txg.c revision 251631
166830Sobrien/*
266830Sobrien * CDDL HEADER START
366830Sobrien *
466830Sobrien * The contents of this file are subject to the terms of the
566830Sobrien * Common Development and Distribution License (the "License").
666830Sobrien * You may not use this file except in compliance with the License.
766830Sobrien *
866830Sobrien * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
966830Sobrien * or http://www.opensolaris.org/os/licensing.
1066830Sobrien * See the License for the specific language governing permissions
1166830Sobrien * and limitations under the License.
1266830Sobrien *
1366830Sobrien * When distributing Covered Code, include this CDDL HEADER in each
1466830Sobrien * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1566830Sobrien * If applicable, add the following below this CDDL HEADER, with the
1666830Sobrien * fields enclosed by brackets "[]" replaced with your own identifying
1766830Sobrien * information: Portions Copyright [yyyy] [name of copyright owner]
1866830Sobrien *
1966830Sobrien * CDDL HEADER END
2066830Sobrien */
2166830Sobrien/*
2266830Sobrien * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2366830Sobrien * Portions Copyright 2011 Martin Matuska <mm@FreeBSD.org>
2466830Sobrien * Copyright (c) 2013 by Delphix. All rights reserved.
25100280Sgordon */
2651231Ssheldonh
2766830Sobrien#include <sys/zfs_context.h>
2866830Sobrien#include <sys/txg_impl.h>
2943803Sdillon#include <sys/dmu_impl.h>
30127345Sbrooks#include <sys/dmu_tx.h>
31240336Sobrien#include <sys/dsl_pool.h>
32136224Smtm#include <sys/dsl_scan.h>
3375931Simp#include <sys/callb.h>
34127345Sbrooks
3576409Sbsd/*
36127345Sbrooks * ZFS Transaction Groups
37174464Sdougb * ----------------------
3876409Sbsd *
39127345Sbrooks * ZFS transaction groups are, as the name implies, groups of transactions
4043803Sdillon * that act on persistent state. ZFS asserts consistency at the granularity of
41108191Sdillon * these transaction groups. Each successive transaction group (txg) is
42108191Sdillon * assigned a 64-bit consecutive identifier. There are three active
43108191Sdillon * transaction group states: open, quiescing, or syncing. At any given time,
44225670Shrs * there may be an active txg associated with each state; each active txg may
45225670Shrs * either be processing, or blocked waiting to enter the next state. There may
46225670Shrs * be up to three active txgs, and there is always a txg in the open state
47127345Sbrooks * (though it may be blocked waiting to enter the quiescing state). In broad
48225670Shrs * strokes, transactions ��� operations that change in-memory structures ��� are
49127345Sbrooks * accepted into the txg in the open state, and are completed while the txg is
50127345Sbrooks * in the open or quiescing states. The accumulated changes are written to
51170198Sdougb * disk in the syncing state.
52170198Sdougb *
53225670Shrs * Open
54170198Sdougb *
55225670Shrs * When a new txg becomes active, it first enters the open state. New
56108191Sdillon * transactions ��� updates to in-memory structures ��� are assigned to the
57108191Sdillon * currently open txg. There is always a txg in the open state so that ZFS can
58 * accept new changes (though the txg may refuse new changes if it has hit
59 * some limit). ZFS advances the open txg to the next state for a variety of
60 * reasons such as it hitting a time or size threshold, or the execution of an
61 * administrative action that must be completed in the syncing state.
62 *
63 * Quiescing
64 *
65 * After a txg exits the open state, it enters the quiescing state. The
66 * quiescing state is intended to provide a buffer between accepting new
67 * transactions in the open state and writing them out to stable storage in
68 * the syncing state. While quiescing, transactions can continue their
69 * operation without delaying either of the other states. Typically, a txg is
70 * in the quiescing state very briefly since the operations are bounded by
71 * software latencies rather than, say, slower I/O latencies. After all
72 * transactions complete, the txg is ready to enter the next state.
73 *
74 * Syncing
75 *
76 * In the syncing state, the in-memory state built up during the open and (to
77 * a lesser degree) the quiescing states is written to stable storage. The
78 * process of writing out modified data can, in turn modify more data. For
79 * example when we write new blocks, we need to allocate space for them; those
80 * allocations modify metadata (space maps)... which themselves must be
81 * written to stable storage. During the sync state, ZFS iterates, writing out
82 * data until it converges and all in-memory changes have been written out.
83 * The first such pass is the largest as it encompasses all the modified user
84 * data (as opposed to filesystem metadata). Subsequent passes typically have
85 * far less data to write as they consist exclusively of filesystem metadata.
86 *
87 * To ensure convergence, after a certain number of passes ZFS begins
88 * overwriting locations on stable storage that had been allocated earlier in
89 * the syncing state (and subsequently freed). ZFS usually allocates new
90 * blocks to optimize for large, continuous, writes. For the syncing state to
91 * converge however it must complete a pass where no new blocks are allocated
92 * since each allocation requires a modification of persistent metadata.
93 * Further, to hasten convergence, after a prescribed number of passes, ZFS
94 * also defers frees, and stops compressing.
95 *
96 * In addition to writing out user data, we must also execute synctasks during
97 * the syncing context. A synctask is the mechanism by which some
98 * administrative activities work such as creating and destroying snapshots or
99 * datasets. Note that when a synctask is initiated it enters the open txg,
100 * and ZFS then pushes that txg as quickly as possible to completion of the
101 * syncing state in order to reduce the latency of the administrative
102 * activity. To complete the syncing state, ZFS writes out a new uberblock,
103 * the root of the tree of blocks that comprise all state stored on the ZFS
104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
105 * now transition to the syncing state.
106 */
107
108static void txg_sync_thread(void *arg);
109static void txg_quiesce_thread(void *arg);
110
111int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
112
113SYSCTL_DECL(_vfs_zfs);
114SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW, 0, "ZFS TXG");
115TUNABLE_INT("vfs.zfs.txg.timeout", &zfs_txg_timeout);
116SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, timeout, CTLFLAG_RW, &zfs_txg_timeout, 0,
117    "Maximum seconds worth of delta per txg");
118
119/*
120 * Prepare the txg subsystem.
121 */
122void
123txg_init(dsl_pool_t *dp, uint64_t txg)
124{
125	tx_state_t *tx = &dp->dp_tx;
126	int c;
127	bzero(tx, sizeof (tx_state_t));
128
129	tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
130
131	for (c = 0; c < max_ncpus; c++) {
132		int i;
133
134		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
135		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
136		    NULL);
137		for (i = 0; i < TXG_SIZE; i++) {
138			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
139			    NULL);
140			list_create(&tx->tx_cpu[c].tc_callbacks[i],
141			    sizeof (dmu_tx_callback_t),
142			    offsetof(dmu_tx_callback_t, dcb_node));
143		}
144	}
145
146	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
147
148	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
149	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
150	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
151	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
152	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
153
154	tx->tx_open_txg = txg;
155}
156
157/*
158 * Close down the txg subsystem.
159 */
160void
161txg_fini(dsl_pool_t *dp)
162{
163	tx_state_t *tx = &dp->dp_tx;
164	int c;
165
166	ASSERT(tx->tx_threads == 0);
167
168	mutex_destroy(&tx->tx_sync_lock);
169
170	cv_destroy(&tx->tx_sync_more_cv);
171	cv_destroy(&tx->tx_sync_done_cv);
172	cv_destroy(&tx->tx_quiesce_more_cv);
173	cv_destroy(&tx->tx_quiesce_done_cv);
174	cv_destroy(&tx->tx_exit_cv);
175
176	for (c = 0; c < max_ncpus; c++) {
177		int i;
178
179		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
180		mutex_destroy(&tx->tx_cpu[c].tc_lock);
181		for (i = 0; i < TXG_SIZE; i++) {
182			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
183			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
184		}
185	}
186
187	if (tx->tx_commit_cb_taskq != NULL)
188		taskq_destroy(tx->tx_commit_cb_taskq);
189
190	kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
191
192	bzero(tx, sizeof (tx_state_t));
193}
194
195/*
196 * Start syncing transaction groups.
197 */
198void
199txg_sync_start(dsl_pool_t *dp)
200{
201	tx_state_t *tx = &dp->dp_tx;
202
203	mutex_enter(&tx->tx_sync_lock);
204
205	dprintf("pool %p\n", dp);
206
207	ASSERT(tx->tx_threads == 0);
208
209	tx->tx_threads = 2;
210
211	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
212	    dp, 0, &p0, TS_RUN, minclsyspri);
213
214	/*
215	 * The sync thread can need a larger-than-default stack size on
216	 * 32-bit x86.  This is due in part to nested pools and
217	 * scrub_visitbp() recursion.
218	 */
219	tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
220	    dp, 0, &p0, TS_RUN, minclsyspri);
221
222	mutex_exit(&tx->tx_sync_lock);
223}
224
225static void
226txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
227{
228	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
229	mutex_enter(&tx->tx_sync_lock);
230}
231
232static void
233txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
234{
235	ASSERT(*tpp != NULL);
236	*tpp = NULL;
237	tx->tx_threads--;
238	cv_broadcast(&tx->tx_exit_cv);
239	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
240	thread_exit();
241}
242
243static void
244txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time)
245{
246	CALLB_CPR_SAFE_BEGIN(cpr);
247
248	if (time)
249		(void) cv_timedwait(cv, &tx->tx_sync_lock, time);
250	else
251		cv_wait(cv, &tx->tx_sync_lock);
252
253	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
254}
255
256/*
257 * Stop syncing transaction groups.
258 */
259void
260txg_sync_stop(dsl_pool_t *dp)
261{
262	tx_state_t *tx = &dp->dp_tx;
263
264	dprintf("pool %p\n", dp);
265	/*
266	 * Finish off any work in progress.
267	 */
268	ASSERT(tx->tx_threads == 2);
269
270	/*
271	 * We need to ensure that we've vacated the deferred space_maps.
272	 */
273	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
274
275	/*
276	 * Wake all sync threads and wait for them to die.
277	 */
278	mutex_enter(&tx->tx_sync_lock);
279
280	ASSERT(tx->tx_threads == 2);
281
282	tx->tx_exiting = 1;
283
284	cv_broadcast(&tx->tx_quiesce_more_cv);
285	cv_broadcast(&tx->tx_quiesce_done_cv);
286	cv_broadcast(&tx->tx_sync_more_cv);
287
288	while (tx->tx_threads != 0)
289		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
290
291	tx->tx_exiting = 0;
292
293	mutex_exit(&tx->tx_sync_lock);
294}
295
296uint64_t
297txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
298{
299	tx_state_t *tx = &dp->dp_tx;
300	tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
301	uint64_t txg;
302
303	mutex_enter(&tc->tc_open_lock);
304	txg = tx->tx_open_txg;
305
306	mutex_enter(&tc->tc_lock);
307	tc->tc_count[txg & TXG_MASK]++;
308	mutex_exit(&tc->tc_lock);
309
310	th->th_cpu = tc;
311	th->th_txg = txg;
312
313	return (txg);
314}
315
316void
317txg_rele_to_quiesce(txg_handle_t *th)
318{
319	tx_cpu_t *tc = th->th_cpu;
320
321	ASSERT(!MUTEX_HELD(&tc->tc_lock));
322	mutex_exit(&tc->tc_open_lock);
323}
324
325void
326txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
327{
328	tx_cpu_t *tc = th->th_cpu;
329	int g = th->th_txg & TXG_MASK;
330
331	mutex_enter(&tc->tc_lock);
332	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
333	mutex_exit(&tc->tc_lock);
334}
335
336void
337txg_rele_to_sync(txg_handle_t *th)
338{
339	tx_cpu_t *tc = th->th_cpu;
340	int g = th->th_txg & TXG_MASK;
341
342	mutex_enter(&tc->tc_lock);
343	ASSERT(tc->tc_count[g] != 0);
344	if (--tc->tc_count[g] == 0)
345		cv_broadcast(&tc->tc_cv[g]);
346	mutex_exit(&tc->tc_lock);
347
348	th->th_cpu = NULL;	/* defensive */
349}
350
351/*
352 * Blocks until all transactions in the group are committed.
353 *
354 * On return, the transaction group has reached a stable state in which it can
355 * then be passed off to the syncing context.
356 */
357static void
358txg_quiesce(dsl_pool_t *dp, uint64_t txg)
359{
360	tx_state_t *tx = &dp->dp_tx;
361	int g = txg & TXG_MASK;
362	int c;
363
364	/*
365	 * Grab all tc_open_locks so nobody else can get into this txg.
366	 */
367	for (c = 0; c < max_ncpus; c++)
368		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
369
370	ASSERT(txg == tx->tx_open_txg);
371	tx->tx_open_txg++;
372
373	/*
374	 * Now that we've incremented tx_open_txg, we can let threads
375	 * enter the next transaction group.
376	 */
377	for (c = 0; c < max_ncpus; c++)
378		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
379
380	/*
381	 * Quiesce the transaction group by waiting for everyone to txg_exit().
382	 */
383	for (c = 0; c < max_ncpus; c++) {
384		tx_cpu_t *tc = &tx->tx_cpu[c];
385		mutex_enter(&tc->tc_lock);
386		while (tc->tc_count[g] != 0)
387			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
388		mutex_exit(&tc->tc_lock);
389	}
390}
391
392static void
393txg_do_callbacks(void *arg)
394{
395	list_t *cb_list = arg;
396
397	dmu_tx_do_callbacks(cb_list, 0);
398
399	list_destroy(cb_list);
400
401	kmem_free(cb_list, sizeof (list_t));
402}
403
404/*
405 * Dispatch the commit callbacks registered on this txg to worker threads.
406 *
407 * If no callbacks are registered for a given TXG, nothing happens.
408 * This function creates a taskq for the associated pool, if needed.
409 */
410static void
411txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
412{
413	int c;
414	tx_state_t *tx = &dp->dp_tx;
415	list_t *cb_list;
416
417	for (c = 0; c < max_ncpus; c++) {
418		tx_cpu_t *tc = &tx->tx_cpu[c];
419		/*
420		 * No need to lock tx_cpu_t at this point, since this can
421		 * only be called once a txg has been synced.
422		 */
423
424		int g = txg & TXG_MASK;
425
426		if (list_is_empty(&tc->tc_callbacks[g]))
427			continue;
428
429		if (tx->tx_commit_cb_taskq == NULL) {
430			/*
431			 * Commit callback taskq hasn't been created yet.
432			 */
433			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
434			    max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
435			    TASKQ_PREPOPULATE);
436		}
437
438		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
439		list_create(cb_list, sizeof (dmu_tx_callback_t),
440		    offsetof(dmu_tx_callback_t, dcb_node));
441
442		list_move_tail(&tc->tc_callbacks[g], cb_list);
443
444		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
445		    txg_do_callbacks, cb_list, TQ_SLEEP);
446	}
447}
448
449static void
450txg_sync_thread(void *arg)
451{
452	dsl_pool_t *dp = arg;
453	spa_t *spa = dp->dp_spa;
454	tx_state_t *tx = &dp->dp_tx;
455	callb_cpr_t cpr;
456	uint64_t start, delta;
457
458	txg_thread_enter(tx, &cpr);
459
460	start = delta = 0;
461	for (;;) {
462		uint64_t timer, timeout = zfs_txg_timeout * hz;
463		uint64_t txg;
464
465		/*
466		 * We sync when we're scanning, there's someone waiting
467		 * on us, or the quiesce thread has handed off a txg to
468		 * us, or we have reached our timeout.
469		 */
470		timer = (delta >= timeout ? 0 : timeout - delta);
471		while (!dsl_scan_active(dp->dp_scan) &&
472		    !tx->tx_exiting && timer > 0 &&
473		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
474		    tx->tx_quiesced_txg == 0) {
475			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
476			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
477			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
478			delta = ddi_get_lbolt() - start;
479			timer = (delta > timeout ? 0 : timeout - delta);
480		}
481
482		/*
483		 * Wait until the quiesce thread hands off a txg to us,
484		 * prompting it to do so if necessary.
485		 */
486		while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
487			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
488				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
489			cv_broadcast(&tx->tx_quiesce_more_cv);
490			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
491		}
492
493		if (tx->tx_exiting)
494			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
495
496		/*
497		 * Consume the quiesced txg which has been handed off to
498		 * us.  This may cause the quiescing thread to now be
499		 * able to quiesce another txg, so we must signal it.
500		 */
501		txg = tx->tx_quiesced_txg;
502		tx->tx_quiesced_txg = 0;
503		tx->tx_syncing_txg = txg;
504		cv_broadcast(&tx->tx_quiesce_more_cv);
505
506		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
507		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
508		mutex_exit(&tx->tx_sync_lock);
509
510		start = ddi_get_lbolt();
511		spa_sync(spa, txg);
512		delta = ddi_get_lbolt() - start;
513
514		mutex_enter(&tx->tx_sync_lock);
515		tx->tx_synced_txg = txg;
516		tx->tx_syncing_txg = 0;
517		cv_broadcast(&tx->tx_sync_done_cv);
518
519		/*
520		 * Dispatch commit callbacks to worker threads.
521		 */
522		txg_dispatch_callbacks(dp, txg);
523	}
524}
525
526static void
527txg_quiesce_thread(void *arg)
528{
529	dsl_pool_t *dp = arg;
530	tx_state_t *tx = &dp->dp_tx;
531	callb_cpr_t cpr;
532
533	txg_thread_enter(tx, &cpr);
534
535	for (;;) {
536		uint64_t txg;
537
538		/*
539		 * We quiesce when there's someone waiting on us.
540		 * However, we can only have one txg in "quiescing" or
541		 * "quiesced, waiting to sync" state.  So we wait until
542		 * the "quiesced, waiting to sync" txg has been consumed
543		 * by the sync thread.
544		 */
545		while (!tx->tx_exiting &&
546		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
547		    tx->tx_quiesced_txg != 0))
548			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
549
550		if (tx->tx_exiting)
551			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
552
553		txg = tx->tx_open_txg;
554		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
555		    txg, tx->tx_quiesce_txg_waiting,
556		    tx->tx_sync_txg_waiting);
557		mutex_exit(&tx->tx_sync_lock);
558		txg_quiesce(dp, txg);
559		mutex_enter(&tx->tx_sync_lock);
560
561		/*
562		 * Hand this txg off to the sync thread.
563		 */
564		dprintf("quiesce done, handing off txg %llu\n", txg);
565		tx->tx_quiesced_txg = txg;
566		cv_broadcast(&tx->tx_sync_more_cv);
567		cv_broadcast(&tx->tx_quiesce_done_cv);
568	}
569}
570
571/*
572 * Delay this thread by 'ticks' if we are still in the open transaction
573 * group and there is already a waiting txg quiescing or quiesced.
574 * Abort the delay if this txg stalls or enters the quiescing state.
575 */
576void
577txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
578{
579	tx_state_t *tx = &dp->dp_tx;
580	clock_t timeout = ddi_get_lbolt() + ticks;
581
582	/* don't delay if this txg could transition to quiescing immediately */
583	if (tx->tx_open_txg > txg ||
584	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
585		return;
586
587	mutex_enter(&tx->tx_sync_lock);
588	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
589		mutex_exit(&tx->tx_sync_lock);
590		return;
591	}
592
593	while (ddi_get_lbolt() < timeout &&
594	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
595		(void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
596		    timeout - ddi_get_lbolt());
597
598	mutex_exit(&tx->tx_sync_lock);
599}
600
601void
602txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
603{
604	tx_state_t *tx = &dp->dp_tx;
605
606	ASSERT(!dsl_pool_config_held(dp));
607
608	mutex_enter(&tx->tx_sync_lock);
609	ASSERT(tx->tx_threads == 2);
610	if (txg == 0)
611		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
612	if (tx->tx_sync_txg_waiting < txg)
613		tx->tx_sync_txg_waiting = txg;
614	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
615	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
616	while (tx->tx_synced_txg < txg) {
617		dprintf("broadcasting sync more "
618		    "tx_synced=%llu waiting=%llu dp=%p\n",
619		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
620		cv_broadcast(&tx->tx_sync_more_cv);
621		cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
622	}
623	mutex_exit(&tx->tx_sync_lock);
624}
625
626void
627txg_wait_open(dsl_pool_t *dp, uint64_t txg)
628{
629	tx_state_t *tx = &dp->dp_tx;
630
631	ASSERT(!dsl_pool_config_held(dp));
632
633	mutex_enter(&tx->tx_sync_lock);
634	ASSERT(tx->tx_threads == 2);
635	if (txg == 0)
636		txg = tx->tx_open_txg + 1;
637	if (tx->tx_quiesce_txg_waiting < txg)
638		tx->tx_quiesce_txg_waiting = txg;
639	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
640	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
641	while (tx->tx_open_txg < txg) {
642		cv_broadcast(&tx->tx_quiesce_more_cv);
643		cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
644	}
645	mutex_exit(&tx->tx_sync_lock);
646}
647
648boolean_t
649txg_stalled(dsl_pool_t *dp)
650{
651	tx_state_t *tx = &dp->dp_tx;
652	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
653}
654
655boolean_t
656txg_sync_waiting(dsl_pool_t *dp)
657{
658	tx_state_t *tx = &dp->dp_tx;
659
660	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
661	    tx->tx_quiesced_txg != 0);
662}
663
664/*
665 * Per-txg object lists.
666 */
667void
668txg_list_create(txg_list_t *tl, size_t offset)
669{
670	int t;
671
672	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
673
674	tl->tl_offset = offset;
675
676	for (t = 0; t < TXG_SIZE; t++)
677		tl->tl_head[t] = NULL;
678}
679
680void
681txg_list_destroy(txg_list_t *tl)
682{
683	int t;
684
685	for (t = 0; t < TXG_SIZE; t++)
686		ASSERT(txg_list_empty(tl, t));
687
688	mutex_destroy(&tl->tl_lock);
689}
690
691boolean_t
692txg_list_empty(txg_list_t *tl, uint64_t txg)
693{
694	return (tl->tl_head[txg & TXG_MASK] == NULL);
695}
696
697/*
698 * Add an entry to the list (unless it's already on the list).
699 * Returns B_TRUE if it was actually added.
700 */
701boolean_t
702txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
703{
704	int t = txg & TXG_MASK;
705	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
706	boolean_t add;
707
708	mutex_enter(&tl->tl_lock);
709	add = (tn->tn_member[t] == 0);
710	if (add) {
711		tn->tn_member[t] = 1;
712		tn->tn_next[t] = tl->tl_head[t];
713		tl->tl_head[t] = tn;
714	}
715	mutex_exit(&tl->tl_lock);
716
717	return (add);
718}
719
720/*
721 * Add an entry to the end of the list, unless it's already on the list.
722 * (walks list to find end)
723 * Returns B_TRUE if it was actually added.
724 */
725boolean_t
726txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
727{
728	int t = txg & TXG_MASK;
729	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
730	boolean_t add;
731
732	mutex_enter(&tl->tl_lock);
733	add = (tn->tn_member[t] == 0);
734	if (add) {
735		txg_node_t **tp;
736
737		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
738			continue;
739
740		tn->tn_member[t] = 1;
741		tn->tn_next[t] = NULL;
742		*tp = tn;
743	}
744	mutex_exit(&tl->tl_lock);
745
746	return (add);
747}
748
749/*
750 * Remove the head of the list and return it.
751 */
752void *
753txg_list_remove(txg_list_t *tl, uint64_t txg)
754{
755	int t = txg & TXG_MASK;
756	txg_node_t *tn;
757	void *p = NULL;
758
759	mutex_enter(&tl->tl_lock);
760	if ((tn = tl->tl_head[t]) != NULL) {
761		p = (char *)tn - tl->tl_offset;
762		tl->tl_head[t] = tn->tn_next[t];
763		tn->tn_next[t] = NULL;
764		tn->tn_member[t] = 0;
765	}
766	mutex_exit(&tl->tl_lock);
767
768	return (p);
769}
770
771/*
772 * Remove a specific item from the list and return it.
773 */
774void *
775txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
776{
777	int t = txg & TXG_MASK;
778	txg_node_t *tn, **tp;
779
780	mutex_enter(&tl->tl_lock);
781
782	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
783		if ((char *)tn - tl->tl_offset == p) {
784			*tp = tn->tn_next[t];
785			tn->tn_next[t] = NULL;
786			tn->tn_member[t] = 0;
787			mutex_exit(&tl->tl_lock);
788			return (p);
789		}
790	}
791
792	mutex_exit(&tl->tl_lock);
793
794	return (NULL);
795}
796
797boolean_t
798txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
799{
800	int t = txg & TXG_MASK;
801	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
802
803	return (tn->tn_member[t] != 0);
804}
805
806/*
807 * Walk a txg list -- only safe if you know it's not changing.
808 */
809void *
810txg_list_head(txg_list_t *tl, uint64_t txg)
811{
812	int t = txg & TXG_MASK;
813	txg_node_t *tn = tl->tl_head[t];
814
815	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
816}
817
818void *
819txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
820{
821	int t = txg & TXG_MASK;
822	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
823
824	tn = tn->tn_next[t];
825
826	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
827}
828