zfsimpl.h revision 185097
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55
56/* CRC64 table */
57#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
58
59/*
60 * Macros for various sorts of alignment and rounding when the alignment
61 * is known to be a power of 2.
62 */
63#define	P2ALIGN(x, align)		((x) & -(align))
64#define	P2PHASE(x, align)		((x) & ((align) - 1))
65#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
66#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
67#define	P2END(x, align)			(-(~(x) & -(align)))
68#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
69#define	P2CROSS(x, y, align)		(((x) ^ (y)) > (align) - 1)
70
71/*
72 * General-purpose 32-bit and 64-bit bitfield encodings.
73 */
74#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
75#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
76#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
77#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
78
79#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
80#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
81
82#define	BF32_SET(x, low, len, val)	\
83	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
84#define	BF64_SET(x, low, len, val)	\
85	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
86
87#define	BF32_GET_SB(x, low, len, shift, bias)	\
88	((BF32_GET(x, low, len) + (bias)) << (shift))
89#define	BF64_GET_SB(x, low, len, shift, bias)	\
90	((BF64_GET(x, low, len) + (bias)) << (shift))
91
92#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
93	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
94#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
95	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
96
97/*
98 * We currently support nine block sizes, from 512 bytes to 128K.
99 * We could go higher, but the benefits are near-zero and the cost
100 * of COWing a giant block to modify one byte would become excessive.
101 */
102#define	SPA_MINBLOCKSHIFT	9
103#define	SPA_MAXBLOCKSHIFT	17
104#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
105#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
106
107#define	SPA_BLOCKSIZES		(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
108
109/*
110 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
111 * The ASIZE encoding should be at least 64 times larger (6 more bits)
112 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
113 * overhead, three DVAs per bp, plus one more bit in case we do anything
114 * else that expands the ASIZE.
115 */
116#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
117#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
118#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
119
120/*
121 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
122 * The members of the dva_t should be considered opaque outside the SPA.
123 */
124typedef struct dva {
125	uint64_t	dva_word[2];
126} dva_t;
127
128/*
129 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
130 */
131typedef struct zio_cksum {
132	uint64_t	zc_word[4];
133} zio_cksum_t;
134
135/*
136 * Each block is described by its DVAs, time of birth, checksum, etc.
137 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
138 *
139 *	64	56	48	40	32	24	16	8	0
140 *	+-------+-------+-------+-------+-------+-------+-------+-------+
141 * 0	|		vdev1		| GRID  |	  ASIZE		|
142 *	+-------+-------+-------+-------+-------+-------+-------+-------+
143 * 1	|G|			 offset1				|
144 *	+-------+-------+-------+-------+-------+-------+-------+-------+
145 * 2	|		vdev2		| GRID  |	  ASIZE		|
146 *	+-------+-------+-------+-------+-------+-------+-------+-------+
147 * 3	|G|			 offset2				|
148 *	+-------+-------+-------+-------+-------+-------+-------+-------+
149 * 4	|		vdev3		| GRID  |	  ASIZE		|
150 *	+-------+-------+-------+-------+-------+-------+-------+-------+
151 * 5	|G|			 offset3				|
152 *	+-------+-------+-------+-------+-------+-------+-------+-------+
153 * 6	|E| lvl | type	| cksum | comp	|     PSIZE	|     LSIZE	|
154 *	+-------+-------+-------+-------+-------+-------+-------+-------+
155 * 7	|			padding					|
156 *	+-------+-------+-------+-------+-------+-------+-------+-------+
157 * 8	|			padding					|
158 *	+-------+-------+-------+-------+-------+-------+-------+-------+
159 * 9	|			padding					|
160 *	+-------+-------+-------+-------+-------+-------+-------+-------+
161 * a	|			birth txg				|
162 *	+-------+-------+-------+-------+-------+-------+-------+-------+
163 * b	|			fill count				|
164 *	+-------+-------+-------+-------+-------+-------+-------+-------+
165 * c	|			checksum[0]				|
166 *	+-------+-------+-------+-------+-------+-------+-------+-------+
167 * d	|			checksum[1]				|
168 *	+-------+-------+-------+-------+-------+-------+-------+-------+
169 * e	|			checksum[2]				|
170 *	+-------+-------+-------+-------+-------+-------+-------+-------+
171 * f	|			checksum[3]				|
172 *	+-------+-------+-------+-------+-------+-------+-------+-------+
173 *
174 * Legend:
175 *
176 * vdev		virtual device ID
177 * offset	offset into virtual device
178 * LSIZE	logical size
179 * PSIZE	physical size (after compression)
180 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
181 * GRID		RAID-Z layout information (reserved for future use)
182 * cksum	checksum function
183 * comp		compression function
184 * G		gang block indicator
185 * E		endianness
186 * type		DMU object type
187 * lvl		level of indirection
188 * birth txg	transaction group in which the block was born
189 * fill count	number of non-zero blocks under this bp
190 * checksum[4]	256-bit checksum of the data this bp describes
191 */
192typedef struct blkptr {
193	dva_t		blk_dva[3];	/* 128-bit Data Virtual Address	*/
194	uint64_t	blk_prop;	/* size, compression, type, etc	*/
195	uint64_t	blk_pad[3];	/* Extra space for the future	*/
196	uint64_t	blk_birth;	/* transaction group at birth	*/
197	uint64_t	blk_fill;	/* fill count			*/
198	zio_cksum_t	blk_cksum;	/* 256-bit checksum		*/
199} blkptr_t;
200
201#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
202#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
203
204/*
205 * Macros to get and set fields in a bp or DVA.
206 */
207#define	DVA_GET_ASIZE(dva)	\
208	BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0)
209#define	DVA_SET_ASIZE(dva, x)	\
210	BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x)
211
212#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
213#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
214
215#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
216#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
217
218#define	DVA_GET_OFFSET(dva)	\
219	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
220#define	DVA_SET_OFFSET(dva, x)	\
221	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
222
223#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
224#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
225
226#define	BP_GET_LSIZE(bp)	\
227	(BP_IS_HOLE(bp) ? 0 : \
228	BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1))
229#define	BP_SET_LSIZE(bp, x)	\
230	BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
231
232#define	BP_GET_PSIZE(bp)	\
233	BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1)
234#define	BP_SET_PSIZE(bp, x)	\
235	BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x)
236
237#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 8)
238#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 8, x)
239
240#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
241#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
242
243#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
244#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
245
246#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
247#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
248
249#define	BP_GET_BYTEORDER(bp)	(0 - BF64_GET((bp)->blk_prop, 63, 1))
250#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
251
252#define	BP_GET_ASIZE(bp)	\
253	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
254		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
255
256#define	BP_GET_UCSIZE(bp) \
257	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
258	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
259
260#define	BP_GET_NDVAS(bp)	\
261	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
262	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
263	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
264
265#define	BP_COUNT_GANG(bp)	\
266	(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
267	DVA_GET_GANG(&(bp)->blk_dva[1]) + \
268	DVA_GET_GANG(&(bp)->blk_dva[2]))
269
270#define	DVA_EQUAL(dva1, dva2)	\
271	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
272	(dva1)->dva_word[0] == (dva2)->dva_word[0])
273
274#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
275	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
276	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
277	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
278	((zc1).zc_word[3] - (zc2).zc_word[3])))
279
280
281#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
282
283#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
284{						\
285	(zcp)->zc_word[0] = w0;			\
286	(zcp)->zc_word[1] = w1;			\
287	(zcp)->zc_word[2] = w2;			\
288	(zcp)->zc_word[3] = w3;			\
289}
290
291#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
292#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
293#define	BP_IS_HOLE(bp)		((bp)->blk_birth == 0)
294#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
295
296#define	BP_ZERO(bp)				\
297{						\
298	(bp)->blk_dva[0].dva_word[0] = 0;	\
299	(bp)->blk_dva[0].dva_word[1] = 0;	\
300	(bp)->blk_dva[1].dva_word[0] = 0;	\
301	(bp)->blk_dva[1].dva_word[1] = 0;	\
302	(bp)->blk_dva[2].dva_word[0] = 0;	\
303	(bp)->blk_dva[2].dva_word[1] = 0;	\
304	(bp)->blk_prop = 0;			\
305	(bp)->blk_pad[0] = 0;			\
306	(bp)->blk_pad[1] = 0;			\
307	(bp)->blk_pad[2] = 0;			\
308	(bp)->blk_birth = 0;			\
309	(bp)->blk_fill = 0;			\
310	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
311}
312
313#define	ZBT_MAGIC	0x210da7ab10c7a11ULL	/* zio data bloc tail */
314
315typedef struct zio_block_tail {
316	uint64_t	zbt_magic;	/* for validation, endianness	*/
317	zio_cksum_t	zbt_cksum;	/* 256-bit checksum		*/
318} zio_block_tail_t;
319
320#define	VDEV_SKIP_SIZE		(8 << 10)
321#define	VDEV_BOOT_HEADER_SIZE	(8 << 10)
322#define	VDEV_PHYS_SIZE		(112 << 10)
323#define	VDEV_UBERBLOCK_RING	(128 << 10)
324
325#define	VDEV_UBERBLOCK_SHIFT(vd)	\
326	MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT)
327#define	VDEV_UBERBLOCK_COUNT(vd)	\
328	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
329#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
330	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
331#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
332
333/* ZFS boot block */
334#define	VDEV_BOOT_MAGIC		0x2f5b007b10cULL
335#define	VDEV_BOOT_VERSION	1		/* version number	*/
336
337typedef struct vdev_boot_header {
338	uint64_t	vb_magic;		/* VDEV_BOOT_MAGIC	*/
339	uint64_t	vb_version;		/* VDEV_BOOT_VERSION	*/
340	uint64_t	vb_offset;		/* start offset	(bytes) */
341	uint64_t	vb_size;		/* size (bytes)		*/
342	char		vb_pad[VDEV_BOOT_HEADER_SIZE - 4 * sizeof (uint64_t)];
343} vdev_boot_header_t;
344
345typedef struct vdev_phys {
346	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_block_tail_t)];
347	zio_block_tail_t vp_zbt;
348} vdev_phys_t;
349
350typedef struct vdev_label {
351	char		vl_pad[VDEV_SKIP_SIZE];			/*   8K	*/
352	vdev_boot_header_t vl_boot_header;			/*   8K	*/
353	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
354	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
355} vdev_label_t;							/* 256K total */
356
357/*
358 * vdev_dirty() flags
359 */
360#define	VDD_METASLAB	0x01
361#define	VDD_DTL		0x02
362
363/*
364 * Size and offset of embedded boot loader region on each label.
365 * The total size of the first two labels plus the boot area is 4MB.
366 */
367#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
368#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
369
370/*
371 * Size of label regions at the start and end of each leaf device.
372 */
373#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
374#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
375#define	VDEV_LABELS		4
376
377enum zio_checksum {
378	ZIO_CHECKSUM_INHERIT = 0,
379	ZIO_CHECKSUM_ON,
380	ZIO_CHECKSUM_OFF,
381	ZIO_CHECKSUM_LABEL,
382	ZIO_CHECKSUM_GANG_HEADER,
383	ZIO_CHECKSUM_ZILOG,
384	ZIO_CHECKSUM_FLETCHER_2,
385	ZIO_CHECKSUM_FLETCHER_4,
386	ZIO_CHECKSUM_SHA256,
387	ZIO_CHECKSUM_FUNCTIONS
388};
389
390#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_2
391#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
392
393enum zio_compress {
394	ZIO_COMPRESS_INHERIT = 0,
395	ZIO_COMPRESS_ON,
396	ZIO_COMPRESS_OFF,
397	ZIO_COMPRESS_LZJB,
398	ZIO_COMPRESS_EMPTY,
399	ZIO_COMPRESS_GZIP_1,
400	ZIO_COMPRESS_GZIP_2,
401	ZIO_COMPRESS_GZIP_3,
402	ZIO_COMPRESS_GZIP_4,
403	ZIO_COMPRESS_GZIP_5,
404	ZIO_COMPRESS_GZIP_6,
405	ZIO_COMPRESS_GZIP_7,
406	ZIO_COMPRESS_GZIP_8,
407	ZIO_COMPRESS_GZIP_9,
408	ZIO_COMPRESS_FUNCTIONS
409};
410
411#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
412#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
413
414/* nvlist pack encoding */
415#define	NV_ENCODE_NATIVE	0
416#define	NV_ENCODE_XDR		1
417
418typedef enum {
419	DATA_TYPE_UNKNOWN = 0,
420	DATA_TYPE_BOOLEAN,
421	DATA_TYPE_BYTE,
422	DATA_TYPE_INT16,
423	DATA_TYPE_UINT16,
424	DATA_TYPE_INT32,
425	DATA_TYPE_UINT32,
426	DATA_TYPE_INT64,
427	DATA_TYPE_UINT64,
428	DATA_TYPE_STRING,
429	DATA_TYPE_BYTE_ARRAY,
430	DATA_TYPE_INT16_ARRAY,
431	DATA_TYPE_UINT16_ARRAY,
432	DATA_TYPE_INT32_ARRAY,
433	DATA_TYPE_UINT32_ARRAY,
434	DATA_TYPE_INT64_ARRAY,
435	DATA_TYPE_UINT64_ARRAY,
436	DATA_TYPE_STRING_ARRAY,
437	DATA_TYPE_HRTIME,
438	DATA_TYPE_NVLIST,
439	DATA_TYPE_NVLIST_ARRAY,
440	DATA_TYPE_BOOLEAN_VALUE,
441	DATA_TYPE_INT8,
442	DATA_TYPE_UINT8,
443	DATA_TYPE_BOOLEAN_ARRAY,
444	DATA_TYPE_INT8_ARRAY,
445	DATA_TYPE_UINT8_ARRAY
446} data_type_t;
447
448/*
449 * On-disk version number.
450 */
451#define	SPA_VERSION_1			1ULL
452#define	SPA_VERSION_2			2ULL
453#define	SPA_VERSION_3			3ULL
454#define	SPA_VERSION_4			4ULL
455#define	SPA_VERSION_5			5ULL
456#define	SPA_VERSION_6			6ULL
457#define	SPA_VERSION_7			7ULL
458#define	SPA_VERSION_8			8ULL
459#define	SPA_VERSION_9			9ULL
460#define	SPA_VERSION_10			10ULL
461#define	SPA_VERSION_11			11ULL
462/*
463 * When bumping up SPA_VERSION, make sure GRUB ZFS understand the on-disk
464 * format change. Go to usr/src/grub/grub-0.95/stage2/{zfs-include/, fsys_zfs*},
465 * and do the appropriate changes.
466 */
467#define	SPA_VERSION			SPA_VERSION_11
468#define	SPA_VERSION_STRING		"11"
469
470/*
471 * Symbolic names for the changes that caused a SPA_VERSION switch.
472 * Used in the code when checking for presence or absence of a feature.
473 * Feel free to define multiple symbolic names for each version if there
474 * were multiple changes to on-disk structures during that version.
475 *
476 * NOTE: When checking the current SPA_VERSION in your code, be sure
477 *       to use spa_version() since it reports the version of the
478 *       last synced uberblock.  Checking the in-flight version can
479 *       be dangerous in some cases.
480 */
481#define	SPA_VERSION_INITIAL		SPA_VERSION_1
482#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
483#define	SPA_VERSION_SPARES		SPA_VERSION_3
484#define	SPA_VERSION_RAID6		SPA_VERSION_3
485#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
486#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
487#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
488#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
489#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
490#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
491
492/*
493 * The following are configuration names used in the nvlist describing a pool's
494 * configuration.
495 */
496#define	ZPOOL_CONFIG_VERSION		"version"
497#define	ZPOOL_CONFIG_POOL_NAME		"name"
498#define	ZPOOL_CONFIG_POOL_STATE		"state"
499#define	ZPOOL_CONFIG_POOL_TXG		"txg"
500#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
501#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
502#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
503#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
504#define	ZPOOL_CONFIG_TYPE		"type"
505#define	ZPOOL_CONFIG_CHILDREN		"children"
506#define	ZPOOL_CONFIG_ID			"id"
507#define	ZPOOL_CONFIG_GUID		"guid"
508#define	ZPOOL_CONFIG_PATH		"path"
509#define	ZPOOL_CONFIG_DEVID		"devid"
510#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
511#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
512#define	ZPOOL_CONFIG_ASHIFT		"ashift"
513#define	ZPOOL_CONFIG_ASIZE		"asize"
514#define	ZPOOL_CONFIG_DTL		"DTL"
515#define	ZPOOL_CONFIG_STATS		"stats"
516#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
517#define	ZPOOL_CONFIG_OFFLINE		"offline"
518#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
519#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
520#define	ZPOOL_CONFIG_SPARES		"spares"
521#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
522#define	ZPOOL_CONFIG_NPARITY		"nparity"
523#define	ZPOOL_CONFIG_HOSTID		"hostid"
524#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
525#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
526
527#define	VDEV_TYPE_ROOT			"root"
528#define	VDEV_TYPE_MIRROR		"mirror"
529#define	VDEV_TYPE_REPLACING		"replacing"
530#define	VDEV_TYPE_RAIDZ			"raidz"
531#define	VDEV_TYPE_DISK			"disk"
532#define	VDEV_TYPE_FILE			"file"
533#define	VDEV_TYPE_MISSING		"missing"
534#define	VDEV_TYPE_SPARE			"spare"
535
536/*
537 * This is needed in userland to report the minimum necessary device size.
538 */
539#define	SPA_MINDEVSIZE		(64ULL << 20)
540
541/*
542 * The location of the pool configuration repository, shared between kernel and
543 * userland.
544 */
545#define	ZPOOL_CACHE_DIR		"/boot/zfs"
546#define	ZPOOL_CACHE_FILE	"zpool.cache"
547#define	ZPOOL_CACHE_TMP		".zpool.cache"
548
549#define	ZPOOL_CACHE		ZPOOL_CACHE_DIR "/" ZPOOL_CACHE_FILE
550
551/*
552 * vdev states are ordered from least to most healthy.
553 * A vdev that's CANT_OPEN or below is considered unusable.
554 */
555typedef enum vdev_state {
556	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
557	VDEV_STATE_CLOSED,	/* Not currently open			*/
558	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
559	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
560	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
561	VDEV_STATE_HEALTHY	/* Presumed good			*/
562} vdev_state_t;
563
564/*
565 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
566 * of the vdev stats structure uses these constants to distinguish why.
567 */
568typedef enum vdev_aux {
569	VDEV_AUX_NONE,		/* no error				*/
570	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
571	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
572	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
573	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
574	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
575	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
576	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
577	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
578	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
579} vdev_aux_t;
580
581/*
582 * pool state.  The following states are written to disk as part of the normal
583 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
584 * software abstractions used at various levels to communicate pool state.
585 */
586typedef enum pool_state {
587	POOL_STATE_ACTIVE = 0,		/* In active use		*/
588	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
589	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
590	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
591	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
592	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
593	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
594} pool_state_t;
595
596/*
597 * The uberblock version is incremented whenever an incompatible on-disk
598 * format change is made to the SPA, DMU, or ZAP.
599 *
600 * Note: the first two fields should never be moved.  When a storage pool
601 * is opened, the uberblock must be read off the disk before the version
602 * can be checked.  If the ub_version field is moved, we may not detect
603 * version mismatch.  If the ub_magic field is moved, applications that
604 * expect the magic number in the first word won't work.
605 */
606#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
607#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
608
609struct uberblock {
610	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
611	uint64_t	ub_version;	/* SPA_VERSION			*/
612	uint64_t	ub_txg;		/* txg of last sync		*/
613	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
614	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
615	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
616};
617
618/*
619 * Flags.
620 */
621#define	DNODE_MUST_BE_ALLOCATED	1
622#define	DNODE_MUST_BE_FREE	2
623
624/*
625 * Fixed constants.
626 */
627#define	DNODE_SHIFT		9	/* 512 bytes */
628#define	DN_MIN_INDBLKSHIFT	10	/* 1k */
629#define	DN_MAX_INDBLKSHIFT	14	/* 16k */
630#define	DNODE_BLOCK_SHIFT	14	/* 16k */
631#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
632#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
633#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
634
635/*
636 * Derived constants.
637 */
638#define	DNODE_SIZE	(1 << DNODE_SHIFT)
639#define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
640#define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
641#define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
642
643#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
644#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
645#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
646
647/* The +2 here is a cheesy way to round up */
648#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
649	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
650
651#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
652	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
653
654#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
655	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
656
657#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
658
659/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
660#define	DNODE_FLAG_USED_BYTES	(1<<0)
661
662typedef struct dnode_phys {
663	uint8_t dn_type;		/* dmu_object_type_t */
664	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
665	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
666	uint8_t dn_nblkptr;		/* length of dn_blkptr */
667	uint8_t dn_bonustype;		/* type of data in bonus buffer */
668	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
669	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
670	uint8_t dn_flags;		/* DNODE_FLAG_* */
671	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
672	uint16_t dn_bonuslen;		/* length of dn_bonus */
673	uint8_t dn_pad2[4];
674
675	/* accounting is protected by dn_dirty_mtx */
676	uint64_t dn_maxblkid;		/* largest allocated block ID */
677	uint64_t dn_used;		/* bytes (or sectors) of disk space */
678
679	uint64_t dn_pad3[4];
680
681	blkptr_t dn_blkptr[1];
682	uint8_t dn_bonus[DN_MAX_BONUSLEN];
683} dnode_phys_t;
684
685typedef enum dmu_object_type {
686	DMU_OT_NONE,
687	/* general: */
688	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
689	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
690	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
691	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
692	DMU_OT_BPLIST,			/* UINT64 */
693	DMU_OT_BPLIST_HDR,		/* UINT64 */
694	/* spa: */
695	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
696	DMU_OT_SPACE_MAP,		/* UINT64 */
697	/* zil: */
698	DMU_OT_INTENT_LOG,		/* UINT64 */
699	/* dmu: */
700	DMU_OT_DNODE,			/* DNODE */
701	DMU_OT_OBJSET,			/* OBJSET */
702	/* dsl: */
703	DMU_OT_DSL_DIR,			/* UINT64 */
704	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
705	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
706	DMU_OT_DSL_PROPS,		/* ZAP */
707	DMU_OT_DSL_DATASET,		/* UINT64 */
708	/* zpl: */
709	DMU_OT_ZNODE,			/* ZNODE */
710	DMU_OT_ACL,			/* ACL */
711	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
712	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
713	DMU_OT_MASTER_NODE,		/* ZAP */
714	DMU_OT_UNLINKED_SET,		/* ZAP */
715	/* zvol: */
716	DMU_OT_ZVOL,			/* UINT8 */
717	DMU_OT_ZVOL_PROP,		/* ZAP */
718	/* other; for testing only! */
719	DMU_OT_PLAIN_OTHER,		/* UINT8 */
720	DMU_OT_UINT64_OTHER,		/* UINT64 */
721	DMU_OT_ZAP_OTHER,		/* ZAP */
722	/* new object types: */
723	DMU_OT_ERROR_LOG,		/* ZAP */
724	DMU_OT_SPA_HISTORY,		/* UINT8 */
725	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
726	DMU_OT_POOL_PROPS,		/* ZAP */
727
728	DMU_OT_NUMTYPES
729} dmu_object_type_t;
730
731typedef enum dmu_objset_type {
732	DMU_OST_NONE,
733	DMU_OST_META,
734	DMU_OST_ZFS,
735	DMU_OST_ZVOL,
736	DMU_OST_OTHER,			/* For testing only! */
737	DMU_OST_ANY,			/* Be careful! */
738	DMU_OST_NUMTYPES
739} dmu_objset_type_t;
740
741/*
742 * Intent log header - this on disk structure holds fields to manage
743 * the log.  All fields are 64 bit to easily handle cross architectures.
744 */
745typedef struct zil_header {
746	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
747	uint64_t zh_replay_seq;	/* highest replayed sequence number */
748	blkptr_t zh_log;	/* log chain */
749	uint64_t zh_claim_seq;	/* highest claimed sequence number */
750	uint64_t zh_pad[5];
751} zil_header_t;
752
753typedef struct objset_phys {
754	dnode_phys_t os_meta_dnode;
755	zil_header_t os_zil_header;
756	uint64_t os_type;
757	char os_pad[1024 - sizeof (dnode_phys_t) - sizeof (zil_header_t) -
758	    sizeof (uint64_t)];
759} objset_phys_t;
760
761typedef struct dsl_dir_phys {
762	uint64_t dd_creation_time; /* not actually used */
763	uint64_t dd_head_dataset_obj;
764	uint64_t dd_parent_obj;
765	uint64_t dd_clone_parent_obj;
766	uint64_t dd_child_dir_zapobj;
767	/*
768	 * how much space our children are accounting for; for leaf
769	 * datasets, == physical space used by fs + snaps
770	 */
771	uint64_t dd_used_bytes;
772	uint64_t dd_compressed_bytes;
773	uint64_t dd_uncompressed_bytes;
774	/* Administrative quota setting */
775	uint64_t dd_quota;
776	/* Administrative reservation setting */
777	uint64_t dd_reserved;
778	uint64_t dd_props_zapobj;
779	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
780} dsl_dir_phys_t;
781
782typedef struct dsl_dataset_phys {
783	uint64_t ds_dir_obj;
784	uint64_t ds_prev_snap_obj;
785	uint64_t ds_prev_snap_txg;
786	uint64_t ds_next_snap_obj;
787	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
788	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
789	uint64_t ds_creation_time;	/* seconds since 1970 */
790	uint64_t ds_creation_txg;
791	uint64_t ds_deadlist_obj;
792	uint64_t ds_used_bytes;
793	uint64_t ds_compressed_bytes;
794	uint64_t ds_uncompressed_bytes;
795	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
796	/*
797	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
798	 * collisions.  The ds_guid is a 64-bit ID that will never
799	 * change, so there is a small probability that it will collide.
800	 */
801	uint64_t ds_fsid_guid;
802	uint64_t ds_guid;
803	uint64_t ds_flags;
804	blkptr_t ds_bp;
805	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
806} dsl_dataset_phys_t;
807
808/*
809 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
810 */
811#define	DMU_POOL_DIRECTORY_OBJECT	1
812#define	DMU_POOL_CONFIG			"config"
813#define	DMU_POOL_ROOT_DATASET		"root_dataset"
814#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
815#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
816#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
817#define	DMU_POOL_SPARES			"spares"
818#define	DMU_POOL_DEFLATE		"deflate"
819#define	DMU_POOL_HISTORY		"history"
820#define	DMU_POOL_PROPS			"pool_props"
821
822#define	ZAP_MAGIC 0x2F52AB2ABULL
823
824#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
825
826#define	ZAP_MAXCD		(uint32_t)(-1)
827#define	ZAP_HASHBITS		28
828#define	MZAP_ENT_LEN		64
829#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
830#define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
831#define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
832
833typedef struct mzap_ent_phys {
834	uint64_t mze_value;
835	uint32_t mze_cd;
836	uint16_t mze_pad;	/* in case we want to chain them someday */
837	char mze_name[MZAP_NAME_LEN];
838} mzap_ent_phys_t;
839
840typedef struct mzap_phys {
841	uint64_t mz_block_type;	/* ZBT_MICRO */
842	uint64_t mz_salt;
843	uint64_t mz_pad[6];
844	mzap_ent_phys_t mz_chunk[1];
845	/* actually variable size depending on block size */
846} mzap_phys_t;
847
848/*
849 * The (fat) zap is stored in one object. It is an array of
850 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
851 *
852 * ptrtbl fits in first block:
853 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
854 *
855 * ptrtbl too big for first block:
856 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
857 *
858 */
859
860#define	ZBT_LEAF		((1ULL << 63) + 0)
861#define	ZBT_HEADER		((1ULL << 63) + 1)
862#define	ZBT_MICRO		((1ULL << 63) + 3)
863/* any other values are ptrtbl blocks */
864
865/*
866 * the embedded pointer table takes up half a block:
867 * block size / entry size (2^3) / 2
868 */
869#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
870
871/*
872 * The embedded pointer table starts half-way through the block.  Since
873 * the pointer table itself is half the block, it starts at (64-bit)
874 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
875 */
876#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
877	((uint64_t *)(zap)->zap_phys) \
878	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
879
880/*
881 * TAKE NOTE:
882 * If zap_phys_t is modified, zap_byteswap() must be modified.
883 */
884typedef struct zap_phys {
885	uint64_t zap_block_type;	/* ZBT_HEADER */
886	uint64_t zap_magic;		/* ZAP_MAGIC */
887
888	struct zap_table_phys {
889		uint64_t zt_blk;	/* starting block number */
890		uint64_t zt_numblks;	/* number of blocks */
891		uint64_t zt_shift;	/* bits to index it */
892		uint64_t zt_nextblk;	/* next (larger) copy start block */
893		uint64_t zt_blks_copied; /* number source blocks copied */
894	} zap_ptrtbl;
895
896	uint64_t zap_freeblk;		/* the next free block */
897	uint64_t zap_num_leafs;		/* number of leafs */
898	uint64_t zap_num_entries;	/* number of entries */
899	uint64_t zap_salt;		/* salt to stir into hash function */
900	/*
901	 * This structure is followed by padding, and then the embedded
902	 * pointer table.  The embedded pointer table takes up second
903	 * half of the block.  It is accessed using the
904	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
905	 */
906} zap_phys_t;
907
908typedef struct zap_table_phys zap_table_phys_t;
909
910typedef struct fat_zap {
911	int zap_block_shift;			/* block size shift */
912	zap_phys_t *zap_phys;
913} fat_zap_t;
914
915#define	ZAP_LEAF_MAGIC 0x2AB1EAF
916
917/* chunk size = 24 bytes */
918#define	ZAP_LEAF_CHUNKSIZE 24
919
920/*
921 * The amount of space available for chunks is:
922 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
923 * entries - header space (2*chunksize)
924 */
925#define	ZAP_LEAF_NUMCHUNKS(l) \
926	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
927	ZAP_LEAF_CHUNKSIZE - 2)
928
929/*
930 * The amount of space within the chunk available for the array is:
931 * chunk size - space for type (1) - space for next pointer (2)
932 */
933#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
934
935#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
936	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
937
938/*
939 * Low water mark:  when there are only this many chunks free, start
940 * growing the ptrtbl.  Ideally, this should be larger than a
941 * "reasonably-sized" entry.  20 chunks is more than enough for the
942 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
943 * while still being only around 3% for 16k blocks.
944 */
945#define	ZAP_LEAF_LOW_WATER (20)
946
947/*
948 * The leaf hash table has block size / 2^5 (32) number of entries,
949 * which should be more than enough for the maximum number of entries,
950 * which is less than block size / CHUNKSIZE (24) / minimum number of
951 * chunks per entry (3).
952 */
953#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
954#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
955
956/*
957 * The chunks start immediately after the hash table.  The end of the
958 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
959 * chunk_t.
960 */
961#define	ZAP_LEAF_CHUNK(l, idx) \
962	((zap_leaf_chunk_t *) \
963	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
964#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
965
966typedef enum zap_chunk_type {
967	ZAP_CHUNK_FREE = 253,
968	ZAP_CHUNK_ENTRY = 252,
969	ZAP_CHUNK_ARRAY = 251,
970	ZAP_CHUNK_TYPE_MAX = 250
971} zap_chunk_type_t;
972
973/*
974 * TAKE NOTE:
975 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
976 */
977typedef struct zap_leaf_phys {
978	struct zap_leaf_header {
979		uint64_t lh_block_type;		/* ZBT_LEAF */
980		uint64_t lh_pad1;
981		uint64_t lh_prefix;		/* hash prefix of this leaf */
982		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
983		uint16_t lh_nfree;		/* number free chunks */
984		uint16_t lh_nentries;		/* number of entries */
985		uint16_t lh_prefix_len;		/* num bits used to id this */
986
987/* above is accessable to zap, below is zap_leaf private */
988
989		uint16_t lh_freelist;		/* chunk head of free list */
990		uint8_t lh_pad2[12];
991	} l_hdr; /* 2 24-byte chunks */
992
993	/*
994	 * The header is followed by a hash table with
995	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
996	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
997	 * zap_leaf_chunk structures.  These structures are accessed
998	 * with the ZAP_LEAF_CHUNK() macro.
999	 */
1000
1001	uint16_t l_hash[1];
1002} zap_leaf_phys_t;
1003
1004typedef union zap_leaf_chunk {
1005	struct zap_leaf_entry {
1006		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1007		uint8_t le_int_size;		/* size of ints */
1008		uint16_t le_next;		/* next entry in hash chain */
1009		uint16_t le_name_chunk;		/* first chunk of the name */
1010		uint16_t le_name_length;	/* bytes in name, incl null */
1011		uint16_t le_value_chunk;	/* first chunk of the value */
1012		uint16_t le_value_length;	/* value length in ints */
1013		uint32_t le_cd;			/* collision differentiator */
1014		uint64_t le_hash;		/* hash value of the name */
1015	} l_entry;
1016	struct zap_leaf_array {
1017		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1018		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1019		uint16_t la_next;		/* next blk or CHAIN_END */
1020	} l_array;
1021	struct zap_leaf_free {
1022		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1023		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1024		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1025	} l_free;
1026} zap_leaf_chunk_t;
1027
1028typedef struct zap_leaf {
1029	int l_bs;			/* block size shift */
1030	zap_leaf_phys_t *l_phys;
1031} zap_leaf_t;
1032
1033/*
1034 * Define special zfs pflags
1035 */
1036#define	ZFS_XATTR	0x1		/* is an extended attribute */
1037#define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1038#define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1039
1040#define	MASTER_NODE_OBJ	1
1041
1042/*
1043 * special attributes for master node.
1044 */
1045
1046#define	ZFS_FSID		"FSID"
1047#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1048#define	ZFS_ROOT_OBJ		"ROOT"
1049#define	ZPL_VERSION_OBJ		"VERSION"
1050#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1051#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1052
1053#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1054#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1055
1056/*
1057 * ZPL version - rev'd whenever an incompatible on-disk format change
1058 * occurs.  Independent of SPA/DMU/ZAP versioning.
1059 */
1060
1061#define	ZPL_VERSION		1ULL
1062
1063/*
1064 * The directory entry has the type (currently unused on Solaris) in the
1065 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1066 * 12 bits are unused.
1067 */
1068#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1069#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1070#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1071
1072typedef struct ace {
1073	uid_t		a_who;		/* uid or gid */
1074	uint32_t	a_access_mask;	/* read,write,... */
1075	uint16_t	a_flags;	/* see below */
1076	uint16_t	a_type;		/* allow or deny */
1077} ace_t;
1078
1079#define ACE_SLOT_CNT	6
1080
1081typedef struct zfs_znode_acl {
1082	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1083	uint32_t	z_acl_count;		  /* Number of ACEs */
1084	uint16_t	z_acl_version;		  /* acl version */
1085	uint16_t	z_acl_pad;		  /* pad */
1086	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1087} zfs_znode_acl_t;
1088
1089/*
1090 * This is the persistent portion of the znode.  It is stored
1091 * in the "bonus buffer" of the file.  Short symbolic links
1092 * are also stored in the bonus buffer.
1093 */
1094typedef struct znode_phys {
1095	uint64_t zp_atime[2];		/*  0 - last file access time */
1096	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1097	uint64_t zp_ctime[2];		/* 32 - last file change time */
1098	uint64_t zp_crtime[2];		/* 48 - creation time */
1099	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1100	uint64_t zp_mode;		/* 72 - file mode bits */
1101	uint64_t zp_size;		/* 80 - size of file */
1102	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1103	uint64_t zp_links;		/* 96 - number of links to file */
1104	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1105	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1106	uint64_t zp_flags;		/* 120 - persistent flags */
1107	uint64_t zp_uid;		/* 128 - file owner */
1108	uint64_t zp_gid;		/* 136 - owning group */
1109	uint64_t zp_pad[4];		/* 144 - future */
1110	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1111	/*
1112	 * Data may pad out any remaining bytes in the znode buffer, eg:
1113	 *
1114	 * |<---------------------- dnode_phys (512) ------------------------>|
1115	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1116	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1117	 *
1118	 * At present, we only use this space to store symbolic links.
1119	 */
1120} znode_phys_t;
1121
1122/*
1123 * In-core vdev representation.
1124 */
1125struct vdev;
1126typedef int vdev_read_t(struct vdev *vdev, void *priv, off_t offset, void *buf, size_t bytes);
1127
1128typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1129
1130typedef struct vdev {
1131	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1132	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1133	vdev_list_t	v_children;	/* children of this vdev */
1134	char		*v_name;	/* vdev name */
1135	uint64_t	v_guid;		/* vdev guid */
1136	int		v_id;		/* index in parent */
1137	vdev_state_t	v_state;	/* current state */
1138	vdev_read_t	*v_read;	/* function to read from this vdev */
1139	void		*v_read_priv;	/* private data for read function */
1140} vdev_t;
1141
1142/*
1143 * In-core pool representation.
1144 */
1145typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1146
1147typedef struct spa {
1148	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1149	char		*spa_name;	/* pool name */
1150	uint64_t	spa_guid;	/* pool guid */
1151	uint64_t	spa_txg;	/* most recent transaction */
1152	struct uberblock spa_uberblock;	/* best uberblock so far */
1153	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1154	objset_phys_t	spa_mos;	/* MOS for this pool */
1155	objset_phys_t	spa_root_objset; /* current mounted ZPL objset */
1156} spa_t;
1157