5212/ar5212reg.h"
30#include "ar5212/ar5212phy.h"
31
32#define AH_5212_5413
33#include "ar5212/ar5212.ini"
34
35#define	N(a)	(sizeof(a)/sizeof(a[0]))
36
37struct ar5413State {
38	RF_HAL_FUNCS	base;		/* public state, must be first */
39	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
40
41	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
42	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
43	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
44	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
45	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
46
47	/*
48	 * Private state for reduced stack usage.
49	 */
50	/* filled out Vpd table for all pdGains (chanL) */
51	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
52			    [MAX_PWR_RANGE_IN_HALF_DB];
53	/* filled out Vpd table for all pdGains (chanR) */
54	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
55			    [MAX_PWR_RANGE_IN_HALF_DB];
56	/* filled out Vpd table for all pdGains (interpolated) */
57	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
58			    [MAX_PWR_RANGE_IN_HALF_DB];
59};
60#define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
61
62extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63		uint32_t numBits, uint32_t firstBit, uint32_t column);
64
65static void
66ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67	int writes)
68{
69	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
70	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
71	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
72}
73
74/*
75 * Take the MHz channel value and set the Channel value
76 *
77 * ASSUMES: Writes enabled to analog bus
78 */
79static HAL_BOOL
80ar5413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
81{
82	uint32_t channelSel  = 0;
83	uint32_t bModeSynth  = 0;
84	uint32_t aModeRefSel = 0;
85	uint32_t reg32       = 0;
86	uint16_t freq;
87
88	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
89
90	if (chan->channel < 4800) {
91		uint32_t txctl;
92
93		if (((chan->channel - 2192) % 5) == 0) {
94			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
95			bModeSynth = 0;
96		} else if (((chan->channel - 2224) % 5) == 0) {
97			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
98			bModeSynth = 1;
99		} else {
100			HALDEBUG(ah, HAL_DEBUG_ANY,
101			    "%s: invalid channel %u MHz\n",
102			    __func__, chan->channel);
103			return AH_FALSE;
104		}
105
106		channelSel = (channelSel << 2) & 0xff;
107		channelSel = ath_hal_reverseBits(channelSel, 8);
108
109		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110		if (chan->channel == 2484) {
111			/* Enable channel spreading for channel 14 */
112			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114		} else {
115			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117		}
118	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
119		freq = chan->channel - 2; /* Align to even 5MHz raster */
120		channelSel = ath_hal_reverseBits(
121			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122            	aModeRefSel = ath_hal_reverseBits(0, 2);
123	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
124		channelSel = ath_hal_reverseBits(
125			((chan->channel - 4800) / 20 << 2), 8);
126		aModeRefSel = ath_hal_reverseBits(1, 2);
127	} else if ((chan->channel % 10) == 0) {
128		channelSel = ath_hal_reverseBits(
129			((chan->channel - 4800) / 10 << 1), 8);
130		aModeRefSel = ath_hal_reverseBits(1, 2);
131	} else if ((chan->channel % 5) == 0) {
132		channelSel = ath_hal_reverseBits(
133			(chan->channel - 4800) / 5, 8);
134		aModeRefSel = ath_hal_reverseBits(1, 2);
135	} else {
136		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137		    __func__, chan->channel);
138		return AH_FALSE;
139	}
140
141	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142			(1 << 12) | 0x1;
143	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144
145	reg32 >>= 8;
146	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147
148	AH_PRIVATE(ah)->ah_curchan = chan;
149	return AH_TRUE;
150}
151
152/*
153 * Reads EEPROM header info from device structure and programs
154 * all rf registers
155 *
156 * REQUIRES: Access to the analog rf device
157 */
158static HAL_BOOL
159ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
160{
161#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
162	int i;								    \
163	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
164		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165} while (0)
166	struct ath_hal_5212 *ahp = AH5212(ah);
167	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
168	uint16_t ob5GHz = 0, db5GHz = 0;
169	uint16_t ob2GHz = 0, db2GHz = 0;
170	struct ar5413State *priv = AR5413(ah);
171	int regWrites = 0;
172
173	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
174	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
175	    __func__, chan->channel, chan->channelFlags, modesIndex);
176
177	HALASSERT(priv != AH_NULL);
178
179	/* Setup rf parameters */
180	switch (chan->channelFlags & CHANNEL_ALL) {
181	case CHANNEL_A:
182	case CHANNEL_T:
183		if (chan->channel > 4000 && chan->channel < 5260) {
184			ob5GHz = ee->ee_ob1;
185			db5GHz = ee->ee_db1;
186		} else if (chan->channel >= 5260 && chan->channel < 5500) {
187			ob5GHz = ee->ee_ob2;
188			db5GHz = ee->ee_db2;
189		} else if (chan->channel >= 5500 && chan->channel < 5725) {
190			ob5GHz = ee->ee_ob3;
191			db5GHz = ee->ee_db3;
192		} else if (chan->channel >= 5725) {
193			ob5GHz = ee->ee_ob4;
194			db5GHz = ee->ee_db4;
195		} else {
196			/* XXX else */
197		}
198		break;
199	case CHANNEL_B:
200		ob2GHz = ee->ee_obFor24;
201		db2GHz = ee->ee_dbFor24;
202		break;
203	case CHANNEL_G:
204	case CHANNEL_108G:
205		ob2GHz = ee->ee_obFor24g;
206		db2GHz = ee->ee_dbFor24g;
207		break;
208	default:
209		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
210		    __func__, chan->channelFlags);
211		return AH_FALSE;
212	}
213
214	/* Bank 1 Write */
215	RF_BANK_SETUP(priv, 1, 1);
216
217	/* Bank 2 Write */
218	RF_BANK_SETUP(priv, 2, modesIndex);
219
220	/* Bank 3 Write */
221	RF_BANK_SETUP(priv, 3, modesIndex);
222
223	/* Bank 6 Write */
224	RF_BANK_SETUP(priv, 6, modesIndex);
225
226    	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
227	if (IS_CHAN_2GHZ(chan)) {
228        	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
229        	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
230
231			/* TODO - only for Eagle 1.0 2GHz - remove for production */
232			/* XXX: but without this bit G doesn't work. */
233			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
234
235			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
236			if (IS_PCIE(ah)) {
237				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
238						 3, 131, 3);
239			}
240	} else {
241        	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
242        	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
243
244	}
245
246	/* Bank 7 Setup */
247	RF_BANK_SETUP(priv, 7, modesIndex);
248
249	/* Write Analog registers */
250	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
251	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
252	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
253	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
254	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
255
256	/* Now that we have reprogrammed rfgain value, clear the flag. */
257	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
258
259	return AH_TRUE;
260#undef	RF_BANK_SETUP
261}
262
263/*
264 * Return a reference to the requested RF Bank.
265 */
266static uint32_t *
267ar5413GetRfBank(struct ath_hal *ah, int bank)
268{
269	struct ar5413State *priv = AR5413(ah);
270
271	HALASSERT(priv != AH_NULL);
272	switch (bank) {
273	case 1: return priv->Bank1Data;
274	case 2: return priv->Bank2Data;
275	case 3: return priv->Bank3Data;
276	case 6: return priv->Bank6Data;
277	case 7: return priv->Bank7Data;
278	}
279	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
280	    __func__, bank);
281	return AH_NULL;
282}
283
284/*
285 * Return indices surrounding the value in sorted integer lists.
286 *
287 * NB: the input list is assumed to be sorted in ascending order
288 */
289static void
290GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
291                          uint32_t *vlo, uint32_t *vhi)
292{
293	int16_t target = v;
294	const uint16_t *ep = lp+listSize;
295	const uint16_t *tp;
296
297	/*
298	 * Check first and last elements for out-of-bounds conditions.
299	 */
300	if (target < lp[0]) {
301		*vlo = *vhi = 0;
302		return;
303	}
304	if (target >= ep[-1]) {
305		*vlo = *vhi = listSize - 1;
306		return;
307	}
308
309	/* look for value being near or between 2 values in list */
310	for (tp = lp; tp < ep; tp++) {
311		/*
312		 * If value is close to the current value of the list
313		 * then target is not between values, it is one of the values
314		 */
315		if (*tp == target) {
316			*vlo = *vhi = tp - (const uint16_t *) lp;
317			return;
318		}
319		/*
320		 * Look for value being between current value and next value
321		 * if so return these 2 values
322		 */
323		if (target < tp[1]) {
324			*vlo = tp - (const uint16_t *) lp;
325			*vhi = *vlo + 1;
326			return;
327		}
328	}
329}
330
331/*
332 * Fill the Vpdlist for indices Pmax-Pmin
333 */
334static HAL_BOOL
335ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
336		   const int16_t *pwrList, const uint16_t *VpdList,
337		   uint16_t numIntercepts,
338		   uint16_t retVpdList[][64])
339{
340	uint16_t ii, jj, kk;
341	int16_t currPwr = (int16_t)(2*Pmin);
342	/* since Pmin is pwr*2 and pwrList is 4*pwr */
343	uint32_t  idxL, idxR;
344
345	ii = 0;
346	jj = 0;
347
348	if (numIntercepts < 2)
349		return AH_FALSE;
350
351	while (ii <= (uint16_t)(Pmax - Pmin)) {
352		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
353				   numIntercepts, &(idxL), &(idxR));
354		if (idxR < 1)
355			idxR = 1;			/* extrapolate below */
356		if (idxL == (uint32_t)(numIntercepts - 1))
357			idxL = numIntercepts - 2;	/* extrapolate above */
358		if (pwrList[idxL] == pwrList[idxR])
359			kk = VpdList[idxL];
360		else
361			kk = (uint16_t)
362				(((currPwr - pwrList[idxL])*VpdList[idxR]+
363				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
364				 (pwrList[idxR] - pwrList[idxL]));
365		retVpdList[pdGainIdx][ii] = kk;
366		ii++;
367		currPwr += 2;				/* half dB steps */
368	}
369
370	return AH_TRUE;
371}
372
373/*
374 * Returns interpolated or the scaled up interpolated value
375 */
376static int16_t
377interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
378	int16_t targetLeft, int16_t targetRight)
379{
380	int16_t rv;
381
382	if (srcRight != srcLeft) {
383		rv = ((target - srcLeft)*targetRight +
384		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
385	} else {
386		rv = targetLeft;
387	}
388	return rv;
389}
390
391/*
392 * Uses the data points read from EEPROM to reconstruct the pdadc power table
393 * Called by ar5413SetPowerTable()
394 */
395static int
396ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
397		const RAW_DATA_STRUCT_2413 *pRawDataset,
398		uint16_t pdGainOverlap_t2,
399		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
400		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
401{
402	struct ar5413State *priv = AR5413(ah);
403#define	VpdTable_L	priv->vpdTable_L
404#define	VpdTable_R	priv->vpdTable_R
405#define	VpdTable_I	priv->vpdTable_I
406	uint32_t ii, jj, kk;
407	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
408	uint32_t idxL, idxR;
409	uint32_t numPdGainsUsed = 0;
410	/*
411	 * If desired to support -ve power levels in future, just
412	 * change pwr_I_0 to signed 5-bits.
413	 */
414	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
415	/* to accomodate -ve power levels later on. */
416	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
417	/* to accomodate -ve power levels later on */
418	uint16_t numVpd = 0;
419	uint16_t Vpd_step;
420	int16_t tmpVal ;
421	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
422
423	/* Get upper lower index */
424	GetLowerUpperIndex(channel, pRawDataset->pChannels,
425				 pRawDataset->numChannels, &(idxL), &(idxR));
426
427	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
428		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
429		/* work backwards 'cause highest pdGain for lowest power */
430		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
431		if (numVpd > 0) {
432			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
433			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
434			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
435				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
436			}
437			Pmin_t2[numPdGainsUsed] = (int16_t)
438				(Pmin_t2[numPdGainsUsed] / 2);
439			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
440			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
441				Pmax_t2[numPdGainsUsed] =
442					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
443			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
444			ar5413FillVpdTable(
445					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
446					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
447					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
448					   );
449			ar5413FillVpdTable(
450					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
451					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
452					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
453					   );
454			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
455				VpdTable_I[numPdGainsUsed][kk] =
456					interpolate_signed(
457							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
458							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
459			}
460			/* fill VpdTable_I for this pdGain */
461			numPdGainsUsed++;
462		}
463		/* if this pdGain is used */
464	}
465
466	*pMinCalPower = Pmin_t2[0];
467	kk = 0; /* index for the final table */
468	for (ii = 0; ii < numPdGainsUsed; ii++) {
469		if (ii == (numPdGainsUsed - 1))
470			pPdGainBoundaries[ii] = Pmax_t2[ii] +
471				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
472		else
473			pPdGainBoundaries[ii] = (uint16_t)
474				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
475		if (pPdGainBoundaries[ii] > 63) {
476			HALDEBUG(ah, HAL_DEBUG_ANY,
477			    "%s: clamp pPdGainBoundaries[%d] %d\n",
478			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
479			pPdGainBoundaries[ii] = 63;
480		}
481
482		/* Find starting index for this pdGain */
483		if (ii == 0)
484			ss = 0; /* for the first pdGain, start from index 0 */
485		else
486			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
487				pdGainOverlap_t2;
488		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
489		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
490		/*
491		 *-ve ss indicates need to extrapolate data below for this pdGain
492		 */
493		while (ss < 0) {
494			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
495			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
496			ss++;
497		}
498
499		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
500		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
501		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
502
503		while (ss < (int16_t)maxIndex)
504			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
505
506		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
507				       VpdTable_I[ii][sizeCurrVpdTable-2]);
508		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
509		/*
510		 * for last gain, pdGainBoundary == Pmax_t2, so will
511		 * have to extrapolate
512		 */
513		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
514			while(ss < (int16_t)tgtIndex) {
515				tmpVal = (uint16_t)
516					(VpdTable_I[ii][sizeCurrVpdTable-1] +
517					 (ss-maxIndex)*Vpd_step);
518				pPDADCValues[kk++] = (tmpVal > 127) ?
519					127 : tmpVal;
520				ss++;
521			}
522		}				/* extrapolated above */
523	}					/* for all pdGainUsed */
524
525	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
526		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
527		ii++;
528	}
529	while (kk < 128) {
530		pPDADCValues[kk] = pPDADCValues[kk-1];
531		kk++;
532	}
533
534	return numPdGainsUsed;
535#undef VpdTable_L
536#undef VpdTable_R
537#undef VpdTable_I
538}
539
540static HAL_BOOL
541ar5413SetPowerTable(struct ath_hal *ah,
542	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
543	uint16_t *rfXpdGain)
544{
545	struct ath_hal_5212 *ahp = AH5212(ah);
546	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
547	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
548	uint16_t pdGainOverlap_t2;
549	int16_t minCalPower5413_t2;
550	uint16_t *pdadcValues = ahp->ah_pcdacTable;
551	uint16_t gainBoundaries[4];
552	uint32_t reg32, regoffset;
553	int i, numPdGainsUsed;
554#ifndef AH_USE_INIPDGAIN
555	uint32_t tpcrg1;
556#endif
557
558	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
559	    __func__, chan->channel,chan->channelFlags);
560
561	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
562		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
563	else if (IS_CHAN_B(chan))
564		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
565	else {
566		HALASSERT(IS_CHAN_5GHZ(chan));
567		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
568	}
569
570	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
571					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
572
573	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
574		chan->channel, pRawDataset, pdGainOverlap_t2,
575		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
576	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
577
578#ifdef AH_USE_INIPDGAIN
579	/*
580	 * Use pd_gains curve from eeprom; Atheros always uses
581	 * the default curve from the ini file but some vendors
582	 * (e.g. Zcomax) want to override this curve and not
583	 * honoring their settings results in tx power 5dBm low.
584	 */
585	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
586			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
587#else
588	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
589	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
590		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
591	switch (numPdGainsUsed) {
592	case 3:
593		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
594		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
595		/* fall thru... */
596	case 2:
597		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
598		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
599		/* fall thru... */
600	case 1:
601		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
602		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
603		break;
604	}
605#ifdef AH_DEBUG
606	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
607		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
608		    "pd_gains (default 0x%x, calculated 0x%x)\n",
609		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
610#endif
611	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
612#endif
613
614	/*
615	 * Note the pdadc table may not start at 0 dBm power, could be
616	 * negative or greater than 0.  Need to offset the power
617	 * values by the amount of minPower for griffin
618	 */
619	if (minCalPower5413_t2 != 0)
620		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
621	else
622		ahp->ah_txPowerIndexOffset = 0;
623
624	/* Finally, write the power values into the baseband power table */
625	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
626	for (i = 0; i < 32; i++) {
627		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
628			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
629			((pdadcValues[4*i + 2] & 0xFF) << 16) |
630			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
631		OS_REG_WRITE(ah, regoffset, reg32);
632		regoffset += 4;
633	}
634
635	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
636		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
637		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
638		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
639		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
640		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
641
642	return AH_TRUE;
643}
644
645static int16_t
646ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
647{
648	uint32_t ii,jj;
649	uint16_t Pmin=0,numVpd;
650
651	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
652		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
653		/* work backwards 'cause highest pdGain for lowest power */
654		numVpd = data->pDataPerPDGain[jj].numVpd;
655		if (numVpd > 0) {
656			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
657			return(Pmin);
658		}
659	}
660	return(Pmin);
661}
662
663static int16_t
664ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
665{
666	uint32_t ii;
667	uint16_t Pmax=0,numVpd;
668
669	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
670		/* work forwards cuase lowest pdGain for highest power */
671		numVpd = data->pDataPerPDGain[ii].numVpd;
672		if (numVpd > 0) {
673			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
674			return(Pmax);
675		}
676	}
677	return(Pmax);
678}
679
680static HAL_BOOL
681ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
682	int16_t *maxPow, int16_t *minPow)
683{
684	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
685	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
686	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
687	uint16_t numChannels;
688	int totalD,totalF, totalMin,last, i;
689
690	*maxPow = 0;
691
692	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
693		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
694	else if (IS_CHAN_B(chan))
695		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
696	else {
697		HALASSERT(IS_CHAN_5GHZ(chan));
698		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
699	}
700
701	numChannels = pRawDataset->numChannels;
702	data = pRawDataset->pDataPerChannel;
703
704	/* Make sure the channel is in the range of the TP values
705	 *  (freq piers)
706	 */
707	if (numChannels < 1)
708		return(AH_FALSE);
709
710	if ((chan->channel < data[0].channelValue) ||
711	    (chan->channel > data[numChannels-1].channelValue)) {
712		if (chan->channel < data[0].channelValue) {
713			*maxPow = ar5413GetMaxPower(ah, &data[0]);
714			*minPow = ar5413GetMinPower(ah, &data[0]);
715			return(AH_TRUE);
716		} else {
717			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
718			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
719			return(AH_TRUE);
720		}
721	}
722
723	/* Linearly interpolate the power value now */
724	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
725	     last = i++);
726	totalD = data[i].channelValue - data[last].channelValue;
727	if (totalD > 0) {
728		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
729		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
730				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
731		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
732		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
733				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
734		return(AH_TRUE);
735	} else {
736		if (chan->channel == data[i].channelValue) {
737			*maxPow = ar5413GetMaxPower(ah, &data[i]);
738			*minPow = ar5413GetMinPower(ah, &data[i]);
739			return(AH_TRUE);
740		} else
741			return(AH_FALSE);
742	}
743}
744
745/*
746 * Free memory for analog bank scratch buffers
747 */
748static void
749ar5413RfDetach(struct ath_hal *ah)
750{
751	struct ath_hal_5212 *ahp = AH5212(ah);
752
753	HALASSERT(ahp->ah_rfHal != AH_NULL);
754	ath_hal_free(ahp->ah_rfHal);
755	ahp->ah_rfHal = AH_NULL;
756}
757
758/*
759 * Allocate memory for analog bank scratch buffers
760 * Scratch Buffer will be reinitialized every reset so no need to zero now
761 */
762HAL_BOOL
763ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
764{
765	struct ath_hal_5212 *ahp = AH5212(ah);
766	struct ar5413State *priv;
767
768	HALASSERT(ah->ah_magic == AR5212_MAGIC);
769
770	HALASSERT(ahp->ah_rfHal == AH_NULL);
771	priv = ath_hal_malloc(sizeof(struct ar5413State));
772	if (priv == AH_NULL) {
773		HALDEBUG(ah, HAL_DEBUG_ANY,
774		    "%s: cannot allocate private state\n", __func__);
775		*status = HAL_ENOMEM;		/* XXX */
776		return AH_FALSE;
777	}
778	priv->base.rfDetach		= ar5413RfDetach;
779	priv->base.writeRegs		= ar5413WriteRegs;
780	priv->base.getRfBank		= ar5413GetRfBank;
781	priv->base.setChannel		= ar5413SetChannel;
782	priv->base.setRfRegs		= ar5413SetRfRegs;
783	priv->base.setPowerTable	= ar5413SetPowerTable;
784	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
785	priv->base.getNfAdjust		= ar5212GetNfAdjust;
786
787	ahp->ah_pcdacTable = priv->pcdacTable;
788	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
789	ahp->ah_rfHal = &priv->base;
790
791	return AH_TRUE;
792}
793#endif /* AH_SUPPORT_5413 */
794