rtld.c revision 225152
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: head/libexec/rtld-elf/rtld.c 225152 2011-08-24 20:05:13Z kib $
28 */
29
30/*
31 * Dynamic linker for ELF.
32 *
33 * John Polstra <jdp@polstra.com>.
34 */
35
36#ifndef __GNUC__
37#error "GCC is needed to compile this file"
38#endif
39
40#include <sys/param.h>
41#include <sys/mount.h>
42#include <sys/mman.h>
43#include <sys/stat.h>
44#include <sys/sysctl.h>
45#include <sys/uio.h>
46#include <sys/utsname.h>
47#include <sys/ktrace.h>
48
49#include <dlfcn.h>
50#include <err.h>
51#include <errno.h>
52#include <fcntl.h>
53#include <stdarg.h>
54#include <stdio.h>
55#include <stdlib.h>
56#include <string.h>
57#include <unistd.h>
58
59#include "debug.h"
60#include "rtld.h"
61#include "libmap.h"
62#include "rtld_tls.h"
63#include "rtld_printf.h"
64
65#ifndef COMPAT_32BIT
66#define PATH_RTLD	"/libexec/ld-elf.so.1"
67#else
68#define PATH_RTLD	"/libexec/ld-elf32.so.1"
69#endif
70
71/* Types. */
72typedef void (*func_ptr_type)();
73typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74
75/*
76 * Function declarations.
77 */
78static const char *basename(const char *);
79static void die(void) __dead2;
80static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81    const Elf_Dyn **);
82static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83static void digest_dynamic(Obj_Entry *, int);
84static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85static Obj_Entry *dlcheck(void *);
86static Obj_Entry *dlopen_object(const char *name, Obj_Entry *refobj,
87    int lo_flags, int mode);
88static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90static bool donelist_check(DoneList *, const Obj_Entry *);
91static void errmsg_restore(char *);
92static char *errmsg_save(void);
93static void *fill_search_info(const char *, size_t, void *);
94static char *find_library(const char *, const Obj_Entry *);
95static const char *gethints(void);
96static void init_dag(Obj_Entry *);
97static void init_rtld(caddr_t, Elf_Auxinfo **);
98static void initlist_add_neededs(Needed_Entry *, Objlist *);
99static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100static void linkmap_add(Obj_Entry *);
101static void linkmap_delete(Obj_Entry *);
102static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103static void unload_filtees(Obj_Entry *);
104static int load_needed_objects(Obj_Entry *, int);
105static int load_preload_objects(void);
106static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
107static void map_stacks_exec(RtldLockState *);
108static Obj_Entry *obj_from_addr(const void *);
109static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110static void objlist_call_init(Objlist *, RtldLockState *);
111static void objlist_clear(Objlist *);
112static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113static void objlist_init(Objlist *);
114static void objlist_push_head(Objlist *, Obj_Entry *);
115static void objlist_push_tail(Objlist *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119static int rtld_dirname(const char *, char *);
120static int rtld_dirname_abs(const char *, char *);
121static void rtld_exit(void);
122static char *search_library_path(const char *, const char *);
123static const void **get_program_var_addr(const char *, RtldLockState *);
124static void set_program_var(const char *, const void *);
125static int symlook_default(SymLook *, const Obj_Entry *refobj);
126static int symlook_global(SymLook *, DoneList *);
127static void symlook_init_from_req(SymLook *, const SymLook *);
128static int symlook_list(SymLook *, const Objlist *, DoneList *);
129static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
130static int symlook_obj1(SymLook *, const Obj_Entry *);
131static void trace_loaded_objects(Obj_Entry *);
132static void unlink_object(Obj_Entry *);
133static void unload_object(Obj_Entry *);
134static void unref_dag(Obj_Entry *);
135static void ref_dag(Obj_Entry *);
136static int origin_subst_one(char **, const char *, const char *,
137  const char *, char *);
138static char *origin_subst(const char *, const char *);
139static int  rtld_verify_versions(const Objlist *);
140static int  rtld_verify_object_versions(Obj_Entry *);
141static void object_add_name(Obj_Entry *, const char *);
142static int  object_match_name(const Obj_Entry *, const char *);
143static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
144static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
145    struct dl_phdr_info *phdr_info);
146
147void r_debug_state(struct r_debug *, struct link_map *);
148
149/*
150 * Data declarations.
151 */
152static char *error_message;	/* Message for dlerror(), or NULL */
153struct r_debug r_debug;		/* for GDB; */
154static bool libmap_disable;	/* Disable libmap */
155static bool ld_loadfltr;	/* Immediate filters processing */
156static char *libmap_override;	/* Maps to use in addition to libmap.conf */
157static bool trust;		/* False for setuid and setgid programs */
158static bool dangerous_ld_env;	/* True if environment variables have been
159				   used to affect the libraries loaded */
160static char *ld_bind_now;	/* Environment variable for immediate binding */
161static char *ld_debug;		/* Environment variable for debugging */
162static char *ld_library_path;	/* Environment variable for search path */
163static char *ld_preload;	/* Environment variable for libraries to
164				   load first */
165static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
166static char *ld_tracing;	/* Called from ldd to print libs */
167static char *ld_utrace;		/* Use utrace() to log events. */
168static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
169static Obj_Entry **obj_tail;	/* Link field of last object in list */
170static Obj_Entry *obj_main;	/* The main program shared object */
171static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
172static unsigned int obj_count;	/* Number of objects in obj_list */
173static unsigned int obj_loads;	/* Number of objects in obj_list */
174
175static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
176  STAILQ_HEAD_INITIALIZER(list_global);
177static Objlist list_main =	/* Objects loaded at program startup */
178  STAILQ_HEAD_INITIALIZER(list_main);
179static Objlist list_fini =	/* Objects needing fini() calls */
180  STAILQ_HEAD_INITIALIZER(list_fini);
181
182Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
183
184#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
185
186extern Elf_Dyn _DYNAMIC;
187#pragma weak _DYNAMIC
188#ifndef RTLD_IS_DYNAMIC
189#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
190#endif
191
192int osreldate, pagesize;
193
194static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
195static int max_stack_flags;
196
197/*
198 * Global declarations normally provided by crt1.  The dynamic linker is
199 * not built with crt1, so we have to provide them ourselves.
200 */
201char *__progname;
202char **environ;
203
204/*
205 * Globals to control TLS allocation.
206 */
207size_t tls_last_offset;		/* Static TLS offset of last module */
208size_t tls_last_size;		/* Static TLS size of last module */
209size_t tls_static_space;	/* Static TLS space allocated */
210int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
211int tls_max_index = 1;		/* Largest module index allocated */
212
213/*
214 * Fill in a DoneList with an allocation large enough to hold all of
215 * the currently-loaded objects.  Keep this as a macro since it calls
216 * alloca and we want that to occur within the scope of the caller.
217 */
218#define donelist_init(dlp)					\
219    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
220    assert((dlp)->objs != NULL),				\
221    (dlp)->num_alloc = obj_count,				\
222    (dlp)->num_used = 0)
223
224#define	UTRACE_DLOPEN_START		1
225#define	UTRACE_DLOPEN_STOP		2
226#define	UTRACE_DLCLOSE_START		3
227#define	UTRACE_DLCLOSE_STOP		4
228#define	UTRACE_LOAD_OBJECT		5
229#define	UTRACE_UNLOAD_OBJECT		6
230#define	UTRACE_ADD_RUNDEP		7
231#define	UTRACE_PRELOAD_FINISHED		8
232#define	UTRACE_INIT_CALL		9
233#define	UTRACE_FINI_CALL		10
234
235struct utrace_rtld {
236	char sig[4];			/* 'RTLD' */
237	int event;
238	void *handle;
239	void *mapbase;			/* Used for 'parent' and 'init/fini' */
240	size_t mapsize;
241	int refcnt;			/* Used for 'mode' */
242	char name[MAXPATHLEN];
243};
244
245#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
246	if (ld_utrace != NULL)					\
247		ld_utrace_log(e, h, mb, ms, r, n);		\
248} while (0)
249
250static void
251ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
252    int refcnt, const char *name)
253{
254	struct utrace_rtld ut;
255
256	ut.sig[0] = 'R';
257	ut.sig[1] = 'T';
258	ut.sig[2] = 'L';
259	ut.sig[3] = 'D';
260	ut.event = event;
261	ut.handle = handle;
262	ut.mapbase = mapbase;
263	ut.mapsize = mapsize;
264	ut.refcnt = refcnt;
265	bzero(ut.name, sizeof(ut.name));
266	if (name)
267		strlcpy(ut.name, name, sizeof(ut.name));
268	utrace(&ut, sizeof(ut));
269}
270
271/*
272 * Main entry point for dynamic linking.  The first argument is the
273 * stack pointer.  The stack is expected to be laid out as described
274 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
275 * Specifically, the stack pointer points to a word containing
276 * ARGC.  Following that in the stack is a null-terminated sequence
277 * of pointers to argument strings.  Then comes a null-terminated
278 * sequence of pointers to environment strings.  Finally, there is a
279 * sequence of "auxiliary vector" entries.
280 *
281 * The second argument points to a place to store the dynamic linker's
282 * exit procedure pointer and the third to a place to store the main
283 * program's object.
284 *
285 * The return value is the main program's entry point.
286 */
287func_ptr_type
288_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
289{
290    Elf_Auxinfo *aux_info[AT_COUNT];
291    int i;
292    int argc;
293    char **argv;
294    char **env;
295    Elf_Auxinfo *aux;
296    Elf_Auxinfo *auxp;
297    const char *argv0;
298    Objlist_Entry *entry;
299    Obj_Entry *obj;
300    Obj_Entry **preload_tail;
301    Objlist initlist;
302    RtldLockState lockstate;
303
304    /*
305     * On entry, the dynamic linker itself has not been relocated yet.
306     * Be very careful not to reference any global data until after
307     * init_rtld has returned.  It is OK to reference file-scope statics
308     * and string constants, and to call static and global functions.
309     */
310
311    /* Find the auxiliary vector on the stack. */
312    argc = *sp++;
313    argv = (char **) sp;
314    sp += argc + 1;	/* Skip over arguments and NULL terminator */
315    env = (char **) sp;
316    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
317	;
318    aux = (Elf_Auxinfo *) sp;
319
320    /* Digest the auxiliary vector. */
321    for (i = 0;  i < AT_COUNT;  i++)
322	aux_info[i] = NULL;
323    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
324	if (auxp->a_type < AT_COUNT)
325	    aux_info[auxp->a_type] = auxp;
326    }
327
328    /* Initialize and relocate ourselves. */
329    assert(aux_info[AT_BASE] != NULL);
330    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
331
332    __progname = obj_rtld.path;
333    argv0 = argv[0] != NULL ? argv[0] : "(null)";
334    environ = env;
335
336    trust = !issetugid();
337
338    ld_bind_now = getenv(LD_ "BIND_NOW");
339    /*
340     * If the process is tainted, then we un-set the dangerous environment
341     * variables.  The process will be marked as tainted until setuid(2)
342     * is called.  If any child process calls setuid(2) we do not want any
343     * future processes to honor the potentially un-safe variables.
344     */
345    if (!trust) {
346        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
347	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
348	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
349	    unsetenv(LD_ "LOADFLTR")) {
350		_rtld_error("environment corrupt; aborting");
351		die();
352	}
353    }
354    ld_debug = getenv(LD_ "DEBUG");
355    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
356    libmap_override = getenv(LD_ "LIBMAP");
357    ld_library_path = getenv(LD_ "LIBRARY_PATH");
358    ld_preload = getenv(LD_ "PRELOAD");
359    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
360    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
361    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
362	(ld_library_path != NULL) || (ld_preload != NULL) ||
363	(ld_elf_hints_path != NULL) || ld_loadfltr;
364    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
365    ld_utrace = getenv(LD_ "UTRACE");
366
367    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
368	ld_elf_hints_path = _PATH_ELF_HINTS;
369
370    if (ld_debug != NULL && *ld_debug != '\0')
371	debug = 1;
372    dbg("%s is initialized, base address = %p", __progname,
373	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
374    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
375    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
376
377    dbg("initializing thread locks");
378    lockdflt_init();
379
380    /*
381     * Load the main program, or process its program header if it is
382     * already loaded.
383     */
384    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
385	int fd = aux_info[AT_EXECFD]->a_un.a_val;
386	dbg("loading main program");
387	obj_main = map_object(fd, argv0, NULL);
388	close(fd);
389	if (obj_main == NULL)
390	    die();
391	max_stack_flags = obj->stack_flags;
392    } else {				/* Main program already loaded. */
393	const Elf_Phdr *phdr;
394	int phnum;
395	caddr_t entry;
396
397	dbg("processing main program's program header");
398	assert(aux_info[AT_PHDR] != NULL);
399	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
400	assert(aux_info[AT_PHNUM] != NULL);
401	phnum = aux_info[AT_PHNUM]->a_un.a_val;
402	assert(aux_info[AT_PHENT] != NULL);
403	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
404	assert(aux_info[AT_ENTRY] != NULL);
405	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
406	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
407	    die();
408    }
409
410    if (aux_info[AT_EXECPATH] != 0) {
411	    char *kexecpath;
412	    char buf[MAXPATHLEN];
413
414	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
415	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
416	    if (kexecpath[0] == '/')
417		    obj_main->path = kexecpath;
418	    else if (getcwd(buf, sizeof(buf)) == NULL ||
419		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
420		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
421		    obj_main->path = xstrdup(argv0);
422	    else
423		    obj_main->path = xstrdup(buf);
424    } else {
425	    dbg("No AT_EXECPATH");
426	    obj_main->path = xstrdup(argv0);
427    }
428    dbg("obj_main path %s", obj_main->path);
429    obj_main->mainprog = true;
430
431    if (aux_info[AT_STACKPROT] != NULL &&
432      aux_info[AT_STACKPROT]->a_un.a_val != 0)
433	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
434
435    /*
436     * Get the actual dynamic linker pathname from the executable if
437     * possible.  (It should always be possible.)  That ensures that
438     * gdb will find the right dynamic linker even if a non-standard
439     * one is being used.
440     */
441    if (obj_main->interp != NULL &&
442      strcmp(obj_main->interp, obj_rtld.path) != 0) {
443	free(obj_rtld.path);
444	obj_rtld.path = xstrdup(obj_main->interp);
445        __progname = obj_rtld.path;
446    }
447
448    digest_dynamic(obj_main, 0);
449
450    linkmap_add(obj_main);
451    linkmap_add(&obj_rtld);
452
453    /* Link the main program into the list of objects. */
454    *obj_tail = obj_main;
455    obj_tail = &obj_main->next;
456    obj_count++;
457    obj_loads++;
458    /* Make sure we don't call the main program's init and fini functions. */
459    obj_main->init = obj_main->fini = (Elf_Addr)NULL;
460
461    /* Initialize a fake symbol for resolving undefined weak references. */
462    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
463    sym_zero.st_shndx = SHN_UNDEF;
464    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
465
466    if (!libmap_disable)
467        libmap_disable = (bool)lm_init(libmap_override);
468
469    dbg("loading LD_PRELOAD libraries");
470    if (load_preload_objects() == -1)
471	die();
472    preload_tail = obj_tail;
473
474    dbg("loading needed objects");
475    if (load_needed_objects(obj_main, 0) == -1)
476	die();
477
478    /* Make a list of all objects loaded at startup. */
479    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
480	objlist_push_tail(&list_main, obj);
481    	obj->refcount++;
482    }
483
484    dbg("checking for required versions");
485    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
486	die();
487
488    if (ld_tracing) {		/* We're done */
489	trace_loaded_objects(obj_main);
490	exit(0);
491    }
492
493    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
494       dump_relocations(obj_main);
495       exit (0);
496    }
497
498    /* setup TLS for main thread */
499    dbg("initializing initial thread local storage");
500    STAILQ_FOREACH(entry, &list_main, link) {
501	/*
502	 * Allocate all the initial objects out of the static TLS
503	 * block even if they didn't ask for it.
504	 */
505	allocate_tls_offset(entry->obj);
506    }
507    allocate_initial_tls(obj_list);
508
509    if (relocate_objects(obj_main,
510      ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
511	die();
512
513    dbg("doing copy relocations");
514    if (do_copy_relocations(obj_main) == -1)
515	die();
516
517    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
518       dump_relocations(obj_main);
519       exit (0);
520    }
521
522    dbg("initializing key program variables");
523    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
524    set_program_var("environ", env);
525    set_program_var("__elf_aux_vector", aux);
526
527    /* Make a list of init functions to call. */
528    objlist_init(&initlist);
529    initlist_add_objects(obj_list, preload_tail, &initlist);
530
531    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
532
533    map_stacks_exec(NULL);
534
535    wlock_acquire(rtld_bind_lock, &lockstate);
536    objlist_call_init(&initlist, &lockstate);
537    objlist_clear(&initlist);
538    dbg("loading filtees");
539    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
540	if (ld_loadfltr || obj->z_loadfltr)
541	    load_filtees(obj, 0, &lockstate);
542    }
543    lock_release(rtld_bind_lock, &lockstate);
544
545    dbg("transferring control to program entry point = %p", obj_main->entry);
546
547    /* Return the exit procedure and the program entry point. */
548    *exit_proc = rtld_exit;
549    *objp = obj_main;
550    return (func_ptr_type) obj_main->entry;
551}
552
553Elf_Addr
554_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
555{
556    const Elf_Rel *rel;
557    const Elf_Sym *def;
558    const Obj_Entry *defobj;
559    Elf_Addr *where;
560    Elf_Addr target;
561    RtldLockState lockstate;
562
563    rlock_acquire(rtld_bind_lock, &lockstate);
564    if (sigsetjmp(lockstate.env, 0) != 0)
565	    lock_upgrade(rtld_bind_lock, &lockstate);
566    if (obj->pltrel)
567	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
568    else
569	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
570
571    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
572    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
573	&lockstate);
574    if (def == NULL)
575	die();
576
577    target = (Elf_Addr)(defobj->relocbase + def->st_value);
578
579    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
580      defobj->strtab + def->st_name, basename(obj->path),
581      (void *)target, basename(defobj->path));
582
583    /*
584     * Write the new contents for the jmpslot. Note that depending on
585     * architecture, the value which we need to return back to the
586     * lazy binding trampoline may or may not be the target
587     * address. The value returned from reloc_jmpslot() is the value
588     * that the trampoline needs.
589     */
590    target = reloc_jmpslot(where, target, defobj, obj, rel);
591    lock_release(rtld_bind_lock, &lockstate);
592    return target;
593}
594
595/*
596 * Error reporting function.  Use it like printf.  If formats the message
597 * into a buffer, and sets things up so that the next call to dlerror()
598 * will return the message.
599 */
600void
601_rtld_error(const char *fmt, ...)
602{
603    static char buf[512];
604    va_list ap;
605
606    va_start(ap, fmt);
607    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
608    error_message = buf;
609    va_end(ap);
610}
611
612/*
613 * Return a dynamically-allocated copy of the current error message, if any.
614 */
615static char *
616errmsg_save(void)
617{
618    return error_message == NULL ? NULL : xstrdup(error_message);
619}
620
621/*
622 * Restore the current error message from a copy which was previously saved
623 * by errmsg_save().  The copy is freed.
624 */
625static void
626errmsg_restore(char *saved_msg)
627{
628    if (saved_msg == NULL)
629	error_message = NULL;
630    else {
631	_rtld_error("%s", saved_msg);
632	free(saved_msg);
633    }
634}
635
636static const char *
637basename(const char *name)
638{
639    const char *p = strrchr(name, '/');
640    return p != NULL ? p + 1 : name;
641}
642
643static struct utsname uts;
644
645static int
646origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
647    char *may_free)
648{
649    const char *p, *p1;
650    char *res1;
651    int subst_len;
652    int kw_len;
653
654    res1 = *res = NULL;
655    p = real;
656    subst_len = kw_len = 0;
657    for (;;) {
658	 p1 = strstr(p, kw);
659	 if (p1 != NULL) {
660	     if (subst_len == 0) {
661		 subst_len = strlen(subst);
662		 kw_len = strlen(kw);
663	     }
664	     if (*res == NULL) {
665		 *res = xmalloc(PATH_MAX);
666		 res1 = *res;
667	     }
668	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
669		 _rtld_error("Substitution of %s in %s cannot be performed",
670		     kw, real);
671		 if (may_free != NULL)
672		     free(may_free);
673		 free(res);
674		 return (false);
675	     }
676	     memcpy(res1, p, p1 - p);
677	     res1 += p1 - p;
678	     memcpy(res1, subst, subst_len);
679	     res1 += subst_len;
680	     p = p1 + kw_len;
681	 } else {
682	    if (*res == NULL) {
683		if (may_free != NULL)
684		    *res = may_free;
685		else
686		    *res = xstrdup(real);
687		return (true);
688	    }
689	    *res1 = '\0';
690	    if (may_free != NULL)
691		free(may_free);
692	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
693		free(res);
694		return (false);
695	    }
696	    return (true);
697	 }
698    }
699}
700
701static char *
702origin_subst(const char *real, const char *origin_path)
703{
704    char *res1, *res2, *res3, *res4;
705
706    if (uts.sysname[0] == '\0') {
707	if (uname(&uts) != 0) {
708	    _rtld_error("utsname failed: %d", errno);
709	    return (NULL);
710	}
711    }
712    if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
713	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
714	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
715	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
716	    return (NULL);
717    return (res4);
718}
719
720static void
721die(void)
722{
723    const char *msg = dlerror();
724
725    if (msg == NULL)
726	msg = "Fatal error";
727    rtld_fdputstr(STDERR_FILENO, msg);
728    _exit(1);
729}
730
731/*
732 * Process a shared object's DYNAMIC section, and save the important
733 * information in its Obj_Entry structure.
734 */
735static void
736digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
737    const Elf_Dyn **dyn_soname)
738{
739    const Elf_Dyn *dynp;
740    Needed_Entry **needed_tail = &obj->needed;
741    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
742    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
743    int plttype = DT_REL;
744
745    *dyn_rpath = NULL;
746    *dyn_soname = NULL;
747
748    obj->bind_now = false;
749    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
750	switch (dynp->d_tag) {
751
752	case DT_REL:
753	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
754	    break;
755
756	case DT_RELSZ:
757	    obj->relsize = dynp->d_un.d_val;
758	    break;
759
760	case DT_RELENT:
761	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
762	    break;
763
764	case DT_JMPREL:
765	    obj->pltrel = (const Elf_Rel *)
766	      (obj->relocbase + dynp->d_un.d_ptr);
767	    break;
768
769	case DT_PLTRELSZ:
770	    obj->pltrelsize = dynp->d_un.d_val;
771	    break;
772
773	case DT_RELA:
774	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
775	    break;
776
777	case DT_RELASZ:
778	    obj->relasize = dynp->d_un.d_val;
779	    break;
780
781	case DT_RELAENT:
782	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
783	    break;
784
785	case DT_PLTREL:
786	    plttype = dynp->d_un.d_val;
787	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
788	    break;
789
790	case DT_SYMTAB:
791	    obj->symtab = (const Elf_Sym *)
792	      (obj->relocbase + dynp->d_un.d_ptr);
793	    break;
794
795	case DT_SYMENT:
796	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
797	    break;
798
799	case DT_STRTAB:
800	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
801	    break;
802
803	case DT_STRSZ:
804	    obj->strsize = dynp->d_un.d_val;
805	    break;
806
807	case DT_VERNEED:
808	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
809		dynp->d_un.d_val);
810	    break;
811
812	case DT_VERNEEDNUM:
813	    obj->verneednum = dynp->d_un.d_val;
814	    break;
815
816	case DT_VERDEF:
817	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
818		dynp->d_un.d_val);
819	    break;
820
821	case DT_VERDEFNUM:
822	    obj->verdefnum = dynp->d_un.d_val;
823	    break;
824
825	case DT_VERSYM:
826	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
827		dynp->d_un.d_val);
828	    break;
829
830	case DT_HASH:
831	    {
832		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
833		  (obj->relocbase + dynp->d_un.d_ptr);
834		obj->nbuckets = hashtab[0];
835		obj->nchains = hashtab[1];
836		obj->buckets = hashtab + 2;
837		obj->chains = obj->buckets + obj->nbuckets;
838	    }
839	    break;
840
841	case DT_NEEDED:
842	    if (!obj->rtld) {
843		Needed_Entry *nep = NEW(Needed_Entry);
844		nep->name = dynp->d_un.d_val;
845		nep->obj = NULL;
846		nep->next = NULL;
847
848		*needed_tail = nep;
849		needed_tail = &nep->next;
850	    }
851	    break;
852
853	case DT_FILTER:
854	    if (!obj->rtld) {
855		Needed_Entry *nep = NEW(Needed_Entry);
856		nep->name = dynp->d_un.d_val;
857		nep->obj = NULL;
858		nep->next = NULL;
859
860		*needed_filtees_tail = nep;
861		needed_filtees_tail = &nep->next;
862	    }
863	    break;
864
865	case DT_AUXILIARY:
866	    if (!obj->rtld) {
867		Needed_Entry *nep = NEW(Needed_Entry);
868		nep->name = dynp->d_un.d_val;
869		nep->obj = NULL;
870		nep->next = NULL;
871
872		*needed_aux_filtees_tail = nep;
873		needed_aux_filtees_tail = &nep->next;
874	    }
875	    break;
876
877	case DT_PLTGOT:
878	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
879	    break;
880
881	case DT_TEXTREL:
882	    obj->textrel = true;
883	    break;
884
885	case DT_SYMBOLIC:
886	    obj->symbolic = true;
887	    break;
888
889	case DT_RPATH:
890	case DT_RUNPATH:	/* XXX: process separately */
891	    /*
892	     * We have to wait until later to process this, because we
893	     * might not have gotten the address of the string table yet.
894	     */
895	    *dyn_rpath = dynp;
896	    break;
897
898	case DT_SONAME:
899	    *dyn_soname = dynp;
900	    break;
901
902	case DT_INIT:
903	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
904	    break;
905
906	case DT_FINI:
907	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
908	    break;
909
910	/*
911	 * Don't process DT_DEBUG on MIPS as the dynamic section
912	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
913	 */
914
915#ifndef __mips__
916	case DT_DEBUG:
917	    /* XXX - not implemented yet */
918	    if (!early)
919		dbg("Filling in DT_DEBUG entry");
920	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
921	    break;
922#endif
923
924	case DT_FLAGS:
925		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
926		    obj->z_origin = true;
927		if (dynp->d_un.d_val & DF_SYMBOLIC)
928		    obj->symbolic = true;
929		if (dynp->d_un.d_val & DF_TEXTREL)
930		    obj->textrel = true;
931		if (dynp->d_un.d_val & DF_BIND_NOW)
932		    obj->bind_now = true;
933		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
934		    ;*/
935	    break;
936#ifdef __mips__
937	case DT_MIPS_LOCAL_GOTNO:
938		obj->local_gotno = dynp->d_un.d_val;
939	    break;
940
941	case DT_MIPS_SYMTABNO:
942		obj->symtabno = dynp->d_un.d_val;
943		break;
944
945	case DT_MIPS_GOTSYM:
946		obj->gotsym = dynp->d_un.d_val;
947		break;
948
949	case DT_MIPS_RLD_MAP:
950#ifdef notyet
951		if (!early)
952			dbg("Filling in DT_DEBUG entry");
953		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
954#endif
955		break;
956#endif
957
958	case DT_FLAGS_1:
959		if (dynp->d_un.d_val & DF_1_NOOPEN)
960		    obj->z_noopen = true;
961		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
962		    obj->z_origin = true;
963		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
964		    XXX ;*/
965		if (dynp->d_un.d_val & DF_1_BIND_NOW)
966		    obj->bind_now = true;
967		if (dynp->d_un.d_val & DF_1_NODELETE)
968		    obj->z_nodelete = true;
969		if (dynp->d_un.d_val & DF_1_LOADFLTR)
970		    obj->z_loadfltr = true;
971	    break;
972
973	default:
974	    if (!early) {
975		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
976		    (long)dynp->d_tag);
977	    }
978	    break;
979	}
980    }
981
982    obj->traced = false;
983
984    if (plttype == DT_RELA) {
985	obj->pltrela = (const Elf_Rela *) obj->pltrel;
986	obj->pltrel = NULL;
987	obj->pltrelasize = obj->pltrelsize;
988	obj->pltrelsize = 0;
989    }
990}
991
992static void
993digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
994    const Elf_Dyn *dyn_soname)
995{
996
997    if (obj->z_origin && obj->origin_path == NULL) {
998	obj->origin_path = xmalloc(PATH_MAX);
999	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1000	    die();
1001    }
1002
1003    if (dyn_rpath != NULL) {
1004	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1005	if (obj->z_origin)
1006	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1007    }
1008
1009    if (dyn_soname != NULL)
1010	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1011}
1012
1013static void
1014digest_dynamic(Obj_Entry *obj, int early)
1015{
1016	const Elf_Dyn *dyn_rpath;
1017	const Elf_Dyn *dyn_soname;
1018
1019	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1020	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1021}
1022
1023/*
1024 * Process a shared object's program header.  This is used only for the
1025 * main program, when the kernel has already loaded the main program
1026 * into memory before calling the dynamic linker.  It creates and
1027 * returns an Obj_Entry structure.
1028 */
1029static Obj_Entry *
1030digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1031{
1032    Obj_Entry *obj;
1033    const Elf_Phdr *phlimit = phdr + phnum;
1034    const Elf_Phdr *ph;
1035    int nsegs = 0;
1036
1037    obj = obj_new();
1038    for (ph = phdr;  ph < phlimit;  ph++) {
1039	if (ph->p_type != PT_PHDR)
1040	    continue;
1041
1042	obj->phdr = phdr;
1043	obj->phsize = ph->p_memsz;
1044	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1045	break;
1046    }
1047
1048    obj->stack_flags = PF_X | PF_R | PF_W;
1049
1050    for (ph = phdr;  ph < phlimit;  ph++) {
1051	switch (ph->p_type) {
1052
1053	case PT_INTERP:
1054	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1055	    break;
1056
1057	case PT_LOAD:
1058	    if (nsegs == 0) {	/* First load segment */
1059		obj->vaddrbase = trunc_page(ph->p_vaddr);
1060		obj->mapbase = obj->vaddrbase + obj->relocbase;
1061		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1062		  obj->vaddrbase;
1063	    } else {		/* Last load segment */
1064		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1065		  obj->vaddrbase;
1066	    }
1067	    nsegs++;
1068	    break;
1069
1070	case PT_DYNAMIC:
1071	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1072	    break;
1073
1074	case PT_TLS:
1075	    obj->tlsindex = 1;
1076	    obj->tlssize = ph->p_memsz;
1077	    obj->tlsalign = ph->p_align;
1078	    obj->tlsinitsize = ph->p_filesz;
1079	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1080	    break;
1081
1082	case PT_GNU_STACK:
1083	    obj->stack_flags = ph->p_flags;
1084	    break;
1085	}
1086    }
1087    if (nsegs < 1) {
1088	_rtld_error("%s: too few PT_LOAD segments", path);
1089	return NULL;
1090    }
1091
1092    obj->entry = entry;
1093    return obj;
1094}
1095
1096static Obj_Entry *
1097dlcheck(void *handle)
1098{
1099    Obj_Entry *obj;
1100
1101    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1102	if (obj == (Obj_Entry *) handle)
1103	    break;
1104
1105    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1106	_rtld_error("Invalid shared object handle %p", handle);
1107	return NULL;
1108    }
1109    return obj;
1110}
1111
1112/*
1113 * If the given object is already in the donelist, return true.  Otherwise
1114 * add the object to the list and return false.
1115 */
1116static bool
1117donelist_check(DoneList *dlp, const Obj_Entry *obj)
1118{
1119    unsigned int i;
1120
1121    for (i = 0;  i < dlp->num_used;  i++)
1122	if (dlp->objs[i] == obj)
1123	    return true;
1124    /*
1125     * Our donelist allocation should always be sufficient.  But if
1126     * our threads locking isn't working properly, more shared objects
1127     * could have been loaded since we allocated the list.  That should
1128     * never happen, but we'll handle it properly just in case it does.
1129     */
1130    if (dlp->num_used < dlp->num_alloc)
1131	dlp->objs[dlp->num_used++] = obj;
1132    return false;
1133}
1134
1135/*
1136 * Hash function for symbol table lookup.  Don't even think about changing
1137 * this.  It is specified by the System V ABI.
1138 */
1139unsigned long
1140elf_hash(const char *name)
1141{
1142    const unsigned char *p = (const unsigned char *) name;
1143    unsigned long h = 0;
1144    unsigned long g;
1145
1146    while (*p != '\0') {
1147	h = (h << 4) + *p++;
1148	if ((g = h & 0xf0000000) != 0)
1149	    h ^= g >> 24;
1150	h &= ~g;
1151    }
1152    return h;
1153}
1154
1155/*
1156 * Find the library with the given name, and return its full pathname.
1157 * The returned string is dynamically allocated.  Generates an error
1158 * message and returns NULL if the library cannot be found.
1159 *
1160 * If the second argument is non-NULL, then it refers to an already-
1161 * loaded shared object, whose library search path will be searched.
1162 *
1163 * The search order is:
1164 *   LD_LIBRARY_PATH
1165 *   rpath in the referencing file
1166 *   ldconfig hints
1167 *   /lib:/usr/lib
1168 */
1169static char *
1170find_library(const char *xname, const Obj_Entry *refobj)
1171{
1172    char *pathname;
1173    char *name;
1174
1175    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1176	if (xname[0] != '/' && !trust) {
1177	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1178	      xname);
1179	    return NULL;
1180	}
1181	if (refobj != NULL && refobj->z_origin)
1182	    return origin_subst(xname, refobj->origin_path);
1183	else
1184	    return xstrdup(xname);
1185    }
1186
1187    if (libmap_disable || (refobj == NULL) ||
1188	(name = lm_find(refobj->path, xname)) == NULL)
1189	name = (char *)xname;
1190
1191    dbg(" Searching for \"%s\"", name);
1192
1193    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1194      (refobj != NULL &&
1195      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1196      (pathname = search_library_path(name, gethints())) != NULL ||
1197      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1198	return pathname;
1199
1200    if(refobj != NULL && refobj->path != NULL) {
1201	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1202	  name, basename(refobj->path));
1203    } else {
1204	_rtld_error("Shared object \"%s\" not found", name);
1205    }
1206    return NULL;
1207}
1208
1209/*
1210 * Given a symbol number in a referencing object, find the corresponding
1211 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1212 * no definition was found.  Returns a pointer to the Obj_Entry of the
1213 * defining object via the reference parameter DEFOBJ_OUT.
1214 */
1215const Elf_Sym *
1216find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1217    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1218    RtldLockState *lockstate)
1219{
1220    const Elf_Sym *ref;
1221    const Elf_Sym *def;
1222    const Obj_Entry *defobj;
1223    SymLook req;
1224    const char *name;
1225    int res;
1226
1227    /*
1228     * If we have already found this symbol, get the information from
1229     * the cache.
1230     */
1231    if (symnum >= refobj->nchains)
1232	return NULL;	/* Bad object */
1233    if (cache != NULL && cache[symnum].sym != NULL) {
1234	*defobj_out = cache[symnum].obj;
1235	return cache[symnum].sym;
1236    }
1237
1238    ref = refobj->symtab + symnum;
1239    name = refobj->strtab + ref->st_name;
1240    def = NULL;
1241    defobj = NULL;
1242
1243    /*
1244     * We don't have to do a full scale lookup if the symbol is local.
1245     * We know it will bind to the instance in this load module; to
1246     * which we already have a pointer (ie ref). By not doing a lookup,
1247     * we not only improve performance, but it also avoids unresolvable
1248     * symbols when local symbols are not in the hash table. This has
1249     * been seen with the ia64 toolchain.
1250     */
1251    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1252	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1253	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1254		symnum);
1255	}
1256	symlook_init(&req, name);
1257	req.flags = flags;
1258	req.ventry = fetch_ventry(refobj, symnum);
1259	req.lockstate = lockstate;
1260	res = symlook_default(&req, refobj);
1261	if (res == 0) {
1262	    def = req.sym_out;
1263	    defobj = req.defobj_out;
1264	}
1265    } else {
1266	def = ref;
1267	defobj = refobj;
1268    }
1269
1270    /*
1271     * If we found no definition and the reference is weak, treat the
1272     * symbol as having the value zero.
1273     */
1274    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1275	def = &sym_zero;
1276	defobj = obj_main;
1277    }
1278
1279    if (def != NULL) {
1280	*defobj_out = defobj;
1281	/* Record the information in the cache to avoid subsequent lookups. */
1282	if (cache != NULL) {
1283	    cache[symnum].sym = def;
1284	    cache[symnum].obj = defobj;
1285	}
1286    } else {
1287	if (refobj != &obj_rtld)
1288	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1289    }
1290    return def;
1291}
1292
1293/*
1294 * Return the search path from the ldconfig hints file, reading it if
1295 * necessary.  Returns NULL if there are problems with the hints file,
1296 * or if the search path there is empty.
1297 */
1298static const char *
1299gethints(void)
1300{
1301    static char *hints;
1302
1303    if (hints == NULL) {
1304	int fd;
1305	struct elfhints_hdr hdr;
1306	char *p;
1307
1308	/* Keep from trying again in case the hints file is bad. */
1309	hints = "";
1310
1311	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1312	    return NULL;
1313	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1314	  hdr.magic != ELFHINTS_MAGIC ||
1315	  hdr.version != 1) {
1316	    close(fd);
1317	    return NULL;
1318	}
1319	p = xmalloc(hdr.dirlistlen + 1);
1320	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1321	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1322	    free(p);
1323	    close(fd);
1324	    return NULL;
1325	}
1326	hints = p;
1327	close(fd);
1328    }
1329    return hints[0] != '\0' ? hints : NULL;
1330}
1331
1332static void
1333init_dag(Obj_Entry *root)
1334{
1335    const Needed_Entry *needed;
1336    const Objlist_Entry *elm;
1337    DoneList donelist;
1338
1339    if (root->dag_inited)
1340	return;
1341    donelist_init(&donelist);
1342
1343    /* Root object belongs to own DAG. */
1344    objlist_push_tail(&root->dldags, root);
1345    objlist_push_tail(&root->dagmembers, root);
1346    donelist_check(&donelist, root);
1347
1348    /*
1349     * Add dependencies of root object to DAG in breadth order
1350     * by exploiting the fact that each new object get added
1351     * to the tail of the dagmembers list.
1352     */
1353    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1354	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1355	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1356		continue;
1357	    objlist_push_tail(&needed->obj->dldags, root);
1358	    objlist_push_tail(&root->dagmembers, needed->obj);
1359	}
1360    }
1361    root->dag_inited = true;
1362}
1363
1364/*
1365 * Initialize the dynamic linker.  The argument is the address at which
1366 * the dynamic linker has been mapped into memory.  The primary task of
1367 * this function is to relocate the dynamic linker.
1368 */
1369static void
1370init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1371{
1372    Obj_Entry objtmp;	/* Temporary rtld object */
1373    const Elf_Dyn *dyn_rpath;
1374    const Elf_Dyn *dyn_soname;
1375
1376    /*
1377     * Conjure up an Obj_Entry structure for the dynamic linker.
1378     *
1379     * The "path" member can't be initialized yet because string constants
1380     * cannot yet be accessed. Below we will set it correctly.
1381     */
1382    memset(&objtmp, 0, sizeof(objtmp));
1383    objtmp.path = NULL;
1384    objtmp.rtld = true;
1385    objtmp.mapbase = mapbase;
1386#ifdef PIC
1387    objtmp.relocbase = mapbase;
1388#endif
1389    if (RTLD_IS_DYNAMIC()) {
1390	objtmp.dynamic = rtld_dynamic(&objtmp);
1391	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1392	assert(objtmp.needed == NULL);
1393#if !defined(__mips__)
1394	/* MIPS has a bogus DT_TEXTREL. */
1395	assert(!objtmp.textrel);
1396#endif
1397
1398	/*
1399	 * Temporarily put the dynamic linker entry into the object list, so
1400	 * that symbols can be found.
1401	 */
1402
1403	relocate_objects(&objtmp, true, &objtmp, NULL);
1404    }
1405
1406    /* Initialize the object list. */
1407    obj_tail = &obj_list;
1408
1409    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1410    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1411
1412    if (aux_info[AT_PAGESZ] != NULL)
1413	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1414    if (aux_info[AT_OSRELDATE] != NULL)
1415	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1416
1417    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1418
1419    /* Replace the path with a dynamically allocated copy. */
1420    obj_rtld.path = xstrdup(PATH_RTLD);
1421
1422    r_debug.r_brk = r_debug_state;
1423    r_debug.r_state = RT_CONSISTENT;
1424}
1425
1426/*
1427 * Add the init functions from a needed object list (and its recursive
1428 * needed objects) to "list".  This is not used directly; it is a helper
1429 * function for initlist_add_objects().  The write lock must be held
1430 * when this function is called.
1431 */
1432static void
1433initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1434{
1435    /* Recursively process the successor needed objects. */
1436    if (needed->next != NULL)
1437	initlist_add_neededs(needed->next, list);
1438
1439    /* Process the current needed object. */
1440    if (needed->obj != NULL)
1441	initlist_add_objects(needed->obj, &needed->obj->next, list);
1442}
1443
1444/*
1445 * Scan all of the DAGs rooted in the range of objects from "obj" to
1446 * "tail" and add their init functions to "list".  This recurses over
1447 * the DAGs and ensure the proper init ordering such that each object's
1448 * needed libraries are initialized before the object itself.  At the
1449 * same time, this function adds the objects to the global finalization
1450 * list "list_fini" in the opposite order.  The write lock must be
1451 * held when this function is called.
1452 */
1453static void
1454initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1455{
1456    if (obj->init_scanned || obj->init_done)
1457	return;
1458    obj->init_scanned = true;
1459
1460    /* Recursively process the successor objects. */
1461    if (&obj->next != tail)
1462	initlist_add_objects(obj->next, tail, list);
1463
1464    /* Recursively process the needed objects. */
1465    if (obj->needed != NULL)
1466	initlist_add_neededs(obj->needed, list);
1467
1468    /* Add the object to the init list. */
1469    if (obj->init != (Elf_Addr)NULL)
1470	objlist_push_tail(list, obj);
1471
1472    /* Add the object to the global fini list in the reverse order. */
1473    if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1474	objlist_push_head(&list_fini, obj);
1475	obj->on_fini_list = true;
1476    }
1477}
1478
1479#ifndef FPTR_TARGET
1480#define FPTR_TARGET(f)	((Elf_Addr) (f))
1481#endif
1482
1483static void
1484free_needed_filtees(Needed_Entry *n)
1485{
1486    Needed_Entry *needed, *needed1;
1487
1488    for (needed = n; needed != NULL; needed = needed->next) {
1489	if (needed->obj != NULL) {
1490	    dlclose(needed->obj);
1491	    needed->obj = NULL;
1492	}
1493    }
1494    for (needed = n; needed != NULL; needed = needed1) {
1495	needed1 = needed->next;
1496	free(needed);
1497    }
1498}
1499
1500static void
1501unload_filtees(Obj_Entry *obj)
1502{
1503
1504    free_needed_filtees(obj->needed_filtees);
1505    obj->needed_filtees = NULL;
1506    free_needed_filtees(obj->needed_aux_filtees);
1507    obj->needed_aux_filtees = NULL;
1508    obj->filtees_loaded = false;
1509}
1510
1511static void
1512load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1513{
1514
1515    for (; needed != NULL; needed = needed->next) {
1516	needed->obj = dlopen_object(obj->strtab + needed->name, obj,
1517	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1518	  RTLD_LOCAL);
1519    }
1520}
1521
1522static void
1523load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1524{
1525
1526    lock_restart_for_upgrade(lockstate);
1527    if (!obj->filtees_loaded) {
1528	load_filtee1(obj, obj->needed_filtees, flags);
1529	load_filtee1(obj, obj->needed_aux_filtees, flags);
1530	obj->filtees_loaded = true;
1531    }
1532}
1533
1534static int
1535process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1536{
1537    Obj_Entry *obj1;
1538
1539    for (; needed != NULL; needed = needed->next) {
1540	obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1541	  flags & ~RTLD_LO_NOLOAD);
1542	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1543	    return (-1);
1544	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1545	    dbg("obj %s nodelete", obj1->path);
1546	    init_dag(obj1);
1547	    ref_dag(obj1);
1548	    obj1->ref_nodel = true;
1549	}
1550    }
1551    return (0);
1552}
1553
1554/*
1555 * Given a shared object, traverse its list of needed objects, and load
1556 * each of them.  Returns 0 on success.  Generates an error message and
1557 * returns -1 on failure.
1558 */
1559static int
1560load_needed_objects(Obj_Entry *first, int flags)
1561{
1562    Obj_Entry *obj;
1563
1564    for (obj = first;  obj != NULL;  obj = obj->next) {
1565	if (process_needed(obj, obj->needed, flags) == -1)
1566	    return (-1);
1567    }
1568    return (0);
1569}
1570
1571static int
1572load_preload_objects(void)
1573{
1574    char *p = ld_preload;
1575    static const char delim[] = " \t:;";
1576
1577    if (p == NULL)
1578	return 0;
1579
1580    p += strspn(p, delim);
1581    while (*p != '\0') {
1582	size_t len = strcspn(p, delim);
1583	char savech;
1584
1585	savech = p[len];
1586	p[len] = '\0';
1587	if (load_object(p, NULL, 0) == NULL)
1588	    return -1;	/* XXX - cleanup */
1589	p[len] = savech;
1590	p += len;
1591	p += strspn(p, delim);
1592    }
1593    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1594    return 0;
1595}
1596
1597/*
1598 * Load a shared object into memory, if it is not already loaded.
1599 *
1600 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1601 * on failure.
1602 */
1603static Obj_Entry *
1604load_object(const char *name, const Obj_Entry *refobj, int flags)
1605{
1606    Obj_Entry *obj;
1607    int fd = -1;
1608    struct stat sb;
1609    char *path;
1610
1611    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1612	if (object_match_name(obj, name))
1613	    return obj;
1614
1615    path = find_library(name, refobj);
1616    if (path == NULL)
1617	return NULL;
1618
1619    /*
1620     * If we didn't find a match by pathname, open the file and check
1621     * again by device and inode.  This avoids false mismatches caused
1622     * by multiple links or ".." in pathnames.
1623     *
1624     * To avoid a race, we open the file and use fstat() rather than
1625     * using stat().
1626     */
1627    if ((fd = open(path, O_RDONLY)) == -1) {
1628	_rtld_error("Cannot open \"%s\"", path);
1629	free(path);
1630	return NULL;
1631    }
1632    if (fstat(fd, &sb) == -1) {
1633	_rtld_error("Cannot fstat \"%s\"", path);
1634	close(fd);
1635	free(path);
1636	return NULL;
1637    }
1638    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1639	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1640	    break;
1641    if (obj != NULL) {
1642	object_add_name(obj, name);
1643	free(path);
1644	close(fd);
1645	return obj;
1646    }
1647    if (flags & RTLD_LO_NOLOAD) {
1648	free(path);
1649	return (NULL);
1650    }
1651
1652    /* First use of this object, so we must map it in */
1653    obj = do_load_object(fd, name, path, &sb, flags);
1654    if (obj == NULL)
1655	free(path);
1656    close(fd);
1657
1658    return obj;
1659}
1660
1661static Obj_Entry *
1662do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1663  int flags)
1664{
1665    Obj_Entry *obj;
1666    struct statfs fs;
1667
1668    /*
1669     * but first, make sure that environment variables haven't been
1670     * used to circumvent the noexec flag on a filesystem.
1671     */
1672    if (dangerous_ld_env) {
1673	if (fstatfs(fd, &fs) != 0) {
1674	    _rtld_error("Cannot fstatfs \"%s\"", path);
1675		return NULL;
1676	}
1677	if (fs.f_flags & MNT_NOEXEC) {
1678	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1679	    return NULL;
1680	}
1681    }
1682    dbg("loading \"%s\"", path);
1683    obj = map_object(fd, path, sbp);
1684    if (obj == NULL)
1685        return NULL;
1686
1687    object_add_name(obj, name);
1688    obj->path = path;
1689    digest_dynamic(obj, 0);
1690    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1691      RTLD_LO_DLOPEN) {
1692	dbg("refusing to load non-loadable \"%s\"", obj->path);
1693	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1694	munmap(obj->mapbase, obj->mapsize);
1695	obj_free(obj);
1696	return (NULL);
1697    }
1698
1699    *obj_tail = obj;
1700    obj_tail = &obj->next;
1701    obj_count++;
1702    obj_loads++;
1703    linkmap_add(obj);	/* for GDB & dlinfo() */
1704    max_stack_flags |= obj->stack_flags;
1705
1706    dbg("  %p .. %p: %s", obj->mapbase,
1707         obj->mapbase + obj->mapsize - 1, obj->path);
1708    if (obj->textrel)
1709	dbg("  WARNING: %s has impure text", obj->path);
1710    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1711	obj->path);
1712
1713    return obj;
1714}
1715
1716static Obj_Entry *
1717obj_from_addr(const void *addr)
1718{
1719    Obj_Entry *obj;
1720
1721    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1722	if (addr < (void *) obj->mapbase)
1723	    continue;
1724	if (addr < (void *) (obj->mapbase + obj->mapsize))
1725	    return obj;
1726    }
1727    return NULL;
1728}
1729
1730/*
1731 * Call the finalization functions for each of the objects in "list"
1732 * belonging to the DAG of "root" and referenced once. If NULL "root"
1733 * is specified, every finalization function will be called regardless
1734 * of the reference count and the list elements won't be freed. All of
1735 * the objects are expected to have non-NULL fini functions.
1736 */
1737static void
1738objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1739{
1740    Objlist_Entry *elm;
1741    char *saved_msg;
1742
1743    assert(root == NULL || root->refcount == 1);
1744
1745    /*
1746     * Preserve the current error message since a fini function might
1747     * call into the dynamic linker and overwrite it.
1748     */
1749    saved_msg = errmsg_save();
1750    do {
1751	STAILQ_FOREACH(elm, list, link) {
1752	    if (root != NULL && (elm->obj->refcount != 1 ||
1753	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1754		continue;
1755	    dbg("calling fini function for %s at %p", elm->obj->path,
1756	        (void *)elm->obj->fini);
1757	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1758		elm->obj->path);
1759	    /* Remove object from fini list to prevent recursive invocation. */
1760	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1761	    /*
1762	     * XXX: If a dlopen() call references an object while the
1763	     * fini function is in progress, we might end up trying to
1764	     * unload the referenced object in dlclose() or the object
1765	     * won't be unloaded although its fini function has been
1766	     * called.
1767	     */
1768	    lock_release(rtld_bind_lock, lockstate);
1769	    call_initfini_pointer(elm->obj, elm->obj->fini);
1770	    wlock_acquire(rtld_bind_lock, lockstate);
1771	    /* No need to free anything if process is going down. */
1772	    if (root != NULL)
1773	    	free(elm);
1774	    /*
1775	     * We must restart the list traversal after every fini call
1776	     * because a dlclose() call from the fini function or from
1777	     * another thread might have modified the reference counts.
1778	     */
1779	    break;
1780	}
1781    } while (elm != NULL);
1782    errmsg_restore(saved_msg);
1783}
1784
1785/*
1786 * Call the initialization functions for each of the objects in
1787 * "list".  All of the objects are expected to have non-NULL init
1788 * functions.
1789 */
1790static void
1791objlist_call_init(Objlist *list, RtldLockState *lockstate)
1792{
1793    Objlist_Entry *elm;
1794    Obj_Entry *obj;
1795    char *saved_msg;
1796
1797    /*
1798     * Clean init_scanned flag so that objects can be rechecked and
1799     * possibly initialized earlier if any of vectors called below
1800     * cause the change by using dlopen.
1801     */
1802    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1803	obj->init_scanned = false;
1804
1805    /*
1806     * Preserve the current error message since an init function might
1807     * call into the dynamic linker and overwrite it.
1808     */
1809    saved_msg = errmsg_save();
1810    STAILQ_FOREACH(elm, list, link) {
1811	if (elm->obj->init_done) /* Initialized early. */
1812	    continue;
1813	dbg("calling init function for %s at %p", elm->obj->path,
1814	    (void *)elm->obj->init);
1815	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1816	    elm->obj->path);
1817	/*
1818	 * Race: other thread might try to use this object before current
1819	 * one completes the initilization. Not much can be done here
1820	 * without better locking.
1821	 */
1822	elm->obj->init_done = true;
1823	lock_release(rtld_bind_lock, lockstate);
1824	call_initfini_pointer(elm->obj, elm->obj->init);
1825	wlock_acquire(rtld_bind_lock, lockstate);
1826    }
1827    errmsg_restore(saved_msg);
1828}
1829
1830static void
1831objlist_clear(Objlist *list)
1832{
1833    Objlist_Entry *elm;
1834
1835    while (!STAILQ_EMPTY(list)) {
1836	elm = STAILQ_FIRST(list);
1837	STAILQ_REMOVE_HEAD(list, link);
1838	free(elm);
1839    }
1840}
1841
1842static Objlist_Entry *
1843objlist_find(Objlist *list, const Obj_Entry *obj)
1844{
1845    Objlist_Entry *elm;
1846
1847    STAILQ_FOREACH(elm, list, link)
1848	if (elm->obj == obj)
1849	    return elm;
1850    return NULL;
1851}
1852
1853static void
1854objlist_init(Objlist *list)
1855{
1856    STAILQ_INIT(list);
1857}
1858
1859static void
1860objlist_push_head(Objlist *list, Obj_Entry *obj)
1861{
1862    Objlist_Entry *elm;
1863
1864    elm = NEW(Objlist_Entry);
1865    elm->obj = obj;
1866    STAILQ_INSERT_HEAD(list, elm, link);
1867}
1868
1869static void
1870objlist_push_tail(Objlist *list, Obj_Entry *obj)
1871{
1872    Objlist_Entry *elm;
1873
1874    elm = NEW(Objlist_Entry);
1875    elm->obj = obj;
1876    STAILQ_INSERT_TAIL(list, elm, link);
1877}
1878
1879static void
1880objlist_remove(Objlist *list, Obj_Entry *obj)
1881{
1882    Objlist_Entry *elm;
1883
1884    if ((elm = objlist_find(list, obj)) != NULL) {
1885	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1886	free(elm);
1887    }
1888}
1889
1890/*
1891 * Relocate newly-loaded shared objects.  The argument is a pointer to
1892 * the Obj_Entry for the first such object.  All objects from the first
1893 * to the end of the list of objects are relocated.  Returns 0 on success,
1894 * or -1 on failure.
1895 */
1896static int
1897relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1898    RtldLockState *lockstate)
1899{
1900    Obj_Entry *obj;
1901
1902    for (obj = first;  obj != NULL;  obj = obj->next) {
1903	if (obj != rtldobj)
1904	    dbg("relocating \"%s\"", obj->path);
1905	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1906	    obj->symtab == NULL || obj->strtab == NULL) {
1907	    _rtld_error("%s: Shared object has no run-time symbol table",
1908	      obj->path);
1909	    return -1;
1910	}
1911
1912	if (obj->textrel) {
1913	    /* There are relocations to the write-protected text segment. */
1914	    if (mprotect(obj->mapbase, obj->textsize,
1915	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1916		_rtld_error("%s: Cannot write-enable text segment: %s",
1917		  obj->path, strerror(errno));
1918		return -1;
1919	    }
1920	}
1921
1922	/* Process the non-PLT relocations. */
1923	if (reloc_non_plt(obj, rtldobj, lockstate))
1924		return -1;
1925
1926	if (obj->textrel) {	/* Re-protected the text segment. */
1927	    if (mprotect(obj->mapbase, obj->textsize,
1928	      PROT_READ|PROT_EXEC) == -1) {
1929		_rtld_error("%s: Cannot write-protect text segment: %s",
1930		  obj->path, strerror(errno));
1931		return -1;
1932	    }
1933	}
1934
1935	/* Process the PLT relocations. */
1936	if (reloc_plt(obj) == -1)
1937	    return -1;
1938	/* Relocate the jump slots if we are doing immediate binding. */
1939	if (obj->bind_now || bind_now)
1940	    if (reloc_jmpslots(obj, lockstate) == -1)
1941		return -1;
1942
1943
1944	/*
1945	 * Set up the magic number and version in the Obj_Entry.  These
1946	 * were checked in the crt1.o from the original ElfKit, so we
1947	 * set them for backward compatibility.
1948	 */
1949	obj->magic = RTLD_MAGIC;
1950	obj->version = RTLD_VERSION;
1951
1952	/* Set the special PLT or GOT entries. */
1953	init_pltgot(obj);
1954    }
1955
1956    return 0;
1957}
1958
1959/*
1960 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1961 * before the process exits.
1962 */
1963static void
1964rtld_exit(void)
1965{
1966    RtldLockState lockstate;
1967
1968    wlock_acquire(rtld_bind_lock, &lockstate);
1969    dbg("rtld_exit()");
1970    objlist_call_fini(&list_fini, NULL, &lockstate);
1971    /* No need to remove the items from the list, since we are exiting. */
1972    if (!libmap_disable)
1973        lm_fini();
1974    lock_release(rtld_bind_lock, &lockstate);
1975}
1976
1977static void *
1978path_enumerate(const char *path, path_enum_proc callback, void *arg)
1979{
1980#ifdef COMPAT_32BIT
1981    const char *trans;
1982#endif
1983    if (path == NULL)
1984	return (NULL);
1985
1986    path += strspn(path, ":;");
1987    while (*path != '\0') {
1988	size_t len;
1989	char  *res;
1990
1991	len = strcspn(path, ":;");
1992#ifdef COMPAT_32BIT
1993	trans = lm_findn(NULL, path, len);
1994	if (trans)
1995	    res = callback(trans, strlen(trans), arg);
1996	else
1997#endif
1998	res = callback(path, len, arg);
1999
2000	if (res != NULL)
2001	    return (res);
2002
2003	path += len;
2004	path += strspn(path, ":;");
2005    }
2006
2007    return (NULL);
2008}
2009
2010struct try_library_args {
2011    const char	*name;
2012    size_t	 namelen;
2013    char	*buffer;
2014    size_t	 buflen;
2015};
2016
2017static void *
2018try_library_path(const char *dir, size_t dirlen, void *param)
2019{
2020    struct try_library_args *arg;
2021
2022    arg = param;
2023    if (*dir == '/' || trust) {
2024	char *pathname;
2025
2026	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2027		return (NULL);
2028
2029	pathname = arg->buffer;
2030	strncpy(pathname, dir, dirlen);
2031	pathname[dirlen] = '/';
2032	strcpy(pathname + dirlen + 1, arg->name);
2033
2034	dbg("  Trying \"%s\"", pathname);
2035	if (access(pathname, F_OK) == 0) {		/* We found it */
2036	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2037	    strcpy(pathname, arg->buffer);
2038	    return (pathname);
2039	}
2040    }
2041    return (NULL);
2042}
2043
2044static char *
2045search_library_path(const char *name, const char *path)
2046{
2047    char *p;
2048    struct try_library_args arg;
2049
2050    if (path == NULL)
2051	return NULL;
2052
2053    arg.name = name;
2054    arg.namelen = strlen(name);
2055    arg.buffer = xmalloc(PATH_MAX);
2056    arg.buflen = PATH_MAX;
2057
2058    p = path_enumerate(path, try_library_path, &arg);
2059
2060    free(arg.buffer);
2061
2062    return (p);
2063}
2064
2065int
2066dlclose(void *handle)
2067{
2068    Obj_Entry *root;
2069    RtldLockState lockstate;
2070
2071    wlock_acquire(rtld_bind_lock, &lockstate);
2072    root = dlcheck(handle);
2073    if (root == NULL) {
2074	lock_release(rtld_bind_lock, &lockstate);
2075	return -1;
2076    }
2077    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2078	root->path);
2079
2080    /* Unreference the object and its dependencies. */
2081    root->dl_refcount--;
2082
2083    if (root->refcount == 1) {
2084	/*
2085	 * The object will be no longer referenced, so we must unload it.
2086	 * First, call the fini functions.
2087	 */
2088	objlist_call_fini(&list_fini, root, &lockstate);
2089
2090	unref_dag(root);
2091
2092	/* Finish cleaning up the newly-unreferenced objects. */
2093	GDB_STATE(RT_DELETE,&root->linkmap);
2094	unload_object(root);
2095	GDB_STATE(RT_CONSISTENT,NULL);
2096    } else
2097	unref_dag(root);
2098
2099    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2100    lock_release(rtld_bind_lock, &lockstate);
2101    return 0;
2102}
2103
2104char *
2105dlerror(void)
2106{
2107    char *msg = error_message;
2108    error_message = NULL;
2109    return msg;
2110}
2111
2112/*
2113 * This function is deprecated and has no effect.
2114 */
2115void
2116dllockinit(void *context,
2117	   void *(*lock_create)(void *context),
2118           void (*rlock_acquire)(void *lock),
2119           void (*wlock_acquire)(void *lock),
2120           void (*lock_release)(void *lock),
2121           void (*lock_destroy)(void *lock),
2122	   void (*context_destroy)(void *context))
2123{
2124    static void *cur_context;
2125    static void (*cur_context_destroy)(void *);
2126
2127    /* Just destroy the context from the previous call, if necessary. */
2128    if (cur_context_destroy != NULL)
2129	cur_context_destroy(cur_context);
2130    cur_context = context;
2131    cur_context_destroy = context_destroy;
2132}
2133
2134void *
2135dlopen(const char *name, int mode)
2136{
2137    RtldLockState lockstate;
2138    int lo_flags;
2139
2140    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2141    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2142    if (ld_tracing != NULL) {
2143	rlock_acquire(rtld_bind_lock, &lockstate);
2144	if (sigsetjmp(lockstate.env, 0) != 0)
2145	    lock_upgrade(rtld_bind_lock, &lockstate);
2146	environ = (char **)*get_program_var_addr("environ", &lockstate);
2147	lock_release(rtld_bind_lock, &lockstate);
2148    }
2149    lo_flags = RTLD_LO_DLOPEN;
2150    if (mode & RTLD_NODELETE)
2151	    lo_flags |= RTLD_LO_NODELETE;
2152    if (mode & RTLD_NOLOAD)
2153	    lo_flags |= RTLD_LO_NOLOAD;
2154    if (ld_tracing != NULL)
2155	    lo_flags |= RTLD_LO_TRACE;
2156
2157    return (dlopen_object(name, obj_main, lo_flags,
2158      mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2159}
2160
2161static Obj_Entry *
2162dlopen_object(const char *name, Obj_Entry *refobj, int lo_flags, int mode)
2163{
2164    Obj_Entry **old_obj_tail;
2165    Obj_Entry *obj;
2166    Objlist initlist;
2167    RtldLockState lockstate;
2168    int result;
2169
2170    objlist_init(&initlist);
2171
2172    wlock_acquire(rtld_bind_lock, &lockstate);
2173    GDB_STATE(RT_ADD,NULL);
2174
2175    old_obj_tail = obj_tail;
2176    obj = NULL;
2177    if (name == NULL) {
2178	obj = obj_main;
2179	obj->refcount++;
2180    } else {
2181	obj = load_object(name, refobj, lo_flags);
2182    }
2183
2184    if (obj) {
2185	obj->dl_refcount++;
2186	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2187	    objlist_push_tail(&list_global, obj);
2188	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2189	    assert(*old_obj_tail == obj);
2190	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2191	    init_dag(obj);
2192	    ref_dag(obj);
2193	    if (result != -1)
2194		result = rtld_verify_versions(&obj->dagmembers);
2195	    if (result != -1 && ld_tracing)
2196		goto trace;
2197	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2198	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2199		obj->dl_refcount--;
2200		unref_dag(obj);
2201		if (obj->refcount == 0)
2202		    unload_object(obj);
2203		obj = NULL;
2204	    } else {
2205		/* Make list of init functions to call. */
2206		initlist_add_objects(obj, &obj->next, &initlist);
2207	    }
2208	} else {
2209
2210	    /*
2211	     * Bump the reference counts for objects on this DAG.  If
2212	     * this is the first dlopen() call for the object that was
2213	     * already loaded as a dependency, initialize the dag
2214	     * starting at it.
2215	     */
2216	    init_dag(obj);
2217	    ref_dag(obj);
2218
2219	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2220		goto trace;
2221	}
2222	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2223	  obj->z_nodelete) && !obj->ref_nodel) {
2224	    dbg("obj %s nodelete", obj->path);
2225	    ref_dag(obj);
2226	    obj->z_nodelete = obj->ref_nodel = true;
2227	}
2228    }
2229
2230    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2231	name);
2232    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2233
2234    map_stacks_exec(&lockstate);
2235
2236    /* Call the init functions. */
2237    objlist_call_init(&initlist, &lockstate);
2238    objlist_clear(&initlist);
2239    lock_release(rtld_bind_lock, &lockstate);
2240    return obj;
2241trace:
2242    trace_loaded_objects(obj);
2243    lock_release(rtld_bind_lock, &lockstate);
2244    exit(0);
2245}
2246
2247static void *
2248do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2249    int flags)
2250{
2251    DoneList donelist;
2252    const Obj_Entry *obj, *defobj;
2253    const Elf_Sym *def;
2254    SymLook req;
2255    RtldLockState lockstate;
2256    int res;
2257
2258    def = NULL;
2259    defobj = NULL;
2260    symlook_init(&req, name);
2261    req.ventry = ve;
2262    req.flags = flags | SYMLOOK_IN_PLT;
2263    req.lockstate = &lockstate;
2264
2265    rlock_acquire(rtld_bind_lock, &lockstate);
2266    if (sigsetjmp(lockstate.env, 0) != 0)
2267	    lock_upgrade(rtld_bind_lock, &lockstate);
2268    if (handle == NULL || handle == RTLD_NEXT ||
2269	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2270
2271	if ((obj = obj_from_addr(retaddr)) == NULL) {
2272	    _rtld_error("Cannot determine caller's shared object");
2273	    lock_release(rtld_bind_lock, &lockstate);
2274	    return NULL;
2275	}
2276	if (handle == NULL) {	/* Just the caller's shared object. */
2277	    res = symlook_obj(&req, obj);
2278	    if (res == 0) {
2279		def = req.sym_out;
2280		defobj = req.defobj_out;
2281	    }
2282	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2283		   handle == RTLD_SELF) { /* ... caller included */
2284	    if (handle == RTLD_NEXT)
2285		obj = obj->next;
2286	    for (; obj != NULL; obj = obj->next) {
2287		res = symlook_obj(&req, obj);
2288		if (res == 0) {
2289		    if (def == NULL ||
2290		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2291			def = req.sym_out;
2292			defobj = req.defobj_out;
2293			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2294			    break;
2295		    }
2296		}
2297	    }
2298	    /*
2299	     * Search the dynamic linker itself, and possibly resolve the
2300	     * symbol from there.  This is how the application links to
2301	     * dynamic linker services such as dlopen.
2302	     */
2303	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2304		res = symlook_obj(&req, &obj_rtld);
2305		if (res == 0) {
2306		    def = req.sym_out;
2307		    defobj = req.defobj_out;
2308		}
2309	    }
2310	} else {
2311	    assert(handle == RTLD_DEFAULT);
2312	    res = symlook_default(&req, obj);
2313	    if (res == 0) {
2314		defobj = req.defobj_out;
2315		def = req.sym_out;
2316	    }
2317	}
2318    } else {
2319	if ((obj = dlcheck(handle)) == NULL) {
2320	    lock_release(rtld_bind_lock, &lockstate);
2321	    return NULL;
2322	}
2323
2324	donelist_init(&donelist);
2325	if (obj->mainprog) {
2326            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2327	    res = symlook_global(&req, &donelist);
2328	    if (res == 0) {
2329		def = req.sym_out;
2330		defobj = req.defobj_out;
2331	    }
2332	    /*
2333	     * Search the dynamic linker itself, and possibly resolve the
2334	     * symbol from there.  This is how the application links to
2335	     * dynamic linker services such as dlopen.
2336	     */
2337	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2338		res = symlook_obj(&req, &obj_rtld);
2339		if (res == 0) {
2340		    def = req.sym_out;
2341		    defobj = req.defobj_out;
2342		}
2343	    }
2344	}
2345	else {
2346	    /* Search the whole DAG rooted at the given object. */
2347	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2348	    if (res == 0) {
2349		def = req.sym_out;
2350		defobj = req.defobj_out;
2351	    }
2352	}
2353    }
2354
2355    if (def != NULL) {
2356	lock_release(rtld_bind_lock, &lockstate);
2357
2358	/*
2359	 * The value required by the caller is derived from the value
2360	 * of the symbol. For the ia64 architecture, we need to
2361	 * construct a function descriptor which the caller can use to
2362	 * call the function with the right 'gp' value. For other
2363	 * architectures and for non-functions, the value is simply
2364	 * the relocated value of the symbol.
2365	 */
2366	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2367	    return make_function_pointer(def, defobj);
2368	else
2369	    return defobj->relocbase + def->st_value;
2370    }
2371
2372    _rtld_error("Undefined symbol \"%s\"", name);
2373    lock_release(rtld_bind_lock, &lockstate);
2374    return NULL;
2375}
2376
2377void *
2378dlsym(void *handle, const char *name)
2379{
2380	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2381	    SYMLOOK_DLSYM);
2382}
2383
2384dlfunc_t
2385dlfunc(void *handle, const char *name)
2386{
2387	union {
2388		void *d;
2389		dlfunc_t f;
2390	} rv;
2391
2392	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2393	    SYMLOOK_DLSYM);
2394	return (rv.f);
2395}
2396
2397void *
2398dlvsym(void *handle, const char *name, const char *version)
2399{
2400	Ver_Entry ventry;
2401
2402	ventry.name = version;
2403	ventry.file = NULL;
2404	ventry.hash = elf_hash(version);
2405	ventry.flags= 0;
2406	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2407	    SYMLOOK_DLSYM);
2408}
2409
2410int
2411_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2412{
2413    const Obj_Entry *obj;
2414    RtldLockState lockstate;
2415
2416    rlock_acquire(rtld_bind_lock, &lockstate);
2417    obj = obj_from_addr(addr);
2418    if (obj == NULL) {
2419        _rtld_error("No shared object contains address");
2420	lock_release(rtld_bind_lock, &lockstate);
2421        return (0);
2422    }
2423    rtld_fill_dl_phdr_info(obj, phdr_info);
2424    lock_release(rtld_bind_lock, &lockstate);
2425    return (1);
2426}
2427
2428int
2429dladdr(const void *addr, Dl_info *info)
2430{
2431    const Obj_Entry *obj;
2432    const Elf_Sym *def;
2433    void *symbol_addr;
2434    unsigned long symoffset;
2435    RtldLockState lockstate;
2436
2437    rlock_acquire(rtld_bind_lock, &lockstate);
2438    obj = obj_from_addr(addr);
2439    if (obj == NULL) {
2440        _rtld_error("No shared object contains address");
2441	lock_release(rtld_bind_lock, &lockstate);
2442        return 0;
2443    }
2444    info->dli_fname = obj->path;
2445    info->dli_fbase = obj->mapbase;
2446    info->dli_saddr = (void *)0;
2447    info->dli_sname = NULL;
2448
2449    /*
2450     * Walk the symbol list looking for the symbol whose address is
2451     * closest to the address sent in.
2452     */
2453    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2454        def = obj->symtab + symoffset;
2455
2456        /*
2457         * For skip the symbol if st_shndx is either SHN_UNDEF or
2458         * SHN_COMMON.
2459         */
2460        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2461            continue;
2462
2463        /*
2464         * If the symbol is greater than the specified address, or if it
2465         * is further away from addr than the current nearest symbol,
2466         * then reject it.
2467         */
2468        symbol_addr = obj->relocbase + def->st_value;
2469        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2470            continue;
2471
2472        /* Update our idea of the nearest symbol. */
2473        info->dli_sname = obj->strtab + def->st_name;
2474        info->dli_saddr = symbol_addr;
2475
2476        /* Exact match? */
2477        if (info->dli_saddr == addr)
2478            break;
2479    }
2480    lock_release(rtld_bind_lock, &lockstate);
2481    return 1;
2482}
2483
2484int
2485dlinfo(void *handle, int request, void *p)
2486{
2487    const Obj_Entry *obj;
2488    RtldLockState lockstate;
2489    int error;
2490
2491    rlock_acquire(rtld_bind_lock, &lockstate);
2492
2493    if (handle == NULL || handle == RTLD_SELF) {
2494	void *retaddr;
2495
2496	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2497	if ((obj = obj_from_addr(retaddr)) == NULL)
2498	    _rtld_error("Cannot determine caller's shared object");
2499    } else
2500	obj = dlcheck(handle);
2501
2502    if (obj == NULL) {
2503	lock_release(rtld_bind_lock, &lockstate);
2504	return (-1);
2505    }
2506
2507    error = 0;
2508    switch (request) {
2509    case RTLD_DI_LINKMAP:
2510	*((struct link_map const **)p) = &obj->linkmap;
2511	break;
2512    case RTLD_DI_ORIGIN:
2513	error = rtld_dirname(obj->path, p);
2514	break;
2515
2516    case RTLD_DI_SERINFOSIZE:
2517    case RTLD_DI_SERINFO:
2518	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2519	break;
2520
2521    default:
2522	_rtld_error("Invalid request %d passed to dlinfo()", request);
2523	error = -1;
2524    }
2525
2526    lock_release(rtld_bind_lock, &lockstate);
2527
2528    return (error);
2529}
2530
2531static void
2532rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2533{
2534
2535	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2536	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2537	    STAILQ_FIRST(&obj->names)->name : obj->path;
2538	phdr_info->dlpi_phdr = obj->phdr;
2539	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2540	phdr_info->dlpi_tls_modid = obj->tlsindex;
2541	phdr_info->dlpi_tls_data = obj->tlsinit;
2542	phdr_info->dlpi_adds = obj_loads;
2543	phdr_info->dlpi_subs = obj_loads - obj_count;
2544}
2545
2546int
2547dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2548{
2549    struct dl_phdr_info phdr_info;
2550    const Obj_Entry *obj;
2551    RtldLockState bind_lockstate, phdr_lockstate;
2552    int error;
2553
2554    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2555    rlock_acquire(rtld_bind_lock, &bind_lockstate);
2556
2557    error = 0;
2558
2559    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2560	rtld_fill_dl_phdr_info(obj, &phdr_info);
2561	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2562		break;
2563
2564    }
2565    lock_release(rtld_bind_lock, &bind_lockstate);
2566    lock_release(rtld_phdr_lock, &phdr_lockstate);
2567
2568    return (error);
2569}
2570
2571struct fill_search_info_args {
2572    int		 request;
2573    unsigned int flags;
2574    Dl_serinfo  *serinfo;
2575    Dl_serpath  *serpath;
2576    char	*strspace;
2577};
2578
2579static void *
2580fill_search_info(const char *dir, size_t dirlen, void *param)
2581{
2582    struct fill_search_info_args *arg;
2583
2584    arg = param;
2585
2586    if (arg->request == RTLD_DI_SERINFOSIZE) {
2587	arg->serinfo->dls_cnt ++;
2588	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2589    } else {
2590	struct dl_serpath *s_entry;
2591
2592	s_entry = arg->serpath;
2593	s_entry->dls_name  = arg->strspace;
2594	s_entry->dls_flags = arg->flags;
2595
2596	strncpy(arg->strspace, dir, dirlen);
2597	arg->strspace[dirlen] = '\0';
2598
2599	arg->strspace += dirlen + 1;
2600	arg->serpath++;
2601    }
2602
2603    return (NULL);
2604}
2605
2606static int
2607do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2608{
2609    struct dl_serinfo _info;
2610    struct fill_search_info_args args;
2611
2612    args.request = RTLD_DI_SERINFOSIZE;
2613    args.serinfo = &_info;
2614
2615    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2616    _info.dls_cnt  = 0;
2617
2618    path_enumerate(ld_library_path, fill_search_info, &args);
2619    path_enumerate(obj->rpath, fill_search_info, &args);
2620    path_enumerate(gethints(), fill_search_info, &args);
2621    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2622
2623
2624    if (request == RTLD_DI_SERINFOSIZE) {
2625	info->dls_size = _info.dls_size;
2626	info->dls_cnt = _info.dls_cnt;
2627	return (0);
2628    }
2629
2630    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2631	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2632	return (-1);
2633    }
2634
2635    args.request  = RTLD_DI_SERINFO;
2636    args.serinfo  = info;
2637    args.serpath  = &info->dls_serpath[0];
2638    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2639
2640    args.flags = LA_SER_LIBPATH;
2641    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2642	return (-1);
2643
2644    args.flags = LA_SER_RUNPATH;
2645    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2646	return (-1);
2647
2648    args.flags = LA_SER_CONFIG;
2649    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2650	return (-1);
2651
2652    args.flags = LA_SER_DEFAULT;
2653    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2654	return (-1);
2655    return (0);
2656}
2657
2658static int
2659rtld_dirname(const char *path, char *bname)
2660{
2661    const char *endp;
2662
2663    /* Empty or NULL string gets treated as "." */
2664    if (path == NULL || *path == '\0') {
2665	bname[0] = '.';
2666	bname[1] = '\0';
2667	return (0);
2668    }
2669
2670    /* Strip trailing slashes */
2671    endp = path + strlen(path) - 1;
2672    while (endp > path && *endp == '/')
2673	endp--;
2674
2675    /* Find the start of the dir */
2676    while (endp > path && *endp != '/')
2677	endp--;
2678
2679    /* Either the dir is "/" or there are no slashes */
2680    if (endp == path) {
2681	bname[0] = *endp == '/' ? '/' : '.';
2682	bname[1] = '\0';
2683	return (0);
2684    } else {
2685	do {
2686	    endp--;
2687	} while (endp > path && *endp == '/');
2688    }
2689
2690    if (endp - path + 2 > PATH_MAX)
2691    {
2692	_rtld_error("Filename is too long: %s", path);
2693	return(-1);
2694    }
2695
2696    strncpy(bname, path, endp - path + 1);
2697    bname[endp - path + 1] = '\0';
2698    return (0);
2699}
2700
2701static int
2702rtld_dirname_abs(const char *path, char *base)
2703{
2704	char base_rel[PATH_MAX];
2705
2706	if (rtld_dirname(path, base) == -1)
2707		return (-1);
2708	if (base[0] == '/')
2709		return (0);
2710	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2711	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2712	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2713		return (-1);
2714	strcpy(base, base_rel);
2715	return (0);
2716}
2717
2718static void
2719linkmap_add(Obj_Entry *obj)
2720{
2721    struct link_map *l = &obj->linkmap;
2722    struct link_map *prev;
2723
2724    obj->linkmap.l_name = obj->path;
2725    obj->linkmap.l_addr = obj->mapbase;
2726    obj->linkmap.l_ld = obj->dynamic;
2727#ifdef __mips__
2728    /* GDB needs load offset on MIPS to use the symbols */
2729    obj->linkmap.l_offs = obj->relocbase;
2730#endif
2731
2732    if (r_debug.r_map == NULL) {
2733	r_debug.r_map = l;
2734	return;
2735    }
2736
2737    /*
2738     * Scan to the end of the list, but not past the entry for the
2739     * dynamic linker, which we want to keep at the very end.
2740     */
2741    for (prev = r_debug.r_map;
2742      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2743      prev = prev->l_next)
2744	;
2745
2746    /* Link in the new entry. */
2747    l->l_prev = prev;
2748    l->l_next = prev->l_next;
2749    if (l->l_next != NULL)
2750	l->l_next->l_prev = l;
2751    prev->l_next = l;
2752}
2753
2754static void
2755linkmap_delete(Obj_Entry *obj)
2756{
2757    struct link_map *l = &obj->linkmap;
2758
2759    if (l->l_prev == NULL) {
2760	if ((r_debug.r_map = l->l_next) != NULL)
2761	    l->l_next->l_prev = NULL;
2762	return;
2763    }
2764
2765    if ((l->l_prev->l_next = l->l_next) != NULL)
2766	l->l_next->l_prev = l->l_prev;
2767}
2768
2769/*
2770 * Function for the debugger to set a breakpoint on to gain control.
2771 *
2772 * The two parameters allow the debugger to easily find and determine
2773 * what the runtime loader is doing and to whom it is doing it.
2774 *
2775 * When the loadhook trap is hit (r_debug_state, set at program
2776 * initialization), the arguments can be found on the stack:
2777 *
2778 *  +8   struct link_map *m
2779 *  +4   struct r_debug  *rd
2780 *  +0   RetAddr
2781 */
2782void
2783r_debug_state(struct r_debug* rd, struct link_map *m)
2784{
2785}
2786
2787/*
2788 * Get address of the pointer variable in the main program.
2789 * Prefer non-weak symbol over the weak one.
2790 */
2791static const void **
2792get_program_var_addr(const char *name, RtldLockState *lockstate)
2793{
2794    SymLook req;
2795    DoneList donelist;
2796
2797    symlook_init(&req, name);
2798    req.lockstate = lockstate;
2799    donelist_init(&donelist);
2800    if (symlook_global(&req, &donelist) != 0)
2801	return (NULL);
2802    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2803	return ((const void **)make_function_pointer(req.sym_out,
2804	  req.defobj_out));
2805    else
2806	return ((const void **)(req.defobj_out->relocbase +
2807	  req.sym_out->st_value));
2808}
2809
2810/*
2811 * Set a pointer variable in the main program to the given value.  This
2812 * is used to set key variables such as "environ" before any of the
2813 * init functions are called.
2814 */
2815static void
2816set_program_var(const char *name, const void *value)
2817{
2818    const void **addr;
2819
2820    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2821	dbg("\"%s\": *%p <-- %p", name, addr, value);
2822	*addr = value;
2823    }
2824}
2825
2826/*
2827 * Search the global objects, including dependencies and main object,
2828 * for the given symbol.
2829 */
2830static int
2831symlook_global(SymLook *req, DoneList *donelist)
2832{
2833    SymLook req1;
2834    const Objlist_Entry *elm;
2835    int res;
2836
2837    symlook_init_from_req(&req1, req);
2838
2839    /* Search all objects loaded at program start up. */
2840    if (req->defobj_out == NULL ||
2841      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2842	res = symlook_list(&req1, &list_main, donelist);
2843	if (res == 0 && (req->defobj_out == NULL ||
2844	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2845	    req->sym_out = req1.sym_out;
2846	    req->defobj_out = req1.defobj_out;
2847	    assert(req->defobj_out != NULL);
2848	}
2849    }
2850
2851    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2852    STAILQ_FOREACH(elm, &list_global, link) {
2853	if (req->defobj_out != NULL &&
2854	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2855	    break;
2856	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
2857	if (res == 0 && (req->defobj_out == NULL ||
2858	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2859	    req->sym_out = req1.sym_out;
2860	    req->defobj_out = req1.defobj_out;
2861	    assert(req->defobj_out != NULL);
2862	}
2863    }
2864
2865    return (req->sym_out != NULL ? 0 : ESRCH);
2866}
2867
2868/*
2869 * Given a symbol name in a referencing object, find the corresponding
2870 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2871 * no definition was found.  Returns a pointer to the Obj_Entry of the
2872 * defining object via the reference parameter DEFOBJ_OUT.
2873 */
2874static int
2875symlook_default(SymLook *req, const Obj_Entry *refobj)
2876{
2877    DoneList donelist;
2878    const Objlist_Entry *elm;
2879    SymLook req1;
2880    int res;
2881
2882    donelist_init(&donelist);
2883    symlook_init_from_req(&req1, req);
2884
2885    /* Look first in the referencing object if linked symbolically. */
2886    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2887	res = symlook_obj(&req1, refobj);
2888	if (res == 0) {
2889	    req->sym_out = req1.sym_out;
2890	    req->defobj_out = req1.defobj_out;
2891	    assert(req->defobj_out != NULL);
2892	}
2893    }
2894
2895    symlook_global(req, &donelist);
2896
2897    /* Search all dlopened DAGs containing the referencing object. */
2898    STAILQ_FOREACH(elm, &refobj->dldags, link) {
2899	if (req->sym_out != NULL &&
2900	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2901	    break;
2902	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
2903	if (res == 0 && (req->sym_out == NULL ||
2904	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2905	    req->sym_out = req1.sym_out;
2906	    req->defobj_out = req1.defobj_out;
2907	    assert(req->defobj_out != NULL);
2908	}
2909    }
2910
2911    /*
2912     * Search the dynamic linker itself, and possibly resolve the
2913     * symbol from there.  This is how the application links to
2914     * dynamic linker services such as dlopen.
2915     */
2916    if (req->sym_out == NULL ||
2917      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2918	res = symlook_obj(&req1, &obj_rtld);
2919	if (res == 0) {
2920	    req->sym_out = req1.sym_out;
2921	    req->defobj_out = req1.defobj_out;
2922	    assert(req->defobj_out != NULL);
2923	}
2924    }
2925
2926    return (req->sym_out != NULL ? 0 : ESRCH);
2927}
2928
2929static int
2930symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
2931{
2932    const Elf_Sym *def;
2933    const Obj_Entry *defobj;
2934    const Objlist_Entry *elm;
2935    SymLook req1;
2936    int res;
2937
2938    def = NULL;
2939    defobj = NULL;
2940    STAILQ_FOREACH(elm, objlist, link) {
2941	if (donelist_check(dlp, elm->obj))
2942	    continue;
2943	symlook_init_from_req(&req1, req);
2944	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
2945	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
2946		def = req1.sym_out;
2947		defobj = req1.defobj_out;
2948		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2949		    break;
2950	    }
2951	}
2952    }
2953    if (def != NULL) {
2954	req->sym_out = def;
2955	req->defobj_out = defobj;
2956	return (0);
2957    }
2958    return (ESRCH);
2959}
2960
2961/*
2962 * Search the chain of DAGS cointed to by the given Needed_Entry
2963 * for a symbol of the given name.  Each DAG is scanned completely
2964 * before advancing to the next one.  Returns a pointer to the symbol,
2965 * or NULL if no definition was found.
2966 */
2967static int
2968symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
2969{
2970    const Elf_Sym *def;
2971    const Needed_Entry *n;
2972    const Obj_Entry *defobj;
2973    SymLook req1;
2974    int res;
2975
2976    def = NULL;
2977    defobj = NULL;
2978    symlook_init_from_req(&req1, req);
2979    for (n = needed; n != NULL; n = n->next) {
2980	if (n->obj == NULL ||
2981	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
2982	    continue;
2983	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
2984	    def = req1.sym_out;
2985	    defobj = req1.defobj_out;
2986	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2987		break;
2988	}
2989    }
2990    if (def != NULL) {
2991	req->sym_out = def;
2992	req->defobj_out = defobj;
2993	return (0);
2994    }
2995    return (ESRCH);
2996}
2997
2998/*
2999 * Search the symbol table of a single shared object for a symbol of
3000 * the given name and version, if requested.  Returns a pointer to the
3001 * symbol, or NULL if no definition was found.  If the object is
3002 * filter, return filtered symbol from filtee.
3003 *
3004 * The symbol's hash value is passed in for efficiency reasons; that
3005 * eliminates many recomputations of the hash value.
3006 */
3007int
3008symlook_obj(SymLook *req, const Obj_Entry *obj)
3009{
3010    DoneList donelist;
3011    SymLook req1;
3012    int res, mres;
3013
3014    mres = symlook_obj1(req, obj);
3015    if (mres == 0) {
3016	if (obj->needed_filtees != NULL) {
3017	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3018	    donelist_init(&donelist);
3019	    symlook_init_from_req(&req1, req);
3020	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3021	    if (res == 0) {
3022		req->sym_out = req1.sym_out;
3023		req->defobj_out = req1.defobj_out;
3024	    }
3025	    return (res);
3026	}
3027	if (obj->needed_aux_filtees != NULL) {
3028	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3029	    donelist_init(&donelist);
3030	    symlook_init_from_req(&req1, req);
3031	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3032	    if (res == 0) {
3033		req->sym_out = req1.sym_out;
3034		req->defobj_out = req1.defobj_out;
3035		return (res);
3036	    }
3037	}
3038    }
3039    return (mres);
3040}
3041
3042static int
3043symlook_obj1(SymLook *req, const Obj_Entry *obj)
3044{
3045    unsigned long symnum;
3046    const Elf_Sym *vsymp;
3047    Elf_Versym verndx;
3048    int vcount;
3049
3050    if (obj->buckets == NULL)
3051	return (ESRCH);
3052
3053    vsymp = NULL;
3054    vcount = 0;
3055    symnum = obj->buckets[req->hash % obj->nbuckets];
3056
3057    for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3058	const Elf_Sym *symp;
3059	const char *strp;
3060
3061	if (symnum >= obj->nchains)
3062	    return (ESRCH);	/* Bad object */
3063
3064	symp = obj->symtab + symnum;
3065	strp = obj->strtab + symp->st_name;
3066
3067	switch (ELF_ST_TYPE(symp->st_info)) {
3068	case STT_FUNC:
3069	case STT_NOTYPE:
3070	case STT_OBJECT:
3071	    if (symp->st_value == 0)
3072		continue;
3073		/* fallthrough */
3074	case STT_TLS:
3075	    if (symp->st_shndx != SHN_UNDEF)
3076		break;
3077#ifndef __mips__
3078	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3079		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3080		break;
3081		/* fallthrough */
3082#endif
3083	default:
3084	    continue;
3085	}
3086	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3087	    continue;
3088
3089	if (req->ventry == NULL) {
3090	    if (obj->versyms != NULL) {
3091		verndx = VER_NDX(obj->versyms[symnum]);
3092		if (verndx > obj->vernum) {
3093		    _rtld_error("%s: symbol %s references wrong version %d",
3094			obj->path, obj->strtab + symnum, verndx);
3095		    continue;
3096		}
3097		/*
3098		 * If we are not called from dlsym (i.e. this is a normal
3099		 * relocation from unversioned binary), accept the symbol
3100		 * immediately if it happens to have first version after
3101		 * this shared object became versioned. Otherwise, if
3102		 * symbol is versioned and not hidden, remember it. If it
3103		 * is the only symbol with this name exported by the
3104		 * shared object, it will be returned as a match at the
3105		 * end of the function. If symbol is global (verndx < 2)
3106		 * accept it unconditionally.
3107		 */
3108		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3109		  verndx == VER_NDX_GIVEN) {
3110		    req->sym_out = symp;
3111		    req->defobj_out = obj;
3112		    return (0);
3113		}
3114		else if (verndx >= VER_NDX_GIVEN) {
3115		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3116			if (vsymp == NULL)
3117			    vsymp = symp;
3118			vcount ++;
3119		    }
3120		    continue;
3121		}
3122	    }
3123	    req->sym_out = symp;
3124	    req->defobj_out = obj;
3125	    return (0);
3126	} else {
3127	    if (obj->versyms == NULL) {
3128		if (object_match_name(obj, req->ventry->name)) {
3129		    _rtld_error("%s: object %s should provide version %s for "
3130			"symbol %s", obj_rtld.path, obj->path,
3131			req->ventry->name, obj->strtab + symnum);
3132		    continue;
3133		}
3134	    } else {
3135		verndx = VER_NDX(obj->versyms[symnum]);
3136		if (verndx > obj->vernum) {
3137		    _rtld_error("%s: symbol %s references wrong version %d",
3138			obj->path, obj->strtab + symnum, verndx);
3139		    continue;
3140		}
3141		if (obj->vertab[verndx].hash != req->ventry->hash ||
3142		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3143		    /*
3144		     * Version does not match. Look if this is a global symbol
3145		     * and if it is not hidden. If global symbol (verndx < 2)
3146		     * is available, use it. Do not return symbol if we are
3147		     * called by dlvsym, because dlvsym looks for a specific
3148		     * version and default one is not what dlvsym wants.
3149		     */
3150		    if ((req->flags & SYMLOOK_DLSYM) ||
3151			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3152			(verndx >= VER_NDX_GIVEN))
3153			continue;
3154		}
3155	    }
3156	    req->sym_out = symp;
3157	    req->defobj_out = obj;
3158	    return (0);
3159	}
3160    }
3161    if (vcount == 1) {
3162	req->sym_out = vsymp;
3163	req->defobj_out = obj;
3164	return (0);
3165    }
3166    return (ESRCH);
3167}
3168
3169static void
3170trace_loaded_objects(Obj_Entry *obj)
3171{
3172    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3173    int		c;
3174
3175    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3176	main_local = "";
3177
3178    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3179	fmt1 = "\t%o => %p (%x)\n";
3180
3181    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3182	fmt2 = "\t%o (%x)\n";
3183
3184    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3185
3186    for (; obj; obj = obj->next) {
3187	Needed_Entry		*needed;
3188	char			*name, *path;
3189	bool			is_lib;
3190
3191	if (list_containers && obj->needed != NULL)
3192	    rtld_printf("%s:\n", obj->path);
3193	for (needed = obj->needed; needed; needed = needed->next) {
3194	    if (needed->obj != NULL) {
3195		if (needed->obj->traced && !list_containers)
3196		    continue;
3197		needed->obj->traced = true;
3198		path = needed->obj->path;
3199	    } else
3200		path = "not found";
3201
3202	    name = (char *)obj->strtab + needed->name;
3203	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3204
3205	    fmt = is_lib ? fmt1 : fmt2;
3206	    while ((c = *fmt++) != '\0') {
3207		switch (c) {
3208		default:
3209		    rtld_putchar(c);
3210		    continue;
3211		case '\\':
3212		    switch (c = *fmt) {
3213		    case '\0':
3214			continue;
3215		    case 'n':
3216			rtld_putchar('\n');
3217			break;
3218		    case 't':
3219			rtld_putchar('\t');
3220			break;
3221		    }
3222		    break;
3223		case '%':
3224		    switch (c = *fmt) {
3225		    case '\0':
3226			continue;
3227		    case '%':
3228		    default:
3229			rtld_putchar(c);
3230			break;
3231		    case 'A':
3232			rtld_putstr(main_local);
3233			break;
3234		    case 'a':
3235			rtld_putstr(obj_main->path);
3236			break;
3237		    case 'o':
3238			rtld_putstr(name);
3239			break;
3240#if 0
3241		    case 'm':
3242			rtld_printf("%d", sodp->sod_major);
3243			break;
3244		    case 'n':
3245			rtld_printf("%d", sodp->sod_minor);
3246			break;
3247#endif
3248		    case 'p':
3249			rtld_putstr(path);
3250			break;
3251		    case 'x':
3252			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3253			  0);
3254			break;
3255		    }
3256		    break;
3257		}
3258		++fmt;
3259	    }
3260	}
3261    }
3262}
3263
3264/*
3265 * Unload a dlopened object and its dependencies from memory and from
3266 * our data structures.  It is assumed that the DAG rooted in the
3267 * object has already been unreferenced, and that the object has a
3268 * reference count of 0.
3269 */
3270static void
3271unload_object(Obj_Entry *root)
3272{
3273    Obj_Entry *obj;
3274    Obj_Entry **linkp;
3275
3276    assert(root->refcount == 0);
3277
3278    /*
3279     * Pass over the DAG removing unreferenced objects from
3280     * appropriate lists.
3281     */
3282    unlink_object(root);
3283
3284    /* Unmap all objects that are no longer referenced. */
3285    linkp = &obj_list->next;
3286    while ((obj = *linkp) != NULL) {
3287	if (obj->refcount == 0) {
3288	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3289		obj->path);
3290	    dbg("unloading \"%s\"", obj->path);
3291	    unload_filtees(root);
3292	    munmap(obj->mapbase, obj->mapsize);
3293	    linkmap_delete(obj);
3294	    *linkp = obj->next;
3295	    obj_count--;
3296	    obj_free(obj);
3297	} else
3298	    linkp = &obj->next;
3299    }
3300    obj_tail = linkp;
3301}
3302
3303static void
3304unlink_object(Obj_Entry *root)
3305{
3306    Objlist_Entry *elm;
3307
3308    if (root->refcount == 0) {
3309	/* Remove the object from the RTLD_GLOBAL list. */
3310	objlist_remove(&list_global, root);
3311
3312    	/* Remove the object from all objects' DAG lists. */
3313    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3314	    objlist_remove(&elm->obj->dldags, root);
3315	    if (elm->obj != root)
3316		unlink_object(elm->obj);
3317	}
3318    }
3319}
3320
3321static void
3322ref_dag(Obj_Entry *root)
3323{
3324    Objlist_Entry *elm;
3325
3326    assert(root->dag_inited);
3327    STAILQ_FOREACH(elm, &root->dagmembers, link)
3328	elm->obj->refcount++;
3329}
3330
3331static void
3332unref_dag(Obj_Entry *root)
3333{
3334    Objlist_Entry *elm;
3335
3336    assert(root->dag_inited);
3337    STAILQ_FOREACH(elm, &root->dagmembers, link)
3338	elm->obj->refcount--;
3339}
3340
3341/*
3342 * Common code for MD __tls_get_addr().
3343 */
3344void *
3345tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3346{
3347    Elf_Addr* dtv = *dtvp;
3348    RtldLockState lockstate;
3349
3350    /* Check dtv generation in case new modules have arrived */
3351    if (dtv[0] != tls_dtv_generation) {
3352	Elf_Addr* newdtv;
3353	int to_copy;
3354
3355	wlock_acquire(rtld_bind_lock, &lockstate);
3356	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3357	to_copy = dtv[1];
3358	if (to_copy > tls_max_index)
3359	    to_copy = tls_max_index;
3360	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3361	newdtv[0] = tls_dtv_generation;
3362	newdtv[1] = tls_max_index;
3363	free(dtv);
3364	lock_release(rtld_bind_lock, &lockstate);
3365	*dtvp = newdtv;
3366    }
3367
3368    /* Dynamically allocate module TLS if necessary */
3369    if (!dtv[index + 1]) {
3370	/* Signal safe, wlock will block out signals. */
3371	    wlock_acquire(rtld_bind_lock, &lockstate);
3372	if (!dtv[index + 1])
3373	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3374	lock_release(rtld_bind_lock, &lockstate);
3375    }
3376    return (void*) (dtv[index + 1] + offset);
3377}
3378
3379/* XXX not sure what variants to use for arm. */
3380
3381#if defined(__ia64__) || defined(__powerpc__)
3382
3383/*
3384 * Allocate Static TLS using the Variant I method.
3385 */
3386void *
3387allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3388{
3389    Obj_Entry *obj;
3390    char *tcb;
3391    Elf_Addr **tls;
3392    Elf_Addr *dtv;
3393    Elf_Addr addr;
3394    int i;
3395
3396    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3397	return (oldtcb);
3398
3399    assert(tcbsize >= TLS_TCB_SIZE);
3400    tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3401    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3402
3403    if (oldtcb != NULL) {
3404	memcpy(tls, oldtcb, tls_static_space);
3405	free(oldtcb);
3406
3407	/* Adjust the DTV. */
3408	dtv = tls[0];
3409	for (i = 0; i < dtv[1]; i++) {
3410	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3411		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3412		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3413	    }
3414	}
3415    } else {
3416	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3417	tls[0] = dtv;
3418	dtv[0] = tls_dtv_generation;
3419	dtv[1] = tls_max_index;
3420
3421	for (obj = objs; obj; obj = obj->next) {
3422	    if (obj->tlsoffset > 0) {
3423		addr = (Elf_Addr)tls + obj->tlsoffset;
3424		if (obj->tlsinitsize > 0)
3425		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3426		if (obj->tlssize > obj->tlsinitsize)
3427		    memset((void*) (addr + obj->tlsinitsize), 0,
3428			   obj->tlssize - obj->tlsinitsize);
3429		dtv[obj->tlsindex + 1] = addr;
3430	    }
3431	}
3432    }
3433
3434    return (tcb);
3435}
3436
3437void
3438free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3439{
3440    Elf_Addr *dtv;
3441    Elf_Addr tlsstart, tlsend;
3442    int dtvsize, i;
3443
3444    assert(tcbsize >= TLS_TCB_SIZE);
3445
3446    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3447    tlsend = tlsstart + tls_static_space;
3448
3449    dtv = *(Elf_Addr **)tlsstart;
3450    dtvsize = dtv[1];
3451    for (i = 0; i < dtvsize; i++) {
3452	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3453	    free((void*)dtv[i+2]);
3454	}
3455    }
3456    free(dtv);
3457    free(tcb);
3458}
3459
3460#endif
3461
3462#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3463    defined(__arm__) || defined(__mips__)
3464
3465/*
3466 * Allocate Static TLS using the Variant II method.
3467 */
3468void *
3469allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3470{
3471    Obj_Entry *obj;
3472    size_t size;
3473    char *tls;
3474    Elf_Addr *dtv, *olddtv;
3475    Elf_Addr segbase, oldsegbase, addr;
3476    int i;
3477
3478    size = round(tls_static_space, tcbalign);
3479
3480    assert(tcbsize >= 2*sizeof(Elf_Addr));
3481    tls = calloc(1, size + tcbsize);
3482    dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3483
3484    segbase = (Elf_Addr)(tls + size);
3485    ((Elf_Addr*)segbase)[0] = segbase;
3486    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3487
3488    dtv[0] = tls_dtv_generation;
3489    dtv[1] = tls_max_index;
3490
3491    if (oldtls) {
3492	/*
3493	 * Copy the static TLS block over whole.
3494	 */
3495	oldsegbase = (Elf_Addr) oldtls;
3496	memcpy((void *)(segbase - tls_static_space),
3497	       (const void *)(oldsegbase - tls_static_space),
3498	       tls_static_space);
3499
3500	/*
3501	 * If any dynamic TLS blocks have been created tls_get_addr(),
3502	 * move them over.
3503	 */
3504	olddtv = ((Elf_Addr**)oldsegbase)[1];
3505	for (i = 0; i < olddtv[1]; i++) {
3506	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3507		dtv[i+2] = olddtv[i+2];
3508		olddtv[i+2] = 0;
3509	    }
3510	}
3511
3512	/*
3513	 * We assume that this block was the one we created with
3514	 * allocate_initial_tls().
3515	 */
3516	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3517    } else {
3518	for (obj = objs; obj; obj = obj->next) {
3519	    if (obj->tlsoffset) {
3520		addr = segbase - obj->tlsoffset;
3521		memset((void*) (addr + obj->tlsinitsize),
3522		       0, obj->tlssize - obj->tlsinitsize);
3523		if (obj->tlsinit)
3524		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3525		dtv[obj->tlsindex + 1] = addr;
3526	    }
3527	}
3528    }
3529
3530    return (void*) segbase;
3531}
3532
3533void
3534free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3535{
3536    size_t size;
3537    Elf_Addr* dtv;
3538    int dtvsize, i;
3539    Elf_Addr tlsstart, tlsend;
3540
3541    /*
3542     * Figure out the size of the initial TLS block so that we can
3543     * find stuff which ___tls_get_addr() allocated dynamically.
3544     */
3545    size = round(tls_static_space, tcbalign);
3546
3547    dtv = ((Elf_Addr**)tls)[1];
3548    dtvsize = dtv[1];
3549    tlsend = (Elf_Addr) tls;
3550    tlsstart = tlsend - size;
3551    for (i = 0; i < dtvsize; i++) {
3552	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3553	    free((void*) dtv[i+2]);
3554	}
3555    }
3556
3557    free((void*) tlsstart);
3558    free((void*) dtv);
3559}
3560
3561#endif
3562
3563/*
3564 * Allocate TLS block for module with given index.
3565 */
3566void *
3567allocate_module_tls(int index)
3568{
3569    Obj_Entry* obj;
3570    char* p;
3571
3572    for (obj = obj_list; obj; obj = obj->next) {
3573	if (obj->tlsindex == index)
3574	    break;
3575    }
3576    if (!obj) {
3577	_rtld_error("Can't find module with TLS index %d", index);
3578	die();
3579    }
3580
3581    p = malloc(obj->tlssize);
3582    if (p == NULL) {
3583	_rtld_error("Cannot allocate TLS block for index %d", index);
3584	die();
3585    }
3586    memcpy(p, obj->tlsinit, obj->tlsinitsize);
3587    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3588
3589    return p;
3590}
3591
3592bool
3593allocate_tls_offset(Obj_Entry *obj)
3594{
3595    size_t off;
3596
3597    if (obj->tls_done)
3598	return true;
3599
3600    if (obj->tlssize == 0) {
3601	obj->tls_done = true;
3602	return true;
3603    }
3604
3605    if (obj->tlsindex == 1)
3606	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3607    else
3608	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3609				   obj->tlssize, obj->tlsalign);
3610
3611    /*
3612     * If we have already fixed the size of the static TLS block, we
3613     * must stay within that size. When allocating the static TLS, we
3614     * leave a small amount of space spare to be used for dynamically
3615     * loading modules which use static TLS.
3616     */
3617    if (tls_static_space) {
3618	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3619	    return false;
3620    }
3621
3622    tls_last_offset = obj->tlsoffset = off;
3623    tls_last_size = obj->tlssize;
3624    obj->tls_done = true;
3625
3626    return true;
3627}
3628
3629void
3630free_tls_offset(Obj_Entry *obj)
3631{
3632
3633    /*
3634     * If we were the last thing to allocate out of the static TLS
3635     * block, we give our space back to the 'allocator'. This is a
3636     * simplistic workaround to allow libGL.so.1 to be loaded and
3637     * unloaded multiple times.
3638     */
3639    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3640	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3641	tls_last_offset -= obj->tlssize;
3642	tls_last_size = 0;
3643    }
3644}
3645
3646void *
3647_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3648{
3649    void *ret;
3650    RtldLockState lockstate;
3651
3652    wlock_acquire(rtld_bind_lock, &lockstate);
3653    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3654    lock_release(rtld_bind_lock, &lockstate);
3655    return (ret);
3656}
3657
3658void
3659_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3660{
3661    RtldLockState lockstate;
3662
3663    wlock_acquire(rtld_bind_lock, &lockstate);
3664    free_tls(tcb, tcbsize, tcbalign);
3665    lock_release(rtld_bind_lock, &lockstate);
3666}
3667
3668static void
3669object_add_name(Obj_Entry *obj, const char *name)
3670{
3671    Name_Entry *entry;
3672    size_t len;
3673
3674    len = strlen(name);
3675    entry = malloc(sizeof(Name_Entry) + len);
3676
3677    if (entry != NULL) {
3678	strcpy(entry->name, name);
3679	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3680    }
3681}
3682
3683static int
3684object_match_name(const Obj_Entry *obj, const char *name)
3685{
3686    Name_Entry *entry;
3687
3688    STAILQ_FOREACH(entry, &obj->names, link) {
3689	if (strcmp(name, entry->name) == 0)
3690	    return (1);
3691    }
3692    return (0);
3693}
3694
3695static Obj_Entry *
3696locate_dependency(const Obj_Entry *obj, const char *name)
3697{
3698    const Objlist_Entry *entry;
3699    const Needed_Entry *needed;
3700
3701    STAILQ_FOREACH(entry, &list_main, link) {
3702	if (object_match_name(entry->obj, name))
3703	    return entry->obj;
3704    }
3705
3706    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3707	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3708	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3709	    /*
3710	     * If there is DT_NEEDED for the name we are looking for,
3711	     * we are all set.  Note that object might not be found if
3712	     * dependency was not loaded yet, so the function can
3713	     * return NULL here.  This is expected and handled
3714	     * properly by the caller.
3715	     */
3716	    return (needed->obj);
3717	}
3718    }
3719    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3720	obj->path, name);
3721    die();
3722}
3723
3724static int
3725check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3726    const Elf_Vernaux *vna)
3727{
3728    const Elf_Verdef *vd;
3729    const char *vername;
3730
3731    vername = refobj->strtab + vna->vna_name;
3732    vd = depobj->verdef;
3733    if (vd == NULL) {
3734	_rtld_error("%s: version %s required by %s not defined",
3735	    depobj->path, vername, refobj->path);
3736	return (-1);
3737    }
3738    for (;;) {
3739	if (vd->vd_version != VER_DEF_CURRENT) {
3740	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3741		depobj->path, vd->vd_version);
3742	    return (-1);
3743	}
3744	if (vna->vna_hash == vd->vd_hash) {
3745	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3746		((char *)vd + vd->vd_aux);
3747	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3748		return (0);
3749	}
3750	if (vd->vd_next == 0)
3751	    break;
3752	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3753    }
3754    if (vna->vna_flags & VER_FLG_WEAK)
3755	return (0);
3756    _rtld_error("%s: version %s required by %s not found",
3757	depobj->path, vername, refobj->path);
3758    return (-1);
3759}
3760
3761static int
3762rtld_verify_object_versions(Obj_Entry *obj)
3763{
3764    const Elf_Verneed *vn;
3765    const Elf_Verdef  *vd;
3766    const Elf_Verdaux *vda;
3767    const Elf_Vernaux *vna;
3768    const Obj_Entry *depobj;
3769    int maxvernum, vernum;
3770
3771    maxvernum = 0;
3772    /*
3773     * Walk over defined and required version records and figure out
3774     * max index used by any of them. Do very basic sanity checking
3775     * while there.
3776     */
3777    vn = obj->verneed;
3778    while (vn != NULL) {
3779	if (vn->vn_version != VER_NEED_CURRENT) {
3780	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3781		obj->path, vn->vn_version);
3782	    return (-1);
3783	}
3784	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3785	for (;;) {
3786	    vernum = VER_NEED_IDX(vna->vna_other);
3787	    if (vernum > maxvernum)
3788		maxvernum = vernum;
3789	    if (vna->vna_next == 0)
3790		 break;
3791	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3792	}
3793	if (vn->vn_next == 0)
3794	    break;
3795	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3796    }
3797
3798    vd = obj->verdef;
3799    while (vd != NULL) {
3800	if (vd->vd_version != VER_DEF_CURRENT) {
3801	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3802		obj->path, vd->vd_version);
3803	    return (-1);
3804	}
3805	vernum = VER_DEF_IDX(vd->vd_ndx);
3806	if (vernum > maxvernum)
3807		maxvernum = vernum;
3808	if (vd->vd_next == 0)
3809	    break;
3810	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3811    }
3812
3813    if (maxvernum == 0)
3814	return (0);
3815
3816    /*
3817     * Store version information in array indexable by version index.
3818     * Verify that object version requirements are satisfied along the
3819     * way.
3820     */
3821    obj->vernum = maxvernum + 1;
3822    obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3823
3824    vd = obj->verdef;
3825    while (vd != NULL) {
3826	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3827	    vernum = VER_DEF_IDX(vd->vd_ndx);
3828	    assert(vernum <= maxvernum);
3829	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3830	    obj->vertab[vernum].hash = vd->vd_hash;
3831	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3832	    obj->vertab[vernum].file = NULL;
3833	    obj->vertab[vernum].flags = 0;
3834	}
3835	if (vd->vd_next == 0)
3836	    break;
3837	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3838    }
3839
3840    vn = obj->verneed;
3841    while (vn != NULL) {
3842	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3843	if (depobj == NULL)
3844	    return (-1);
3845	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3846	for (;;) {
3847	    if (check_object_provided_version(obj, depobj, vna))
3848		return (-1);
3849	    vernum = VER_NEED_IDX(vna->vna_other);
3850	    assert(vernum <= maxvernum);
3851	    obj->vertab[vernum].hash = vna->vna_hash;
3852	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3853	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3854	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3855		VER_INFO_HIDDEN : 0;
3856	    if (vna->vna_next == 0)
3857		 break;
3858	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3859	}
3860	if (vn->vn_next == 0)
3861	    break;
3862	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3863    }
3864    return 0;
3865}
3866
3867static int
3868rtld_verify_versions(const Objlist *objlist)
3869{
3870    Objlist_Entry *entry;
3871    int rc;
3872
3873    rc = 0;
3874    STAILQ_FOREACH(entry, objlist, link) {
3875	/*
3876	 * Skip dummy objects or objects that have their version requirements
3877	 * already checked.
3878	 */
3879	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3880	    continue;
3881	if (rtld_verify_object_versions(entry->obj) == -1) {
3882	    rc = -1;
3883	    if (ld_tracing == NULL)
3884		break;
3885	}
3886    }
3887    if (rc == 0 || ld_tracing != NULL)
3888    	rc = rtld_verify_object_versions(&obj_rtld);
3889    return rc;
3890}
3891
3892const Ver_Entry *
3893fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3894{
3895    Elf_Versym vernum;
3896
3897    if (obj->vertab) {
3898	vernum = VER_NDX(obj->versyms[symnum]);
3899	if (vernum >= obj->vernum) {
3900	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3901		obj->path, obj->strtab + symnum, vernum);
3902	} else if (obj->vertab[vernum].hash != 0) {
3903	    return &obj->vertab[vernum];
3904	}
3905    }
3906    return NULL;
3907}
3908
3909int
3910_rtld_get_stack_prot(void)
3911{
3912
3913	return (stack_prot);
3914}
3915
3916static void
3917map_stacks_exec(RtldLockState *lockstate)
3918{
3919	void (*thr_map_stacks_exec)(void);
3920
3921	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
3922		return;
3923	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
3924	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
3925	if (thr_map_stacks_exec != NULL) {
3926		stack_prot |= PROT_EXEC;
3927		thr_map_stacks_exec();
3928	}
3929}
3930
3931void
3932symlook_init(SymLook *dst, const char *name)
3933{
3934
3935	bzero(dst, sizeof(*dst));
3936	dst->name = name;
3937	dst->hash = elf_hash(name);
3938}
3939
3940static void
3941symlook_init_from_req(SymLook *dst, const SymLook *src)
3942{
3943
3944	dst->name = src->name;
3945	dst->hash = src->hash;
3946	dst->ventry = src->ventry;
3947	dst->flags = src->flags;
3948	dst->defobj_out = NULL;
3949	dst->sym_out = NULL;
3950	dst->lockstate = src->lockstate;
3951}
3952
3953/*
3954 * Overrides for libc_pic-provided functions.
3955 */
3956
3957int
3958__getosreldate(void)
3959{
3960	size_t len;
3961	int oid[2];
3962	int error, osrel;
3963
3964	if (osreldate != 0)
3965		return (osreldate);
3966
3967	oid[0] = CTL_KERN;
3968	oid[1] = KERN_OSRELDATE;
3969	osrel = 0;
3970	len = sizeof(osrel);
3971	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
3972	if (error == 0 && osrel > 0 && len == sizeof(osrel))
3973		osreldate = osrel;
3974	return (osreldate);
3975}
3976
3977/*
3978 * No unresolved symbols for rtld.
3979 */
3980void
3981__pthread_cxa_finalize(struct dl_phdr_info *a)
3982{
3983}
3984