linux32_machdep.c revision 218030
1/*-
2 * Copyright (c) 2004 Tim J. Robbins
3 * Copyright (c) 2002 Doug Rabson
4 * Copyright (c) 2000 Marcel Moolenaar
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer
12 *    in this position and unchanged.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/amd64/linux32/linux32_machdep.c 218030 2011-01-28 18:47:07Z dchagin $");
33
34#include <sys/param.h>
35#include <sys/kernel.h>
36#include <sys/systm.h>
37#include <sys/file.h>
38#include <sys/fcntl.h>
39#include <sys/clock.h>
40#include <sys/imgact.h>
41#include <sys/limits.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mman.h>
45#include <sys/mutex.h>
46#include <sys/priv.h>
47#include <sys/proc.h>
48#include <sys/resource.h>
49#include <sys/resourcevar.h>
50#include <sys/sched.h>
51#include <sys/syscallsubr.h>
52#include <sys/sysproto.h>
53#include <sys/unistd.h>
54#include <sys/wait.h>
55
56#include <machine/frame.h>
57#include <machine/pcb.h>
58#include <machine/psl.h>
59#include <machine/segments.h>
60#include <machine/specialreg.h>
61
62#include <vm/vm.h>
63#include <vm/pmap.h>
64#include <vm/vm_map.h>
65
66#include <compat/freebsd32/freebsd32_util.h>
67#include <amd64/linux32/linux.h>
68#include <amd64/linux32/linux32_proto.h>
69#include <compat/linux/linux_ipc.h>
70#include <compat/linux/linux_misc.h>
71#include <compat/linux/linux_signal.h>
72#include <compat/linux/linux_util.h>
73#include <compat/linux/linux_emul.h>
74
75struct l_old_select_argv {
76	l_int		nfds;
77	l_uintptr_t	readfds;
78	l_uintptr_t	writefds;
79	l_uintptr_t	exceptfds;
80	l_uintptr_t	timeout;
81} __packed;
82
83int
84linux_to_bsd_sigaltstack(int lsa)
85{
86	int bsa = 0;
87
88	if (lsa & LINUX_SS_DISABLE)
89		bsa |= SS_DISABLE;
90	if (lsa & LINUX_SS_ONSTACK)
91		bsa |= SS_ONSTACK;
92	return (bsa);
93}
94
95static int	linux_mmap_common(struct thread *td, l_uintptr_t addr,
96		    l_size_t len, l_int prot, l_int flags, l_int fd,
97		    l_loff_t pos);
98
99int
100bsd_to_linux_sigaltstack(int bsa)
101{
102	int lsa = 0;
103
104	if (bsa & SS_DISABLE)
105		lsa |= LINUX_SS_DISABLE;
106	if (bsa & SS_ONSTACK)
107		lsa |= LINUX_SS_ONSTACK;
108	return (lsa);
109}
110
111static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
112{
113	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
114	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
115	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
116	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
117	lru->ru_maxrss = ru->ru_maxrss;
118	lru->ru_ixrss = ru->ru_ixrss;
119	lru->ru_idrss = ru->ru_idrss;
120	lru->ru_isrss = ru->ru_isrss;
121	lru->ru_minflt = ru->ru_minflt;
122	lru->ru_majflt = ru->ru_majflt;
123	lru->ru_nswap = ru->ru_nswap;
124	lru->ru_inblock = ru->ru_inblock;
125	lru->ru_oublock = ru->ru_oublock;
126	lru->ru_msgsnd = ru->ru_msgsnd;
127	lru->ru_msgrcv = ru->ru_msgrcv;
128	lru->ru_nsignals = ru->ru_nsignals;
129	lru->ru_nvcsw = ru->ru_nvcsw;
130	lru->ru_nivcsw = ru->ru_nivcsw;
131}
132
133int
134linux_execve(struct thread *td, struct linux_execve_args *args)
135{
136	struct image_args eargs;
137	char *path;
138	int error;
139
140	LCONVPATHEXIST(td, args->path, &path);
141
142#ifdef DEBUG
143	if (ldebug(execve))
144		printf(ARGS(execve, "%s"), path);
145#endif
146
147	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
148	    args->argp, args->envp);
149	free(path, M_TEMP);
150	if (error == 0)
151		error = kern_execve(td, &eargs, NULL);
152	if (error == 0)
153		/* Linux process can execute FreeBSD one, do not attempt
154		 * to create emuldata for such process using
155		 * linux_proc_init, this leads to a panic on KASSERT
156		 * because such process has p->p_emuldata == NULL.
157		 */
158		if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX)
159			error = linux_proc_init(td, 0, 0);
160	return (error);
161}
162
163CTASSERT(sizeof(struct l_iovec32) == 8);
164
165static int
166linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
167{
168	struct l_iovec32 iov32;
169	struct iovec *iov;
170	struct uio *uio;
171	uint32_t iovlen;
172	int error, i;
173
174	*uiop = NULL;
175	if (iovcnt > UIO_MAXIOV)
176		return (EINVAL);
177	iovlen = iovcnt * sizeof(struct iovec);
178	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
179	iov = (struct iovec *)(uio + 1);
180	for (i = 0; i < iovcnt; i++) {
181		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
182		if (error) {
183			free(uio, M_IOV);
184			return (error);
185		}
186		iov[i].iov_base = PTRIN(iov32.iov_base);
187		iov[i].iov_len = iov32.iov_len;
188	}
189	uio->uio_iov = iov;
190	uio->uio_iovcnt = iovcnt;
191	uio->uio_segflg = UIO_USERSPACE;
192	uio->uio_offset = -1;
193	uio->uio_resid = 0;
194	for (i = 0; i < iovcnt; i++) {
195		if (iov->iov_len > INT_MAX - uio->uio_resid) {
196			free(uio, M_IOV);
197			return (EINVAL);
198		}
199		uio->uio_resid += iov->iov_len;
200		iov++;
201	}
202	*uiop = uio;
203	return (0);
204}
205
206int
207linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
208    int error)
209{
210	struct l_iovec32 iov32;
211	struct iovec *iov;
212	uint32_t iovlen;
213	int i;
214
215	*iovp = NULL;
216	if (iovcnt > UIO_MAXIOV)
217		return (error);
218	iovlen = iovcnt * sizeof(struct iovec);
219	iov = malloc(iovlen, M_IOV, M_WAITOK);
220	for (i = 0; i < iovcnt; i++) {
221		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
222		if (error) {
223			free(iov, M_IOV);
224			return (error);
225		}
226		iov[i].iov_base = PTRIN(iov32.iov_base);
227		iov[i].iov_len = iov32.iov_len;
228	}
229	*iovp = iov;
230	return(0);
231
232}
233
234int
235linux_readv(struct thread *td, struct linux_readv_args *uap)
236{
237	struct uio *auio;
238	int error;
239
240	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
241	if (error)
242		return (error);
243	error = kern_readv(td, uap->fd, auio);
244	free(auio, M_IOV);
245	return (error);
246}
247
248int
249linux_writev(struct thread *td, struct linux_writev_args *uap)
250{
251	struct uio *auio;
252	int error;
253
254	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
255	if (error)
256		return (error);
257	error = kern_writev(td, uap->fd, auio);
258	free(auio, M_IOV);
259	return (error);
260}
261
262struct l_ipc_kludge {
263	l_uintptr_t msgp;
264	l_long msgtyp;
265} __packed;
266
267int
268linux_ipc(struct thread *td, struct linux_ipc_args *args)
269{
270
271	switch (args->what & 0xFFFF) {
272	case LINUX_SEMOP: {
273		struct linux_semop_args a;
274
275		a.semid = args->arg1;
276		a.tsops = args->ptr;
277		a.nsops = args->arg2;
278		return (linux_semop(td, &a));
279	}
280	case LINUX_SEMGET: {
281		struct linux_semget_args a;
282
283		a.key = args->arg1;
284		a.nsems = args->arg2;
285		a.semflg = args->arg3;
286		return (linux_semget(td, &a));
287	}
288	case LINUX_SEMCTL: {
289		struct linux_semctl_args a;
290		int error;
291
292		a.semid = args->arg1;
293		a.semnum = args->arg2;
294		a.cmd = args->arg3;
295		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
296		if (error)
297			return (error);
298		return (linux_semctl(td, &a));
299	}
300	case LINUX_MSGSND: {
301		struct linux_msgsnd_args a;
302
303		a.msqid = args->arg1;
304		a.msgp = args->ptr;
305		a.msgsz = args->arg2;
306		a.msgflg = args->arg3;
307		return (linux_msgsnd(td, &a));
308	}
309	case LINUX_MSGRCV: {
310		struct linux_msgrcv_args a;
311
312		a.msqid = args->arg1;
313		a.msgsz = args->arg2;
314		a.msgflg = args->arg3;
315		if ((args->what >> 16) == 0) {
316			struct l_ipc_kludge tmp;
317			int error;
318
319			if (args->ptr == 0)
320				return (EINVAL);
321			error = copyin(args->ptr, &tmp, sizeof(tmp));
322			if (error)
323				return (error);
324			a.msgp = PTRIN(tmp.msgp);
325			a.msgtyp = tmp.msgtyp;
326		} else {
327			a.msgp = args->ptr;
328			a.msgtyp = args->arg5;
329		}
330		return (linux_msgrcv(td, &a));
331	}
332	case LINUX_MSGGET: {
333		struct linux_msgget_args a;
334
335		a.key = args->arg1;
336		a.msgflg = args->arg2;
337		return (linux_msgget(td, &a));
338	}
339	case LINUX_MSGCTL: {
340		struct linux_msgctl_args a;
341
342		a.msqid = args->arg1;
343		a.cmd = args->arg2;
344		a.buf = args->ptr;
345		return (linux_msgctl(td, &a));
346	}
347	case LINUX_SHMAT: {
348		struct linux_shmat_args a;
349
350		a.shmid = args->arg1;
351		a.shmaddr = args->ptr;
352		a.shmflg = args->arg2;
353		a.raddr = PTRIN((l_uint)args->arg3);
354		return (linux_shmat(td, &a));
355	}
356	case LINUX_SHMDT: {
357		struct linux_shmdt_args a;
358
359		a.shmaddr = args->ptr;
360		return (linux_shmdt(td, &a));
361	}
362	case LINUX_SHMGET: {
363		struct linux_shmget_args a;
364
365		a.key = args->arg1;
366		a.size = args->arg2;
367		a.shmflg = args->arg3;
368		return (linux_shmget(td, &a));
369	}
370	case LINUX_SHMCTL: {
371		struct linux_shmctl_args a;
372
373		a.shmid = args->arg1;
374		a.cmd = args->arg2;
375		a.buf = args->ptr;
376		return (linux_shmctl(td, &a));
377	}
378	default:
379		break;
380	}
381
382	return (EINVAL);
383}
384
385int
386linux_old_select(struct thread *td, struct linux_old_select_args *args)
387{
388	struct l_old_select_argv linux_args;
389	struct linux_select_args newsel;
390	int error;
391
392#ifdef DEBUG
393	if (ldebug(old_select))
394		printf(ARGS(old_select, "%p"), args->ptr);
395#endif
396
397	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
398	if (error)
399		return (error);
400
401	newsel.nfds = linux_args.nfds;
402	newsel.readfds = PTRIN(linux_args.readfds);
403	newsel.writefds = PTRIN(linux_args.writefds);
404	newsel.exceptfds = PTRIN(linux_args.exceptfds);
405	newsel.timeout = PTRIN(linux_args.timeout);
406	return (linux_select(td, &newsel));
407}
408
409int
410linux_fork(struct thread *td, struct linux_fork_args *args)
411{
412	int error;
413	struct proc *p2;
414	struct thread *td2;
415
416#ifdef DEBUG
417	if (ldebug(fork))
418		printf(ARGS(fork, ""));
419#endif
420
421	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
422		return (error);
423
424	if (error == 0) {
425		td->td_retval[0] = p2->p_pid;
426		td->td_retval[1] = 0;
427	}
428
429	if (td->td_retval[1] == 1)
430		td->td_retval[0] = 0;
431	error = linux_proc_init(td, td->td_retval[0], 0);
432	if (error)
433		return (error);
434
435	td2 = FIRST_THREAD_IN_PROC(p2);
436
437	/*
438	 * Make this runnable after we are finished with it.
439	 */
440	thread_lock(td2);
441	TD_SET_CAN_RUN(td2);
442	sched_add(td2, SRQ_BORING);
443	thread_unlock(td2);
444
445	return (0);
446}
447
448int
449linux_vfork(struct thread *td, struct linux_vfork_args *args)
450{
451	int error;
452	struct proc *p2;
453	struct thread *td2;
454
455#ifdef DEBUG
456	if (ldebug(vfork))
457		printf(ARGS(vfork, ""));
458#endif
459
460	/* Exclude RFPPWAIT */
461	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
462		return (error);
463	if (error == 0) {
464	   	td->td_retval[0] = p2->p_pid;
465		td->td_retval[1] = 0;
466	}
467	/* Are we the child? */
468	if (td->td_retval[1] == 1)
469		td->td_retval[0] = 0;
470	error = linux_proc_init(td, td->td_retval[0], 0);
471	if (error)
472		return (error);
473
474	PROC_LOCK(p2);
475	p2->p_flag |= P_PPWAIT;
476	PROC_UNLOCK(p2);
477
478	td2 = FIRST_THREAD_IN_PROC(p2);
479
480	/*
481	 * Make this runnable after we are finished with it.
482	 */
483	thread_lock(td2);
484	TD_SET_CAN_RUN(td2);
485	sched_add(td2, SRQ_BORING);
486	thread_unlock(td2);
487
488	/* wait for the children to exit, ie. emulate vfork */
489	PROC_LOCK(p2);
490	while (p2->p_flag & P_PPWAIT)
491		cv_wait(&p2->p_pwait, &p2->p_mtx);
492	PROC_UNLOCK(p2);
493
494	return (0);
495}
496
497int
498linux_clone(struct thread *td, struct linux_clone_args *args)
499{
500	int error, ff = RFPROC | RFSTOPPED;
501	struct proc *p2;
502	struct thread *td2;
503	int exit_signal;
504	struct linux_emuldata *em;
505
506#ifdef DEBUG
507	if (ldebug(clone)) {
508		printf(ARGS(clone, "flags %x, stack %p, parent tid: %p, "
509		    "child tid: %p"), (unsigned)args->flags,
510		    args->stack, args->parent_tidptr, args->child_tidptr);
511	}
512#endif
513
514	exit_signal = args->flags & 0x000000ff;
515	if (LINUX_SIG_VALID(exit_signal)) {
516		if (exit_signal <= LINUX_SIGTBLSZ)
517			exit_signal =
518			    linux_to_bsd_signal[_SIG_IDX(exit_signal)];
519	} else if (exit_signal != 0)
520		return (EINVAL);
521
522	if (args->flags & LINUX_CLONE_VM)
523		ff |= RFMEM;
524	if (args->flags & LINUX_CLONE_SIGHAND)
525		ff |= RFSIGSHARE;
526	/*
527	 * XXX: In Linux, sharing of fs info (chroot/cwd/umask)
528	 * and open files is independant.  In FreeBSD, its in one
529	 * structure but in reality it does not cause any problems
530	 * because both of these flags are usually set together.
531	 */
532	if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
533		ff |= RFFDG;
534
535	/*
536	 * Attempt to detect when linux_clone(2) is used for creating
537	 * kernel threads. Unfortunately despite the existence of the
538	 * CLONE_THREAD flag, version of linuxthreads package used in
539	 * most popular distros as of beginning of 2005 doesn't make
540	 * any use of it. Therefore, this detection relies on
541	 * empirical observation that linuxthreads sets certain
542	 * combination of flags, so that we can make more or less
543	 * precise detection and notify the FreeBSD kernel that several
544	 * processes are in fact part of the same threading group, so
545	 * that special treatment is necessary for signal delivery
546	 * between those processes and fd locking.
547	 */
548	if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
549		ff |= RFTHREAD;
550
551	if (args->flags & LINUX_CLONE_PARENT_SETTID)
552		if (args->parent_tidptr == NULL)
553			return (EINVAL);
554
555	error = fork1(td, ff, 0, &p2);
556	if (error)
557		return (error);
558
559	if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
560	   	sx_xlock(&proctree_lock);
561		PROC_LOCK(p2);
562		proc_reparent(p2, td->td_proc->p_pptr);
563		PROC_UNLOCK(p2);
564		sx_xunlock(&proctree_lock);
565	}
566
567	/* create the emuldata */
568	error = linux_proc_init(td, p2->p_pid, args->flags);
569	/* reference it - no need to check this */
570	em = em_find(p2, EMUL_DOLOCK);
571	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
572	/* and adjust it */
573
574	if (args->flags & LINUX_CLONE_THREAD) {
575#ifdef notyet
576	   	PROC_LOCK(p2);
577	   	p2->p_pgrp = td->td_proc->p_pgrp;
578	   	PROC_UNLOCK(p2);
579#endif
580		exit_signal = 0;
581	}
582
583	if (args->flags & LINUX_CLONE_CHILD_SETTID)
584		em->child_set_tid = args->child_tidptr;
585	else
586	   	em->child_set_tid = NULL;
587
588	if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
589		em->child_clear_tid = args->child_tidptr;
590	else
591	   	em->child_clear_tid = NULL;
592
593	EMUL_UNLOCK(&emul_lock);
594
595	if (args->flags & LINUX_CLONE_PARENT_SETTID) {
596		error = copyout(&p2->p_pid, args->parent_tidptr,
597		    sizeof(p2->p_pid));
598		if (error)
599			printf(LMSG("copyout failed!"));
600	}
601
602	PROC_LOCK(p2);
603	p2->p_sigparent = exit_signal;
604	PROC_UNLOCK(p2);
605	td2 = FIRST_THREAD_IN_PROC(p2);
606	/*
607	 * In a case of stack = NULL, we are supposed to COW calling process
608	 * stack. This is what normal fork() does, so we just keep tf_rsp arg
609	 * intact.
610	 */
611	if (args->stack)
612		td2->td_frame->tf_rsp = PTROUT(args->stack);
613
614	if (args->flags & LINUX_CLONE_SETTLS) {
615		struct user_segment_descriptor sd;
616		struct l_user_desc info;
617		struct pcb *pcb;
618		int a[2];
619
620		error = copyin((void *)td->td_frame->tf_rsi, &info,
621		    sizeof(struct l_user_desc));
622		if (error) {
623			printf(LMSG("copyin failed!"));
624		} else {
625			/* We might copy out the entry_number as GUGS32_SEL. */
626			info.entry_number = GUGS32_SEL;
627			error = copyout(&info, (void *)td->td_frame->tf_rsi,
628			    sizeof(struct l_user_desc));
629			if (error)
630				printf(LMSG("copyout failed!"));
631
632			a[0] = LINUX_LDT_entry_a(&info);
633			a[1] = LINUX_LDT_entry_b(&info);
634
635			memcpy(&sd, &a, sizeof(a));
636#ifdef DEBUG
637			if (ldebug(clone))
638				printf("Segment created in clone with "
639				    "CLONE_SETTLS: lobase: %x, hibase: %x, "
640				    "lolimit: %x, hilimit: %x, type: %i, "
641				    "dpl: %i, p: %i, xx: %i, long: %i, "
642				    "def32: %i, gran: %i\n", sd.sd_lobase,
643				    sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
644				    sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
645				    sd.sd_long, sd.sd_def32, sd.sd_gran);
646#endif
647			pcb = td2->td_pcb;
648			pcb->pcb_gsbase = (register_t)info.base_addr;
649/* XXXKIB		pcb->pcb_gs32sd = sd; */
650			td2->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
651			set_pcb_flags(pcb, PCB_GS32BIT | PCB_32BIT);
652		}
653	}
654
655#ifdef DEBUG
656	if (ldebug(clone))
657		printf(LMSG("clone: successful rfork to %d, "
658		    "stack %p sig = %d"), (int)p2->p_pid, args->stack,
659		    exit_signal);
660#endif
661	if (args->flags & LINUX_CLONE_VFORK) {
662	   	PROC_LOCK(p2);
663	   	p2->p_flag |= P_PPWAIT;
664	   	PROC_UNLOCK(p2);
665	}
666
667	/*
668	 * Make this runnable after we are finished with it.
669	 */
670	thread_lock(td2);
671	TD_SET_CAN_RUN(td2);
672	sched_add(td2, SRQ_BORING);
673	thread_unlock(td2);
674
675	td->td_retval[0] = p2->p_pid;
676	td->td_retval[1] = 0;
677
678	if (args->flags & LINUX_CLONE_VFORK) {
679		/* wait for the children to exit, ie. emulate vfork */
680		PROC_LOCK(p2);
681		while (p2->p_flag & P_PPWAIT)
682			cv_wait(&p2->p_pwait, &p2->p_mtx);
683		PROC_UNLOCK(p2);
684	}
685
686	return (0);
687}
688
689#define STACK_SIZE  (2 * 1024 * 1024)
690#define GUARD_SIZE  (4 * PAGE_SIZE)
691
692int
693linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
694{
695
696#ifdef DEBUG
697	if (ldebug(mmap2))
698		printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
699		    args->addr, args->len, args->prot,
700		    args->flags, args->fd, args->pgoff);
701#endif
702
703	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
704		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
705		PAGE_SIZE));
706}
707
708int
709linux_mmap(struct thread *td, struct linux_mmap_args *args)
710{
711	int error;
712	struct l_mmap_argv linux_args;
713
714	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
715	if (error)
716		return (error);
717
718#ifdef DEBUG
719	if (ldebug(mmap))
720		printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
721		    linux_args.addr, linux_args.len, linux_args.prot,
722		    linux_args.flags, linux_args.fd, linux_args.pgoff);
723#endif
724
725	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
726	    linux_args.prot, linux_args.flags, linux_args.fd,
727	    (uint32_t)linux_args.pgoff));
728}
729
730static int
731linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
732    l_int flags, l_int fd, l_loff_t pos)
733{
734	struct proc *p = td->td_proc;
735	struct mmap_args /* {
736		caddr_t addr;
737		size_t len;
738		int prot;
739		int flags;
740		int fd;
741		long pad;
742		off_t pos;
743	} */ bsd_args;
744	int error;
745	struct file *fp;
746
747	error = 0;
748	bsd_args.flags = 0;
749	fp = NULL;
750
751	/*
752	 * Linux mmap(2):
753	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
754	 */
755	if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
756		return (EINVAL);
757
758	if (flags & LINUX_MAP_SHARED)
759		bsd_args.flags |= MAP_SHARED;
760	if (flags & LINUX_MAP_PRIVATE)
761		bsd_args.flags |= MAP_PRIVATE;
762	if (flags & LINUX_MAP_FIXED)
763		bsd_args.flags |= MAP_FIXED;
764	if (flags & LINUX_MAP_ANON) {
765		/* Enforce pos to be on page boundary, then ignore. */
766		if ((pos & PAGE_MASK) != 0)
767			return (EINVAL);
768		pos = 0;
769		bsd_args.flags |= MAP_ANON;
770	} else
771		bsd_args.flags |= MAP_NOSYNC;
772	if (flags & LINUX_MAP_GROWSDOWN)
773		bsd_args.flags |= MAP_STACK;
774
775	/*
776	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
777	 * on Linux/i386. We do this to ensure maximum compatibility.
778	 * Linux/ia64 does the same in i386 emulation mode.
779	 */
780	bsd_args.prot = prot;
781	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
782		bsd_args.prot |= PROT_READ | PROT_EXEC;
783
784	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
785	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
786	if (bsd_args.fd != -1) {
787		/*
788		 * Linux follows Solaris mmap(2) description:
789		 * The file descriptor fildes is opened with
790		 * read permission, regardless of the
791		 * protection options specified.
792		 */
793
794		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
795			return (error);
796		if (fp->f_type != DTYPE_VNODE) {
797			fdrop(fp, td);
798			return (EINVAL);
799		}
800
801		/* Linux mmap() just fails for O_WRONLY files */
802		if (!(fp->f_flag & FREAD)) {
803			fdrop(fp, td);
804			return (EACCES);
805		}
806
807		fdrop(fp, td);
808	}
809
810	if (flags & LINUX_MAP_GROWSDOWN) {
811		/*
812		 * The Linux MAP_GROWSDOWN option does not limit auto
813		 * growth of the region.  Linux mmap with this option
814		 * takes as addr the inital BOS, and as len, the initial
815		 * region size.  It can then grow down from addr without
816		 * limit.  However, Linux threads has an implicit internal
817		 * limit to stack size of STACK_SIZE.  Its just not
818		 * enforced explicitly in Linux.  But, here we impose
819		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
820		 * region, since we can do this with our mmap.
821		 *
822		 * Our mmap with MAP_STACK takes addr as the maximum
823		 * downsize limit on BOS, and as len the max size of
824		 * the region.  It then maps the top SGROWSIZ bytes,
825		 * and auto grows the region down, up to the limit
826		 * in addr.
827		 *
828		 * If we don't use the MAP_STACK option, the effect
829		 * of this code is to allocate a stack region of a
830		 * fixed size of (STACK_SIZE - GUARD_SIZE).
831		 */
832
833		if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
834			/*
835			 * Some Linux apps will attempt to mmap
836			 * thread stacks near the top of their
837			 * address space.  If their TOS is greater
838			 * than vm_maxsaddr, vm_map_growstack()
839			 * will confuse the thread stack with the
840			 * process stack and deliver a SEGV if they
841			 * attempt to grow the thread stack past their
842			 * current stacksize rlimit.  To avoid this,
843			 * adjust vm_maxsaddr upwards to reflect
844			 * the current stacksize rlimit rather
845			 * than the maximum possible stacksize.
846			 * It would be better to adjust the
847			 * mmap'ed region, but some apps do not check
848			 * mmap's return value.
849			 */
850			PROC_LOCK(p);
851			p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
852			    lim_cur(p, RLIMIT_STACK);
853			PROC_UNLOCK(p);
854		}
855
856		/*
857		 * This gives us our maximum stack size and a new BOS.
858		 * If we're using VM_STACK, then mmap will just map
859		 * the top SGROWSIZ bytes, and let the stack grow down
860		 * to the limit at BOS.  If we're not using VM_STACK
861		 * we map the full stack, since we don't have a way
862		 * to autogrow it.
863		 */
864		if (len > STACK_SIZE - GUARD_SIZE) {
865			bsd_args.addr = (caddr_t)PTRIN(addr);
866			bsd_args.len = len;
867		} else {
868			bsd_args.addr = (caddr_t)PTRIN(addr) -
869			    (STACK_SIZE - GUARD_SIZE - len);
870			bsd_args.len = STACK_SIZE - GUARD_SIZE;
871		}
872	} else {
873		bsd_args.addr = (caddr_t)PTRIN(addr);
874		bsd_args.len  = len;
875	}
876	bsd_args.pos = pos;
877
878#ifdef DEBUG
879	if (ldebug(mmap))
880		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
881		    __func__,
882		    (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
883		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
884#endif
885	error = mmap(td, &bsd_args);
886#ifdef DEBUG
887	if (ldebug(mmap))
888		printf("-> %s() return: 0x%x (0x%08x)\n",
889			__func__, error, (u_int)td->td_retval[0]);
890#endif
891	return (error);
892}
893
894int
895linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
896{
897	struct mprotect_args bsd_args;
898
899	bsd_args.addr = uap->addr;
900	bsd_args.len = uap->len;
901	bsd_args.prot = uap->prot;
902	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
903		bsd_args.prot |= PROT_READ | PROT_EXEC;
904	return (mprotect(td, &bsd_args));
905}
906
907int
908linux_iopl(struct thread *td, struct linux_iopl_args *args)
909{
910	int error;
911
912	if (args->level < 0 || args->level > 3)
913		return (EINVAL);
914	if ((error = priv_check(td, PRIV_IO)) != 0)
915		return (error);
916	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
917		return (error);
918	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
919	    (args->level * (PSL_IOPL / 3));
920
921	return (0);
922}
923
924int
925linux_pipe(struct thread *td, struct linux_pipe_args *args)
926{
927	int error;
928	int fildes[2];
929
930#ifdef DEBUG
931	if (ldebug(pipe))
932		printf(ARGS(pipe, "*"));
933#endif
934
935	error = kern_pipe(td, fildes);
936	if (error)
937		return (error);
938
939	/* XXX: Close descriptors on error. */
940	return (copyout(fildes, args->pipefds, sizeof fildes));
941}
942
943int
944linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
945{
946	l_osigaction_t osa;
947	l_sigaction_t act, oact;
948	int error;
949
950#ifdef DEBUG
951	if (ldebug(sigaction))
952		printf(ARGS(sigaction, "%d, %p, %p"),
953		    args->sig, (void *)args->nsa, (void *)args->osa);
954#endif
955
956	if (args->nsa != NULL) {
957		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
958		if (error)
959			return (error);
960		act.lsa_handler = osa.lsa_handler;
961		act.lsa_flags = osa.lsa_flags;
962		act.lsa_restorer = osa.lsa_restorer;
963		LINUX_SIGEMPTYSET(act.lsa_mask);
964		act.lsa_mask.__bits[0] = osa.lsa_mask;
965	}
966
967	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
968	    args->osa ? &oact : NULL);
969
970	if (args->osa != NULL && !error) {
971		osa.lsa_handler = oact.lsa_handler;
972		osa.lsa_flags = oact.lsa_flags;
973		osa.lsa_restorer = oact.lsa_restorer;
974		osa.lsa_mask = oact.lsa_mask.__bits[0];
975		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
976	}
977
978	return (error);
979}
980
981/*
982 * Linux has two extra args, restart and oldmask.  We don't use these,
983 * but it seems that "restart" is actually a context pointer that
984 * enables the signal to happen with a different register set.
985 */
986int
987linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
988{
989	sigset_t sigmask;
990	l_sigset_t mask;
991
992#ifdef DEBUG
993	if (ldebug(sigsuspend))
994		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
995#endif
996
997	LINUX_SIGEMPTYSET(mask);
998	mask.__bits[0] = args->mask;
999	linux_to_bsd_sigset(&mask, &sigmask);
1000	return (kern_sigsuspend(td, sigmask));
1001}
1002
1003int
1004linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
1005{
1006	l_sigset_t lmask;
1007	sigset_t sigmask;
1008	int error;
1009
1010#ifdef DEBUG
1011	if (ldebug(rt_sigsuspend))
1012		printf(ARGS(rt_sigsuspend, "%p, %d"),
1013		    (void *)uap->newset, uap->sigsetsize);
1014#endif
1015
1016	if (uap->sigsetsize != sizeof(l_sigset_t))
1017		return (EINVAL);
1018
1019	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
1020	if (error)
1021		return (error);
1022
1023	linux_to_bsd_sigset(&lmask, &sigmask);
1024	return (kern_sigsuspend(td, sigmask));
1025}
1026
1027int
1028linux_pause(struct thread *td, struct linux_pause_args *args)
1029{
1030	struct proc *p = td->td_proc;
1031	sigset_t sigmask;
1032
1033#ifdef DEBUG
1034	if (ldebug(pause))
1035		printf(ARGS(pause, ""));
1036#endif
1037
1038	PROC_LOCK(p);
1039	sigmask = td->td_sigmask;
1040	PROC_UNLOCK(p);
1041	return (kern_sigsuspend(td, sigmask));
1042}
1043
1044int
1045linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1046{
1047	stack_t ss, oss;
1048	l_stack_t lss;
1049	int error;
1050
1051#ifdef DEBUG
1052	if (ldebug(sigaltstack))
1053		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1054#endif
1055
1056	if (uap->uss != NULL) {
1057		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1058		if (error)
1059			return (error);
1060
1061		ss.ss_sp = PTRIN(lss.ss_sp);
1062		ss.ss_size = lss.ss_size;
1063		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1064	}
1065	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1066	    (uap->uoss != NULL) ? &oss : NULL);
1067	if (!error && uap->uoss != NULL) {
1068		lss.ss_sp = PTROUT(oss.ss_sp);
1069		lss.ss_size = oss.ss_size;
1070		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1071		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1072	}
1073
1074	return (error);
1075}
1076
1077int
1078linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1079{
1080	struct ftruncate_args sa;
1081
1082#ifdef DEBUG
1083	if (ldebug(ftruncate64))
1084		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1085		    (intmax_t)args->length);
1086#endif
1087
1088	sa.fd = args->fd;
1089	sa.length = args->length;
1090	return ftruncate(td, &sa);
1091}
1092
1093int
1094linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
1095{
1096	struct timeval atv;
1097	l_timeval atv32;
1098	struct timezone rtz;
1099	int error = 0;
1100
1101	if (uap->tp) {
1102		microtime(&atv);
1103		atv32.tv_sec = atv.tv_sec;
1104		atv32.tv_usec = atv.tv_usec;
1105		error = copyout(&atv32, uap->tp, sizeof(atv32));
1106	}
1107	if (error == 0 && uap->tzp != NULL) {
1108		rtz.tz_minuteswest = tz_minuteswest;
1109		rtz.tz_dsttime = tz_dsttime;
1110		error = copyout(&rtz, uap->tzp, sizeof(rtz));
1111	}
1112	return (error);
1113}
1114
1115int
1116linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
1117{
1118	l_timeval atv32;
1119	struct timeval atv, *tvp;
1120	struct timezone atz, *tzp;
1121	int error;
1122
1123	if (uap->tp) {
1124		error = copyin(uap->tp, &atv32, sizeof(atv32));
1125		if (error)
1126			return (error);
1127		atv.tv_sec = atv32.tv_sec;
1128		atv.tv_usec = atv32.tv_usec;
1129		tvp = &atv;
1130	} else
1131		tvp = NULL;
1132	if (uap->tzp) {
1133		error = copyin(uap->tzp, &atz, sizeof(atz));
1134		if (error)
1135			return (error);
1136		tzp = &atz;
1137	} else
1138		tzp = NULL;
1139	return (kern_settimeofday(td, tvp, tzp));
1140}
1141
1142int
1143linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
1144{
1145	struct l_rusage s32;
1146	struct rusage s;
1147	int error;
1148
1149	error = kern_getrusage(td, uap->who, &s);
1150	if (error != 0)
1151		return (error);
1152	if (uap->rusage != NULL) {
1153		bsd_to_linux_rusage(&s, &s32);
1154		error = copyout(&s32, uap->rusage, sizeof(s32));
1155	}
1156	return (error);
1157}
1158
1159int
1160linux_sched_rr_get_interval(struct thread *td,
1161    struct linux_sched_rr_get_interval_args *uap)
1162{
1163	struct timespec ts;
1164	struct l_timespec ts32;
1165	int error;
1166
1167	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
1168	if (error != 0)
1169		return (error);
1170	ts32.tv_sec = ts.tv_sec;
1171	ts32.tv_nsec = ts.tv_nsec;
1172	return (copyout(&ts32, uap->interval, sizeof(ts32)));
1173}
1174
1175int
1176linux_set_thread_area(struct thread *td,
1177    struct linux_set_thread_area_args *args)
1178{
1179	struct l_user_desc info;
1180	struct user_segment_descriptor sd;
1181	struct pcb *pcb;
1182	int a[2];
1183	int error;
1184
1185	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1186	if (error)
1187		return (error);
1188
1189#ifdef DEBUG
1190	if (ldebug(set_thread_area))
1191		printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
1192		    "%i, %i, %i"), info.entry_number, info.base_addr,
1193		    info.limit, info.seg_32bit, info.contents,
1194		    info.read_exec_only, info.limit_in_pages,
1195		    info.seg_not_present, info.useable);
1196#endif
1197
1198	/*
1199	 * Semantics of Linux version: every thread in the system has array
1200	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
1201	 * This syscall loads one of the selected TLS decriptors with a value
1202	 * and also loads GDT descriptors 6, 7 and 8 with the content of
1203	 * the per-thread descriptors.
1204	 *
1205	 * Semantics of FreeBSD version: I think we can ignore that Linux has
1206	 * three per-thread descriptors and use just the first one.
1207	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
1208	 * for loading the GDT descriptors. We use just one GDT descriptor
1209	 * for TLS, so we will load just one.
1210	 *
1211	 * XXX: This doesn't work when a user space process tries to use more
1212	 * than one TLS segment. Comment in the Linux source says wine might
1213	 * do this.
1214	 */
1215
1216	/*
1217	 * GLIBC reads current %gs and call set_thread_area() with it.
1218	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
1219	 * we use these segments.
1220	 */
1221	switch (info.entry_number) {
1222	case GUGS32_SEL:
1223	case GUDATA_SEL:
1224	case 6:
1225	case -1:
1226		info.entry_number = GUGS32_SEL;
1227		break;
1228	default:
1229		return (EINVAL);
1230	}
1231
1232	/*
1233	 * We have to copy out the GDT entry we use.
1234	 *
1235	 * XXX: What if a user space program does not check the return value
1236	 * and tries to use 6, 7 or 8?
1237	 */
1238	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1239	if (error)
1240		return (error);
1241
1242	if (LINUX_LDT_empty(&info)) {
1243		a[0] = 0;
1244		a[1] = 0;
1245	} else {
1246		a[0] = LINUX_LDT_entry_a(&info);
1247		a[1] = LINUX_LDT_entry_b(&info);
1248	}
1249
1250	memcpy(&sd, &a, sizeof(a));
1251#ifdef DEBUG
1252	if (ldebug(set_thread_area))
1253		printf("Segment created in set_thread_area: "
1254		    "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
1255		    "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
1256		    "def32: %i, gran: %i\n",
1257		    sd.sd_lobase,
1258		    sd.sd_hibase,
1259		    sd.sd_lolimit,
1260		    sd.sd_hilimit,
1261		    sd.sd_type,
1262		    sd.sd_dpl,
1263		    sd.sd_p,
1264		    sd.sd_xx,
1265		    sd.sd_long,
1266		    sd.sd_def32,
1267		    sd.sd_gran);
1268#endif
1269
1270	pcb = td->td_pcb;
1271	pcb->pcb_gsbase = (register_t)info.base_addr;
1272	set_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
1273	update_gdt_gsbase(td, info.base_addr);
1274
1275	return (0);
1276}
1277
1278int
1279linux_wait4(struct thread *td, struct linux_wait4_args *args)
1280{
1281	int error, options;
1282	struct rusage ru, *rup;
1283	struct l_rusage lru;
1284	struct proc *p;
1285
1286#ifdef DEBUG
1287	if (ldebug(wait4))
1288		printf(ARGS(wait4, "%d, %p, %d, %p"),
1289		    args->pid, (void *)args->status, args->options,
1290		    (void *)args->rusage);
1291#endif
1292
1293	options = (args->options & (WNOHANG | WUNTRACED));
1294	/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
1295	if (args->options & __WCLONE)
1296		options |= WLINUXCLONE;
1297
1298	if (args->rusage != NULL)
1299		rup = &ru;
1300	else
1301		rup = NULL;
1302	error = linux_common_wait(td, args->pid, args->status, options, rup);
1303	if (error)
1304		return (error);
1305
1306	p = td->td_proc;
1307	PROC_LOCK(p);
1308	sigqueue_delete(&p->p_sigqueue, SIGCHLD);
1309	PROC_UNLOCK(p);
1310
1311	if (args->rusage != NULL) {
1312		bsd_to_linux_rusage(rup, &lru);
1313		error = copyout(&lru, args->rusage, sizeof(lru));
1314	}
1315
1316	return (error);
1317}
1318