rtld.c revision 190505
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/libexec/rtld-elf/rtld.c 190505 2009-03-28 15:54:08Z kib $
27 */
28
29/*
30 * Dynamic linker for ELF.
31 *
32 * John Polstra <jdp@polstra.com>.
33 */
34
35#ifndef __GNUC__
36#error "GCC is needed to compile this file"
37#endif
38
39#include <sys/param.h>
40#include <sys/mount.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43#include <sys/uio.h>
44#include <sys/utsname.h>
45#include <sys/ktrace.h>
46
47#include <dlfcn.h>
48#include <err.h>
49#include <errno.h>
50#include <fcntl.h>
51#include <stdarg.h>
52#include <stdio.h>
53#include <stdlib.h>
54#include <string.h>
55#include <unistd.h>
56
57#include "debug.h"
58#include "rtld.h"
59#include "libmap.h"
60#include "rtld_tls.h"
61
62#ifndef COMPAT_32BIT
63#define PATH_RTLD	"/libexec/ld-elf.so.1"
64#else
65#define PATH_RTLD	"/libexec/ld-elf32.so.1"
66#endif
67
68/* Types. */
69typedef void (*func_ptr_type)();
70typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
71
72/*
73 * This structure provides a reentrant way to keep a list of objects and
74 * check which ones have already been processed in some way.
75 */
76typedef struct Struct_DoneList {
77    const Obj_Entry **objs;		/* Array of object pointers */
78    unsigned int num_alloc;		/* Allocated size of the array */
79    unsigned int num_used;		/* Number of array slots used */
80} DoneList;
81
82/*
83 * Function declarations.
84 */
85static const char *basename(const char *);
86static void die(void) __dead2;
87static void digest_dynamic(Obj_Entry *, int);
88static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
89static Obj_Entry *dlcheck(void *);
90static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
91static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92static bool donelist_check(DoneList *, const Obj_Entry *);
93static void errmsg_restore(char *);
94static char *errmsg_save(void);
95static void *fill_search_info(const char *, size_t, void *);
96static char *find_library(const char *, const Obj_Entry *);
97static const char *gethints(void);
98static void init_dag(Obj_Entry *);
99static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
100static void init_rtld(caddr_t);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static bool is_exported(const Elf_Sym *);
104static void linkmap_add(Obj_Entry *);
105static void linkmap_delete(Obj_Entry *);
106static int load_needed_objects(Obj_Entry *);
107static int load_preload_objects(void);
108static Obj_Entry *load_object(const char *, const Obj_Entry *);
109static Obj_Entry *obj_from_addr(const void *);
110static void objlist_call_fini(Objlist *, int *lockstate);
111static void objlist_call_init(Objlist *, int *lockstate);
112static void objlist_clear(Objlist *);
113static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114static void objlist_init(Objlist *);
115static void objlist_push_head(Objlist *, Obj_Entry *);
116static void objlist_push_tail(Objlist *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void objlist_remove_unref(Objlist *);
119static void *path_enumerate(const char *, path_enum_proc, void *);
120static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
121static int rtld_dirname(const char *, char *);
122static int rtld_dirname_abs(const char *, char *);
123static void rtld_exit(void);
124static char *search_library_path(const char *, const char *);
125static const void **get_program_var_addr(const char *);
126static void set_program_var(const char *, const void *);
127static const Elf_Sym *symlook_default(const char *, unsigned long,
128  const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
129static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
130  const Obj_Entry **, const Ver_Entry *, int, DoneList *);
131static const Elf_Sym *symlook_needed(const char *, unsigned long,
132  const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
133  int, DoneList *);
134static void trace_loaded_objects(Obj_Entry *);
135static void unlink_object(Obj_Entry *);
136static void unload_object(Obj_Entry *);
137static void unref_dag(Obj_Entry *);
138static void ref_dag(Obj_Entry *);
139static int origin_subst_one(char **res, const char *real, const char *kw,
140  const char *subst, char *may_free);
141static char *origin_subst(const char *real, const char *origin_path);
142static int  rtld_verify_versions(const Objlist *);
143static int  rtld_verify_object_versions(Obj_Entry *);
144static void object_add_name(Obj_Entry *, const char *);
145static int  object_match_name(const Obj_Entry *, const char *);
146static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147
148void r_debug_state(struct r_debug *, struct link_map *);
149
150/*
151 * Data declarations.
152 */
153static char *error_message;	/* Message for dlerror(), or NULL */
154struct r_debug r_debug;		/* for GDB; */
155static bool libmap_disable;	/* Disable libmap */
156static char *libmap_override;	/* Maps to use in addition to libmap.conf */
157static bool trust;		/* False for setuid and setgid programs */
158static bool dangerous_ld_env;	/* True if environment variables have been
159				   used to affect the libraries loaded */
160static char *ld_bind_now;	/* Environment variable for immediate binding */
161static char *ld_debug;		/* Environment variable for debugging */
162static char *ld_library_path;	/* Environment variable for search path */
163static char *ld_preload;	/* Environment variable for libraries to
164				   load first */
165static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
166static char *ld_tracing;	/* Called from ldd to print libs */
167static char *ld_utrace;		/* Use utrace() to log events. */
168static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
169static Obj_Entry **obj_tail;	/* Link field of last object in list */
170static Obj_Entry *obj_main;	/* The main program shared object */
171static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
172static unsigned int obj_count;	/* Number of objects in obj_list */
173static unsigned int obj_loads;	/* Number of objects in obj_list */
174
175static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
176  STAILQ_HEAD_INITIALIZER(list_global);
177static Objlist list_main =	/* Objects loaded at program startup */
178  STAILQ_HEAD_INITIALIZER(list_main);
179static Objlist list_fini =	/* Objects needing fini() calls */
180  STAILQ_HEAD_INITIALIZER(list_fini);
181
182static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
183
184#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
185
186extern Elf_Dyn _DYNAMIC;
187#pragma weak _DYNAMIC
188#ifndef RTLD_IS_DYNAMIC
189#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
190#endif
191
192/*
193 * These are the functions the dynamic linker exports to application
194 * programs.  They are the only symbols the dynamic linker is willing
195 * to export from itself.
196 */
197static func_ptr_type exports[] = {
198    (func_ptr_type) &_rtld_error,
199    (func_ptr_type) &dlclose,
200    (func_ptr_type) &dlerror,
201    (func_ptr_type) &dlopen,
202    (func_ptr_type) &dlsym,
203    (func_ptr_type) &dlvsym,
204    (func_ptr_type) &dladdr,
205    (func_ptr_type) &dllockinit,
206    (func_ptr_type) &dlinfo,
207    (func_ptr_type) &_rtld_thread_init,
208#ifdef __i386__
209    (func_ptr_type) &___tls_get_addr,
210#endif
211    (func_ptr_type) &__tls_get_addr,
212    (func_ptr_type) &_rtld_allocate_tls,
213    (func_ptr_type) &_rtld_free_tls,
214    (func_ptr_type) &dl_iterate_phdr,
215    (func_ptr_type) &_rtld_atfork_pre,
216    (func_ptr_type) &_rtld_atfork_post,
217    NULL
218};
219
220/*
221 * Global declarations normally provided by crt1.  The dynamic linker is
222 * not built with crt1, so we have to provide them ourselves.
223 */
224char *__progname;
225char **environ;
226
227/*
228 * Globals to control TLS allocation.
229 */
230size_t tls_last_offset;		/* Static TLS offset of last module */
231size_t tls_last_size;		/* Static TLS size of last module */
232size_t tls_static_space;	/* Static TLS space allocated */
233int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234int tls_max_index = 1;		/* Largest module index allocated */
235
236/*
237 * Fill in a DoneList with an allocation large enough to hold all of
238 * the currently-loaded objects.  Keep this as a macro since it calls
239 * alloca and we want that to occur within the scope of the caller.
240 */
241#define donelist_init(dlp)					\
242    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
243    assert((dlp)->objs != NULL),				\
244    (dlp)->num_alloc = obj_count,				\
245    (dlp)->num_used = 0)
246
247#define	UTRACE_DLOPEN_START		1
248#define	UTRACE_DLOPEN_STOP		2
249#define	UTRACE_DLCLOSE_START		3
250#define	UTRACE_DLCLOSE_STOP		4
251#define	UTRACE_LOAD_OBJECT		5
252#define	UTRACE_UNLOAD_OBJECT		6
253#define	UTRACE_ADD_RUNDEP		7
254#define	UTRACE_PRELOAD_FINISHED		8
255#define	UTRACE_INIT_CALL		9
256#define	UTRACE_FINI_CALL		10
257
258struct utrace_rtld {
259	char sig[4];			/* 'RTLD' */
260	int event;
261	void *handle;
262	void *mapbase;			/* Used for 'parent' and 'init/fini' */
263	size_t mapsize;
264	int refcnt;			/* Used for 'mode' */
265	char name[MAXPATHLEN];
266};
267
268#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
269	if (ld_utrace != NULL)					\
270		ld_utrace_log(e, h, mb, ms, r, n);		\
271} while (0)
272
273static void
274ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
275    int refcnt, const char *name)
276{
277	struct utrace_rtld ut;
278
279	ut.sig[0] = 'R';
280	ut.sig[1] = 'T';
281	ut.sig[2] = 'L';
282	ut.sig[3] = 'D';
283	ut.event = event;
284	ut.handle = handle;
285	ut.mapbase = mapbase;
286	ut.mapsize = mapsize;
287	ut.refcnt = refcnt;
288	bzero(ut.name, sizeof(ut.name));
289	if (name)
290		strlcpy(ut.name, name, sizeof(ut.name));
291	utrace(&ut, sizeof(ut));
292}
293
294/*
295 * Main entry point for dynamic linking.  The first argument is the
296 * stack pointer.  The stack is expected to be laid out as described
297 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
298 * Specifically, the stack pointer points to a word containing
299 * ARGC.  Following that in the stack is a null-terminated sequence
300 * of pointers to argument strings.  Then comes a null-terminated
301 * sequence of pointers to environment strings.  Finally, there is a
302 * sequence of "auxiliary vector" entries.
303 *
304 * The second argument points to a place to store the dynamic linker's
305 * exit procedure pointer and the third to a place to store the main
306 * program's object.
307 *
308 * The return value is the main program's entry point.
309 */
310func_ptr_type
311_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
312{
313    Elf_Auxinfo *aux_info[AT_COUNT];
314    int i;
315    int argc;
316    char **argv;
317    char **env;
318    Elf_Auxinfo *aux;
319    Elf_Auxinfo *auxp;
320    const char *argv0;
321    Objlist_Entry *entry;
322    Obj_Entry *obj;
323    Obj_Entry **preload_tail;
324    Objlist initlist;
325    int lockstate;
326
327    /*
328     * On entry, the dynamic linker itself has not been relocated yet.
329     * Be very careful not to reference any global data until after
330     * init_rtld has returned.  It is OK to reference file-scope statics
331     * and string constants, and to call static and global functions.
332     */
333
334    /* Find the auxiliary vector on the stack. */
335    argc = *sp++;
336    argv = (char **) sp;
337    sp += argc + 1;	/* Skip over arguments and NULL terminator */
338    env = (char **) sp;
339    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
340	;
341    aux = (Elf_Auxinfo *) sp;
342
343    /* Digest the auxiliary vector. */
344    for (i = 0;  i < AT_COUNT;  i++)
345	aux_info[i] = NULL;
346    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
347	if (auxp->a_type < AT_COUNT)
348	    aux_info[auxp->a_type] = auxp;
349    }
350
351    /* Initialize and relocate ourselves. */
352    assert(aux_info[AT_BASE] != NULL);
353    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
354
355    __progname = obj_rtld.path;
356    argv0 = argv[0] != NULL ? argv[0] : "(null)";
357    environ = env;
358
359    trust = !issetugid();
360
361    ld_bind_now = getenv(LD_ "BIND_NOW");
362    /*
363     * If the process is tainted, then we un-set the dangerous environment
364     * variables.  The process will be marked as tainted until setuid(2)
365     * is called.  If any child process calls setuid(2) we do not want any
366     * future processes to honor the potentially un-safe variables.
367     */
368    if (!trust) {
369        unsetenv(LD_ "PRELOAD");
370        unsetenv(LD_ "LIBMAP");
371        unsetenv(LD_ "LIBRARY_PATH");
372        unsetenv(LD_ "LIBMAP_DISABLE");
373        unsetenv(LD_ "DEBUG");
374        unsetenv(LD_ "ELF_HINTS_PATH");
375    }
376    ld_debug = getenv(LD_ "DEBUG");
377    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
378    libmap_override = getenv(LD_ "LIBMAP");
379    ld_library_path = getenv(LD_ "LIBRARY_PATH");
380    ld_preload = getenv(LD_ "PRELOAD");
381    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
382    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
383	(ld_library_path != NULL) || (ld_preload != NULL) ||
384	(ld_elf_hints_path != NULL);
385    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
386    ld_utrace = getenv(LD_ "UTRACE");
387
388    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
389	ld_elf_hints_path = _PATH_ELF_HINTS;
390
391    if (ld_debug != NULL && *ld_debug != '\0')
392	debug = 1;
393    dbg("%s is initialized, base address = %p", __progname,
394	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
395    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
396    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
397
398    /*
399     * Load the main program, or process its program header if it is
400     * already loaded.
401     */
402    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
403	int fd = aux_info[AT_EXECFD]->a_un.a_val;
404	dbg("loading main program");
405	obj_main = map_object(fd, argv0, NULL);
406	close(fd);
407	if (obj_main == NULL)
408	    die();
409    } else {				/* Main program already loaded. */
410	const Elf_Phdr *phdr;
411	int phnum;
412	caddr_t entry;
413
414	dbg("processing main program's program header");
415	assert(aux_info[AT_PHDR] != NULL);
416	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
417	assert(aux_info[AT_PHNUM] != NULL);
418	phnum = aux_info[AT_PHNUM]->a_un.a_val;
419	assert(aux_info[AT_PHENT] != NULL);
420	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
421	assert(aux_info[AT_ENTRY] != NULL);
422	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
423	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
424	    die();
425    }
426
427    if (aux_info[AT_EXECPATH] != 0) {
428	    char *kexecpath;
429	    char buf[MAXPATHLEN];
430
431	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
432	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
433	    if (kexecpath[0] == '/')
434		    obj_main->path = kexecpath;
435	    else if (getcwd(buf, sizeof(buf)) == NULL ||
436		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
437		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
438		    obj_main->path = xstrdup(argv0);
439	    else
440		    obj_main->path = xstrdup(buf);
441    } else {
442	    dbg("No AT_EXECPATH");
443	    obj_main->path = xstrdup(argv0);
444    }
445    dbg("obj_main path %s", obj_main->path);
446    obj_main->mainprog = true;
447
448    /*
449     * Get the actual dynamic linker pathname from the executable if
450     * possible.  (It should always be possible.)  That ensures that
451     * gdb will find the right dynamic linker even if a non-standard
452     * one is being used.
453     */
454    if (obj_main->interp != NULL &&
455      strcmp(obj_main->interp, obj_rtld.path) != 0) {
456	free(obj_rtld.path);
457	obj_rtld.path = xstrdup(obj_main->interp);
458        __progname = obj_rtld.path;
459    }
460
461    digest_dynamic(obj_main, 0);
462
463    linkmap_add(obj_main);
464    linkmap_add(&obj_rtld);
465
466    /* Link the main program into the list of objects. */
467    *obj_tail = obj_main;
468    obj_tail = &obj_main->next;
469    obj_count++;
470    obj_loads++;
471    /* Make sure we don't call the main program's init and fini functions. */
472    obj_main->init = obj_main->fini = (Elf_Addr)NULL;
473
474    /* Initialize a fake symbol for resolving undefined weak references. */
475    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
476    sym_zero.st_shndx = SHN_UNDEF;
477
478    if (!libmap_disable)
479        libmap_disable = (bool)lm_init(libmap_override);
480
481    dbg("loading LD_PRELOAD libraries");
482    if (load_preload_objects() == -1)
483	die();
484    preload_tail = obj_tail;
485
486    dbg("loading needed objects");
487    if (load_needed_objects(obj_main) == -1)
488	die();
489
490    /* Make a list of all objects loaded at startup. */
491    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
492	objlist_push_tail(&list_main, obj);
493    	obj->refcount++;
494    }
495
496    dbg("checking for required versions");
497    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
498	die();
499
500    if (ld_tracing) {		/* We're done */
501	trace_loaded_objects(obj_main);
502	exit(0);
503    }
504
505    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
506       dump_relocations(obj_main);
507       exit (0);
508    }
509
510    /* setup TLS for main thread */
511    dbg("initializing initial thread local storage");
512    STAILQ_FOREACH(entry, &list_main, link) {
513	/*
514	 * Allocate all the initial objects out of the static TLS
515	 * block even if they didn't ask for it.
516	 */
517	allocate_tls_offset(entry->obj);
518    }
519    allocate_initial_tls(obj_list);
520
521    if (relocate_objects(obj_main,
522	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
523	die();
524
525    dbg("doing copy relocations");
526    if (do_copy_relocations(obj_main) == -1)
527	die();
528
529    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
530       dump_relocations(obj_main);
531       exit (0);
532    }
533
534    dbg("initializing key program variables");
535    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
536    set_program_var("environ", env);
537
538    dbg("initializing thread locks");
539    lockdflt_init();
540
541    /* Make a list of init functions to call. */
542    objlist_init(&initlist);
543    initlist_add_objects(obj_list, preload_tail, &initlist);
544
545    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
546
547    lockstate = wlock_acquire(rtld_bind_lock);
548    objlist_call_init(&initlist, &lockstate);
549    objlist_clear(&initlist);
550    wlock_release(rtld_bind_lock, lockstate);
551
552    dbg("transferring control to program entry point = %p", obj_main->entry);
553
554    /* Return the exit procedure and the program entry point. */
555    *exit_proc = rtld_exit;
556    *objp = obj_main;
557    return (func_ptr_type) obj_main->entry;
558}
559
560Elf_Addr
561_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
562{
563    const Elf_Rel *rel;
564    const Elf_Sym *def;
565    const Obj_Entry *defobj;
566    Elf_Addr *where;
567    Elf_Addr target;
568    int lockstate;
569
570    lockstate = rlock_acquire(rtld_bind_lock);
571    if (obj->pltrel)
572	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
573    else
574	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
575
576    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
577    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
578    if (def == NULL)
579	die();
580
581    target = (Elf_Addr)(defobj->relocbase + def->st_value);
582
583    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
584      defobj->strtab + def->st_name, basename(obj->path),
585      (void *)target, basename(defobj->path));
586
587    /*
588     * Write the new contents for the jmpslot. Note that depending on
589     * architecture, the value which we need to return back to the
590     * lazy binding trampoline may or may not be the target
591     * address. The value returned from reloc_jmpslot() is the value
592     * that the trampoline needs.
593     */
594    target = reloc_jmpslot(where, target, defobj, obj, rel);
595    rlock_release(rtld_bind_lock, lockstate);
596    return target;
597}
598
599/*
600 * Error reporting function.  Use it like printf.  If formats the message
601 * into a buffer, and sets things up so that the next call to dlerror()
602 * will return the message.
603 */
604void
605_rtld_error(const char *fmt, ...)
606{
607    static char buf[512];
608    va_list ap;
609
610    va_start(ap, fmt);
611    vsnprintf(buf, sizeof buf, fmt, ap);
612    error_message = buf;
613    va_end(ap);
614}
615
616/*
617 * Return a dynamically-allocated copy of the current error message, if any.
618 */
619static char *
620errmsg_save(void)
621{
622    return error_message == NULL ? NULL : xstrdup(error_message);
623}
624
625/*
626 * Restore the current error message from a copy which was previously saved
627 * by errmsg_save().  The copy is freed.
628 */
629static void
630errmsg_restore(char *saved_msg)
631{
632    if (saved_msg == NULL)
633	error_message = NULL;
634    else {
635	_rtld_error("%s", saved_msg);
636	free(saved_msg);
637    }
638}
639
640static const char *
641basename(const char *name)
642{
643    const char *p = strrchr(name, '/');
644    return p != NULL ? p + 1 : name;
645}
646
647static struct utsname uts;
648
649static int
650origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
651    char *may_free)
652{
653    const char *p, *p1;
654    char *res1;
655    int subst_len;
656    int kw_len;
657
658    res1 = *res = NULL;
659    p = real;
660    subst_len = kw_len = 0;
661    for (;;) {
662	 p1 = strstr(p, kw);
663	 if (p1 != NULL) {
664	     if (subst_len == 0) {
665		 subst_len = strlen(subst);
666		 kw_len = strlen(kw);
667	     }
668	     if (*res == NULL) {
669		 *res = xmalloc(PATH_MAX);
670		 res1 = *res;
671	     }
672	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
673		 _rtld_error("Substitution of %s in %s cannot be performed",
674		     kw, real);
675		 if (may_free != NULL)
676		     free(may_free);
677		 free(res);
678		 return (false);
679	     }
680	     memcpy(res1, p, p1 - p);
681	     res1 += p1 - p;
682	     memcpy(res1, subst, subst_len);
683	     res1 += subst_len;
684	     p = p1 + kw_len;
685	 } else {
686	    if (*res == NULL) {
687		if (may_free != NULL)
688		    *res = may_free;
689		else
690		    *res = xstrdup(real);
691		return (true);
692	    }
693	    *res1 = '\0';
694	    if (may_free != NULL)
695		free(may_free);
696	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
697		free(res);
698		return (false);
699	    }
700	    return (true);
701	 }
702    }
703}
704
705static char *
706origin_subst(const char *real, const char *origin_path)
707{
708    char *res1, *res2, *res3, *res4;
709
710    if (uts.sysname[0] == '\0') {
711	if (uname(&uts) != 0) {
712	    _rtld_error("utsname failed: %d", errno);
713	    return (NULL);
714	}
715    }
716    if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
717	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
718	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
719	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
720	    return (NULL);
721    return (res4);
722}
723
724static void
725die(void)
726{
727    const char *msg = dlerror();
728
729    if (msg == NULL)
730	msg = "Fatal error";
731    errx(1, "%s", msg);
732}
733
734/*
735 * Process a shared object's DYNAMIC section, and save the important
736 * information in its Obj_Entry structure.
737 */
738static void
739digest_dynamic(Obj_Entry *obj, int early)
740{
741    const Elf_Dyn *dynp;
742    Needed_Entry **needed_tail = &obj->needed;
743    const Elf_Dyn *dyn_rpath = NULL;
744    const Elf_Dyn *dyn_soname = NULL;
745    int plttype = DT_REL;
746
747    obj->bind_now = false;
748    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
749	switch (dynp->d_tag) {
750
751	case DT_REL:
752	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
753	    break;
754
755	case DT_RELSZ:
756	    obj->relsize = dynp->d_un.d_val;
757	    break;
758
759	case DT_RELENT:
760	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
761	    break;
762
763	case DT_JMPREL:
764	    obj->pltrel = (const Elf_Rel *)
765	      (obj->relocbase + dynp->d_un.d_ptr);
766	    break;
767
768	case DT_PLTRELSZ:
769	    obj->pltrelsize = dynp->d_un.d_val;
770	    break;
771
772	case DT_RELA:
773	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
774	    break;
775
776	case DT_RELASZ:
777	    obj->relasize = dynp->d_un.d_val;
778	    break;
779
780	case DT_RELAENT:
781	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
782	    break;
783
784	case DT_PLTREL:
785	    plttype = dynp->d_un.d_val;
786	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
787	    break;
788
789	case DT_SYMTAB:
790	    obj->symtab = (const Elf_Sym *)
791	      (obj->relocbase + dynp->d_un.d_ptr);
792	    break;
793
794	case DT_SYMENT:
795	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
796	    break;
797
798	case DT_STRTAB:
799	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
800	    break;
801
802	case DT_STRSZ:
803	    obj->strsize = dynp->d_un.d_val;
804	    break;
805
806	case DT_VERNEED:
807	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
808		dynp->d_un.d_val);
809	    break;
810
811	case DT_VERNEEDNUM:
812	    obj->verneednum = dynp->d_un.d_val;
813	    break;
814
815	case DT_VERDEF:
816	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
817		dynp->d_un.d_val);
818	    break;
819
820	case DT_VERDEFNUM:
821	    obj->verdefnum = dynp->d_un.d_val;
822	    break;
823
824	case DT_VERSYM:
825	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
826		dynp->d_un.d_val);
827	    break;
828
829	case DT_HASH:
830	    {
831		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
832		  (obj->relocbase + dynp->d_un.d_ptr);
833		obj->nbuckets = hashtab[0];
834		obj->nchains = hashtab[1];
835		obj->buckets = hashtab + 2;
836		obj->chains = obj->buckets + obj->nbuckets;
837	    }
838	    break;
839
840	case DT_NEEDED:
841	    if (!obj->rtld) {
842		Needed_Entry *nep = NEW(Needed_Entry);
843		nep->name = dynp->d_un.d_val;
844		nep->obj = NULL;
845		nep->next = NULL;
846
847		*needed_tail = nep;
848		needed_tail = &nep->next;
849	    }
850	    break;
851
852	case DT_PLTGOT:
853	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
854	    break;
855
856	case DT_TEXTREL:
857	    obj->textrel = true;
858	    break;
859
860	case DT_SYMBOLIC:
861	    obj->symbolic = true;
862	    break;
863
864	case DT_RPATH:
865	case DT_RUNPATH:	/* XXX: process separately */
866	    /*
867	     * We have to wait until later to process this, because we
868	     * might not have gotten the address of the string table yet.
869	     */
870	    dyn_rpath = dynp;
871	    break;
872
873	case DT_SONAME:
874	    dyn_soname = dynp;
875	    break;
876
877	case DT_INIT:
878	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
879	    break;
880
881	case DT_FINI:
882	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
883	    break;
884
885	/*
886	 * Don't process DT_DEBUG on MIPS as the dynamic section
887	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
888	 */
889
890#ifndef __mips__
891	case DT_DEBUG:
892	    /* XXX - not implemented yet */
893	    if (!early)
894		dbg("Filling in DT_DEBUG entry");
895	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
896	    break;
897#endif
898
899	case DT_FLAGS:
900		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
901		    obj->z_origin = true;
902		if (dynp->d_un.d_val & DF_SYMBOLIC)
903		    obj->symbolic = true;
904		if (dynp->d_un.d_val & DF_TEXTREL)
905		    obj->textrel = true;
906		if (dynp->d_un.d_val & DF_BIND_NOW)
907		    obj->bind_now = true;
908		if (dynp->d_un.d_val & DF_STATIC_TLS)
909		    ;
910	    break;
911#ifdef __mips__
912	case DT_MIPS_LOCAL_GOTNO:
913		obj->local_gotno = dynp->d_un.d_val;
914	    break;
915
916	case DT_MIPS_SYMTABNO:
917		obj->symtabno = dynp->d_un.d_val;
918		break;
919
920	case DT_MIPS_GOTSYM:
921		obj->gotsym = dynp->d_un.d_val;
922		break;
923
924	case DT_MIPS_RLD_MAP:
925#ifdef notyet
926		if (!early)
927			dbg("Filling in DT_DEBUG entry");
928		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
929#endif
930		break;
931#endif
932
933	case DT_FLAGS_1:
934		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
935		    obj->z_origin = true;
936		if (dynp->d_un.d_val & DF_1_GLOBAL)
937			/* XXX */;
938		if (dynp->d_un.d_val & DF_1_BIND_NOW)
939		    obj->bind_now = true;
940	    break;
941
942	default:
943	    if (!early) {
944		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
945		    (long)dynp->d_tag);
946	    }
947	    break;
948	}
949    }
950
951    obj->traced = false;
952
953    if (plttype == DT_RELA) {
954	obj->pltrela = (const Elf_Rela *) obj->pltrel;
955	obj->pltrel = NULL;
956	obj->pltrelasize = obj->pltrelsize;
957	obj->pltrelsize = 0;
958    }
959
960    if (obj->z_origin && obj->origin_path == NULL) {
961	obj->origin_path = xmalloc(PATH_MAX);
962	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
963	    die();
964    }
965
966    if (dyn_rpath != NULL) {
967	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
968	if (obj->z_origin)
969	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
970    }
971
972    if (dyn_soname != NULL)
973	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
974}
975
976/*
977 * Process a shared object's program header.  This is used only for the
978 * main program, when the kernel has already loaded the main program
979 * into memory before calling the dynamic linker.  It creates and
980 * returns an Obj_Entry structure.
981 */
982static Obj_Entry *
983digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
984{
985    Obj_Entry *obj;
986    const Elf_Phdr *phlimit = phdr + phnum;
987    const Elf_Phdr *ph;
988    int nsegs = 0;
989
990    obj = obj_new();
991    for (ph = phdr;  ph < phlimit;  ph++) {
992	switch (ph->p_type) {
993
994	case PT_PHDR:
995	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
996		_rtld_error("%s: invalid PT_PHDR", path);
997		return NULL;
998	    }
999	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
1000	    obj->phsize = ph->p_memsz;
1001	    break;
1002
1003	case PT_INTERP:
1004	    obj->interp = (const char *) ph->p_vaddr;
1005	    break;
1006
1007	case PT_LOAD:
1008	    if (nsegs == 0) {	/* First load segment */
1009		obj->vaddrbase = trunc_page(ph->p_vaddr);
1010		obj->mapbase = (caddr_t) obj->vaddrbase;
1011		obj->relocbase = obj->mapbase - obj->vaddrbase;
1012		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1013		  obj->vaddrbase;
1014	    } else {		/* Last load segment */
1015		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1016		  obj->vaddrbase;
1017	    }
1018	    nsegs++;
1019	    break;
1020
1021	case PT_DYNAMIC:
1022	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
1023	    break;
1024
1025	case PT_TLS:
1026	    obj->tlsindex = 1;
1027	    obj->tlssize = ph->p_memsz;
1028	    obj->tlsalign = ph->p_align;
1029	    obj->tlsinitsize = ph->p_filesz;
1030	    obj->tlsinit = (void*) ph->p_vaddr;
1031	    break;
1032	}
1033    }
1034    if (nsegs < 1) {
1035	_rtld_error("%s: too few PT_LOAD segments", path);
1036	return NULL;
1037    }
1038
1039    obj->entry = entry;
1040    return obj;
1041}
1042
1043static Obj_Entry *
1044dlcheck(void *handle)
1045{
1046    Obj_Entry *obj;
1047
1048    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1049	if (obj == (Obj_Entry *) handle)
1050	    break;
1051
1052    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1053	_rtld_error("Invalid shared object handle %p", handle);
1054	return NULL;
1055    }
1056    return obj;
1057}
1058
1059/*
1060 * If the given object is already in the donelist, return true.  Otherwise
1061 * add the object to the list and return false.
1062 */
1063static bool
1064donelist_check(DoneList *dlp, const Obj_Entry *obj)
1065{
1066    unsigned int i;
1067
1068    for (i = 0;  i < dlp->num_used;  i++)
1069	if (dlp->objs[i] == obj)
1070	    return true;
1071    /*
1072     * Our donelist allocation should always be sufficient.  But if
1073     * our threads locking isn't working properly, more shared objects
1074     * could have been loaded since we allocated the list.  That should
1075     * never happen, but we'll handle it properly just in case it does.
1076     */
1077    if (dlp->num_used < dlp->num_alloc)
1078	dlp->objs[dlp->num_used++] = obj;
1079    return false;
1080}
1081
1082/*
1083 * Hash function for symbol table lookup.  Don't even think about changing
1084 * this.  It is specified by the System V ABI.
1085 */
1086unsigned long
1087elf_hash(const char *name)
1088{
1089    const unsigned char *p = (const unsigned char *) name;
1090    unsigned long h = 0;
1091    unsigned long g;
1092
1093    while (*p != '\0') {
1094	h = (h << 4) + *p++;
1095	if ((g = h & 0xf0000000) != 0)
1096	    h ^= g >> 24;
1097	h &= ~g;
1098    }
1099    return h;
1100}
1101
1102/*
1103 * Find the library with the given name, and return its full pathname.
1104 * The returned string is dynamically allocated.  Generates an error
1105 * message and returns NULL if the library cannot be found.
1106 *
1107 * If the second argument is non-NULL, then it refers to an already-
1108 * loaded shared object, whose library search path will be searched.
1109 *
1110 * The search order is:
1111 *   LD_LIBRARY_PATH
1112 *   rpath in the referencing file
1113 *   ldconfig hints
1114 *   /lib:/usr/lib
1115 */
1116static char *
1117find_library(const char *xname, const Obj_Entry *refobj)
1118{
1119    char *pathname;
1120    char *name;
1121
1122    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1123	if (xname[0] != '/' && !trust) {
1124	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1125	      xname);
1126	    return NULL;
1127	}
1128	if (refobj != NULL && refobj->z_origin)
1129	    return origin_subst(xname, refobj->origin_path);
1130	else
1131	    return xstrdup(xname);
1132    }
1133
1134    if (libmap_disable || (refobj == NULL) ||
1135	(name = lm_find(refobj->path, xname)) == NULL)
1136	name = (char *)xname;
1137
1138    dbg(" Searching for \"%s\"", name);
1139
1140    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1141      (refobj != NULL &&
1142      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1143      (pathname = search_library_path(name, gethints())) != NULL ||
1144      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1145	return pathname;
1146
1147    if(refobj != NULL && refobj->path != NULL) {
1148	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1149	  name, basename(refobj->path));
1150    } else {
1151	_rtld_error("Shared object \"%s\" not found", name);
1152    }
1153    return NULL;
1154}
1155
1156/*
1157 * Given a symbol number in a referencing object, find the corresponding
1158 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1159 * no definition was found.  Returns a pointer to the Obj_Entry of the
1160 * defining object via the reference parameter DEFOBJ_OUT.
1161 */
1162const Elf_Sym *
1163find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1164    const Obj_Entry **defobj_out, int flags, SymCache *cache)
1165{
1166    const Elf_Sym *ref;
1167    const Elf_Sym *def;
1168    const Obj_Entry *defobj;
1169    const Ver_Entry *ventry;
1170    const char *name;
1171    unsigned long hash;
1172
1173    /*
1174     * If we have already found this symbol, get the information from
1175     * the cache.
1176     */
1177    if (symnum >= refobj->nchains)
1178	return NULL;	/* Bad object */
1179    if (cache != NULL && cache[symnum].sym != NULL) {
1180	*defobj_out = cache[symnum].obj;
1181	return cache[symnum].sym;
1182    }
1183
1184    ref = refobj->symtab + symnum;
1185    name = refobj->strtab + ref->st_name;
1186    defobj = NULL;
1187
1188    /*
1189     * We don't have to do a full scale lookup if the symbol is local.
1190     * We know it will bind to the instance in this load module; to
1191     * which we already have a pointer (ie ref). By not doing a lookup,
1192     * we not only improve performance, but it also avoids unresolvable
1193     * symbols when local symbols are not in the hash table. This has
1194     * been seen with the ia64 toolchain.
1195     */
1196    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1197	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1198	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1199		symnum);
1200	}
1201	ventry = fetch_ventry(refobj, symnum);
1202	hash = elf_hash(name);
1203	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1204    } else {
1205	def = ref;
1206	defobj = refobj;
1207    }
1208
1209    /*
1210     * If we found no definition and the reference is weak, treat the
1211     * symbol as having the value zero.
1212     */
1213    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1214	def = &sym_zero;
1215	defobj = obj_main;
1216    }
1217
1218    if (def != NULL) {
1219	*defobj_out = defobj;
1220	/* Record the information in the cache to avoid subsequent lookups. */
1221	if (cache != NULL) {
1222	    cache[symnum].sym = def;
1223	    cache[symnum].obj = defobj;
1224	}
1225    } else {
1226	if (refobj != &obj_rtld)
1227	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1228    }
1229    return def;
1230}
1231
1232/*
1233 * Return the search path from the ldconfig hints file, reading it if
1234 * necessary.  Returns NULL if there are problems with the hints file,
1235 * or if the search path there is empty.
1236 */
1237static const char *
1238gethints(void)
1239{
1240    static char *hints;
1241
1242    if (hints == NULL) {
1243	int fd;
1244	struct elfhints_hdr hdr;
1245	char *p;
1246
1247	/* Keep from trying again in case the hints file is bad. */
1248	hints = "";
1249
1250	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1251	    return NULL;
1252	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1253	  hdr.magic != ELFHINTS_MAGIC ||
1254	  hdr.version != 1) {
1255	    close(fd);
1256	    return NULL;
1257	}
1258	p = xmalloc(hdr.dirlistlen + 1);
1259	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1260	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1261	    free(p);
1262	    close(fd);
1263	    return NULL;
1264	}
1265	hints = p;
1266	close(fd);
1267    }
1268    return hints[0] != '\0' ? hints : NULL;
1269}
1270
1271static void
1272init_dag(Obj_Entry *root)
1273{
1274    DoneList donelist;
1275
1276    donelist_init(&donelist);
1277    init_dag1(root, root, &donelist);
1278}
1279
1280static void
1281init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1282{
1283    const Needed_Entry *needed;
1284
1285    if (donelist_check(dlp, obj))
1286	return;
1287
1288    obj->refcount++;
1289    objlist_push_tail(&obj->dldags, root);
1290    objlist_push_tail(&root->dagmembers, obj);
1291    for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1292	if (needed->obj != NULL)
1293	    init_dag1(root, needed->obj, dlp);
1294}
1295
1296/*
1297 * Initialize the dynamic linker.  The argument is the address at which
1298 * the dynamic linker has been mapped into memory.  The primary task of
1299 * this function is to relocate the dynamic linker.
1300 */
1301static void
1302init_rtld(caddr_t mapbase)
1303{
1304    Obj_Entry objtmp;	/* Temporary rtld object */
1305
1306    /*
1307     * Conjure up an Obj_Entry structure for the dynamic linker.
1308     *
1309     * The "path" member can't be initialized yet because string constatns
1310     * cannot yet be acessed. Below we will set it correctly.
1311     */
1312    memset(&objtmp, 0, sizeof(objtmp));
1313    objtmp.path = NULL;
1314    objtmp.rtld = true;
1315    objtmp.mapbase = mapbase;
1316#ifdef PIC
1317    objtmp.relocbase = mapbase;
1318#endif
1319    if (RTLD_IS_DYNAMIC()) {
1320	objtmp.dynamic = rtld_dynamic(&objtmp);
1321	digest_dynamic(&objtmp, 1);
1322	assert(objtmp.needed == NULL);
1323#if !defined(__mips__)
1324	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1325	assert(!objtmp.textrel);
1326#endif
1327
1328	/*
1329	 * Temporarily put the dynamic linker entry into the object list, so
1330	 * that symbols can be found.
1331	 */
1332
1333	relocate_objects(&objtmp, true, &objtmp);
1334    }
1335
1336    /* Initialize the object list. */
1337    obj_tail = &obj_list;
1338
1339    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1340    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1341
1342    /* Replace the path with a dynamically allocated copy. */
1343    obj_rtld.path = xstrdup(PATH_RTLD);
1344
1345    r_debug.r_brk = r_debug_state;
1346    r_debug.r_state = RT_CONSISTENT;
1347}
1348
1349/*
1350 * Add the init functions from a needed object list (and its recursive
1351 * needed objects) to "list".  This is not used directly; it is a helper
1352 * function for initlist_add_objects().  The write lock must be held
1353 * when this function is called.
1354 */
1355static void
1356initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1357{
1358    /* Recursively process the successor needed objects. */
1359    if (needed->next != NULL)
1360	initlist_add_neededs(needed->next, list);
1361
1362    /* Process the current needed object. */
1363    if (needed->obj != NULL)
1364	initlist_add_objects(needed->obj, &needed->obj->next, list);
1365}
1366
1367/*
1368 * Scan all of the DAGs rooted in the range of objects from "obj" to
1369 * "tail" and add their init functions to "list".  This recurses over
1370 * the DAGs and ensure the proper init ordering such that each object's
1371 * needed libraries are initialized before the object itself.  At the
1372 * same time, this function adds the objects to the global finalization
1373 * list "list_fini" in the opposite order.  The write lock must be
1374 * held when this function is called.
1375 */
1376static void
1377initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1378{
1379    if (obj->init_done)
1380	return;
1381    obj->init_done = true;
1382
1383    /* Recursively process the successor objects. */
1384    if (&obj->next != tail)
1385	initlist_add_objects(obj->next, tail, list);
1386
1387    /* Recursively process the needed objects. */
1388    if (obj->needed != NULL)
1389	initlist_add_neededs(obj->needed, list);
1390
1391    /* Add the object to the init list. */
1392    if (obj->init != (Elf_Addr)NULL)
1393	objlist_push_tail(list, obj);
1394
1395    /* Add the object to the global fini list in the reverse order. */
1396    if (obj->fini != (Elf_Addr)NULL)
1397	objlist_push_head(&list_fini, obj);
1398}
1399
1400#ifndef FPTR_TARGET
1401#define FPTR_TARGET(f)	((Elf_Addr) (f))
1402#endif
1403
1404static bool
1405is_exported(const Elf_Sym *def)
1406{
1407    Elf_Addr value;
1408    const func_ptr_type *p;
1409
1410    value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1411    for (p = exports;  *p != NULL;  p++)
1412	if (FPTR_TARGET(*p) == value)
1413	    return true;
1414    return false;
1415}
1416
1417/*
1418 * Given a shared object, traverse its list of needed objects, and load
1419 * each of them.  Returns 0 on success.  Generates an error message and
1420 * returns -1 on failure.
1421 */
1422static int
1423load_needed_objects(Obj_Entry *first)
1424{
1425    Obj_Entry *obj;
1426
1427    for (obj = first;  obj != NULL;  obj = obj->next) {
1428	Needed_Entry *needed;
1429
1430	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1431	    needed->obj = load_object(obj->strtab + needed->name, obj);
1432	    if (needed->obj == NULL && !ld_tracing)
1433		return -1;
1434	}
1435    }
1436
1437    return 0;
1438}
1439
1440static int
1441load_preload_objects(void)
1442{
1443    char *p = ld_preload;
1444    static const char delim[] = " \t:;";
1445
1446    if (p == NULL)
1447	return 0;
1448
1449    p += strspn(p, delim);
1450    while (*p != '\0') {
1451	size_t len = strcspn(p, delim);
1452	char savech;
1453
1454	savech = p[len];
1455	p[len] = '\0';
1456	if (load_object(p, NULL) == NULL)
1457	    return -1;	/* XXX - cleanup */
1458	p[len] = savech;
1459	p += len;
1460	p += strspn(p, delim);
1461    }
1462    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1463    return 0;
1464}
1465
1466/*
1467 * Load a shared object into memory, if it is not already loaded.
1468 *
1469 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1470 * on failure.
1471 */
1472static Obj_Entry *
1473load_object(const char *name, const Obj_Entry *refobj)
1474{
1475    Obj_Entry *obj;
1476    int fd = -1;
1477    struct stat sb;
1478    char *path;
1479
1480    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1481	if (object_match_name(obj, name))
1482	    return obj;
1483
1484    path = find_library(name, refobj);
1485    if (path == NULL)
1486	return NULL;
1487
1488    /*
1489     * If we didn't find a match by pathname, open the file and check
1490     * again by device and inode.  This avoids false mismatches caused
1491     * by multiple links or ".." in pathnames.
1492     *
1493     * To avoid a race, we open the file and use fstat() rather than
1494     * using stat().
1495     */
1496    if ((fd = open(path, O_RDONLY)) == -1) {
1497	_rtld_error("Cannot open \"%s\"", path);
1498	free(path);
1499	return NULL;
1500    }
1501    if (fstat(fd, &sb) == -1) {
1502	_rtld_error("Cannot fstat \"%s\"", path);
1503	close(fd);
1504	free(path);
1505	return NULL;
1506    }
1507    for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1508	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1509	    close(fd);
1510	    break;
1511	}
1512    }
1513    if (obj != NULL) {
1514	object_add_name(obj, name);
1515	free(path);
1516	close(fd);
1517	return obj;
1518    }
1519
1520    /* First use of this object, so we must map it in */
1521    obj = do_load_object(fd, name, path, &sb);
1522    if (obj == NULL)
1523	free(path);
1524    close(fd);
1525
1526    return obj;
1527}
1528
1529static Obj_Entry *
1530do_load_object(int fd, const char *name, char *path, struct stat *sbp)
1531{
1532    Obj_Entry *obj;
1533    struct statfs fs;
1534
1535    /*
1536     * but first, make sure that environment variables haven't been
1537     * used to circumvent the noexec flag on a filesystem.
1538     */
1539    if (dangerous_ld_env) {
1540	if (fstatfs(fd, &fs) != 0) {
1541	    _rtld_error("Cannot fstatfs \"%s\"", path);
1542		return NULL;
1543	}
1544	if (fs.f_flags & MNT_NOEXEC) {
1545	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1546	    return NULL;
1547	}
1548    }
1549    dbg("loading \"%s\"", path);
1550    obj = map_object(fd, path, sbp);
1551    if (obj == NULL)
1552        return NULL;
1553
1554    object_add_name(obj, name);
1555    obj->path = path;
1556    digest_dynamic(obj, 0);
1557
1558    *obj_tail = obj;
1559    obj_tail = &obj->next;
1560    obj_count++;
1561    obj_loads++;
1562    linkmap_add(obj);	/* for GDB & dlinfo() */
1563
1564    dbg("  %p .. %p: %s", obj->mapbase,
1565         obj->mapbase + obj->mapsize - 1, obj->path);
1566    if (obj->textrel)
1567	dbg("  WARNING: %s has impure text", obj->path);
1568    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1569	obj->path);
1570
1571    return obj;
1572}
1573
1574static Obj_Entry *
1575obj_from_addr(const void *addr)
1576{
1577    Obj_Entry *obj;
1578
1579    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1580	if (addr < (void *) obj->mapbase)
1581	    continue;
1582	if (addr < (void *) (obj->mapbase + obj->mapsize))
1583	    return obj;
1584    }
1585    return NULL;
1586}
1587
1588/*
1589 * Call the finalization functions for each of the objects in "list"
1590 * which are unreferenced.  All of the objects are expected to have
1591 * non-NULL fini functions.
1592 */
1593static void
1594objlist_call_fini(Objlist *list, int *lockstate)
1595{
1596    Objlist_Entry *elm;
1597    char *saved_msg;
1598
1599    /*
1600     * Preserve the current error message since a fini function might
1601     * call into the dynamic linker and overwrite it.
1602     */
1603    saved_msg = errmsg_save();
1604    wlock_release(rtld_bind_lock, *lockstate);
1605    STAILQ_FOREACH(elm, list, link) {
1606	if (elm->obj->refcount == 0) {
1607	    dbg("calling fini function for %s at %p", elm->obj->path,
1608	        (void *)elm->obj->fini);
1609	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1610		elm->obj->path);
1611	    call_initfini_pointer(elm->obj, elm->obj->fini);
1612	}
1613    }
1614    *lockstate = wlock_acquire(rtld_bind_lock);
1615    errmsg_restore(saved_msg);
1616}
1617
1618/*
1619 * Call the initialization functions for each of the objects in
1620 * "list".  All of the objects are expected to have non-NULL init
1621 * functions.
1622 */
1623static void
1624objlist_call_init(Objlist *list, int *lockstate)
1625{
1626    Objlist_Entry *elm;
1627    char *saved_msg;
1628
1629    /*
1630     * Preserve the current error message since an init function might
1631     * call into the dynamic linker and overwrite it.
1632     */
1633    saved_msg = errmsg_save();
1634    wlock_release(rtld_bind_lock, *lockstate);
1635    STAILQ_FOREACH(elm, list, link) {
1636	dbg("calling init function for %s at %p", elm->obj->path,
1637	    (void *)elm->obj->init);
1638	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1639	    elm->obj->path);
1640	call_initfini_pointer(elm->obj, elm->obj->init);
1641    }
1642    *lockstate = wlock_acquire(rtld_bind_lock);
1643    errmsg_restore(saved_msg);
1644}
1645
1646static void
1647objlist_clear(Objlist *list)
1648{
1649    Objlist_Entry *elm;
1650
1651    while (!STAILQ_EMPTY(list)) {
1652	elm = STAILQ_FIRST(list);
1653	STAILQ_REMOVE_HEAD(list, link);
1654	free(elm);
1655    }
1656}
1657
1658static Objlist_Entry *
1659objlist_find(Objlist *list, const Obj_Entry *obj)
1660{
1661    Objlist_Entry *elm;
1662
1663    STAILQ_FOREACH(elm, list, link)
1664	if (elm->obj == obj)
1665	    return elm;
1666    return NULL;
1667}
1668
1669static void
1670objlist_init(Objlist *list)
1671{
1672    STAILQ_INIT(list);
1673}
1674
1675static void
1676objlist_push_head(Objlist *list, Obj_Entry *obj)
1677{
1678    Objlist_Entry *elm;
1679
1680    elm = NEW(Objlist_Entry);
1681    elm->obj = obj;
1682    STAILQ_INSERT_HEAD(list, elm, link);
1683}
1684
1685static void
1686objlist_push_tail(Objlist *list, Obj_Entry *obj)
1687{
1688    Objlist_Entry *elm;
1689
1690    elm = NEW(Objlist_Entry);
1691    elm->obj = obj;
1692    STAILQ_INSERT_TAIL(list, elm, link);
1693}
1694
1695static void
1696objlist_remove(Objlist *list, Obj_Entry *obj)
1697{
1698    Objlist_Entry *elm;
1699
1700    if ((elm = objlist_find(list, obj)) != NULL) {
1701	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1702	free(elm);
1703    }
1704}
1705
1706/*
1707 * Remove all of the unreferenced objects from "list".
1708 */
1709static void
1710objlist_remove_unref(Objlist *list)
1711{
1712    Objlist newlist;
1713    Objlist_Entry *elm;
1714
1715    STAILQ_INIT(&newlist);
1716    while (!STAILQ_EMPTY(list)) {
1717	elm = STAILQ_FIRST(list);
1718	STAILQ_REMOVE_HEAD(list, link);
1719	if (elm->obj->refcount == 0)
1720	    free(elm);
1721	else
1722	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1723    }
1724    *list = newlist;
1725}
1726
1727/*
1728 * Relocate newly-loaded shared objects.  The argument is a pointer to
1729 * the Obj_Entry for the first such object.  All objects from the first
1730 * to the end of the list of objects are relocated.  Returns 0 on success,
1731 * or -1 on failure.
1732 */
1733static int
1734relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1735{
1736    Obj_Entry *obj;
1737
1738    for (obj = first;  obj != NULL;  obj = obj->next) {
1739	if (obj != rtldobj)
1740	    dbg("relocating \"%s\"", obj->path);
1741	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1742	    obj->symtab == NULL || obj->strtab == NULL) {
1743	    _rtld_error("%s: Shared object has no run-time symbol table",
1744	      obj->path);
1745	    return -1;
1746	}
1747
1748	if (obj->textrel) {
1749	    /* There are relocations to the write-protected text segment. */
1750	    if (mprotect(obj->mapbase, obj->textsize,
1751	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1752		_rtld_error("%s: Cannot write-enable text segment: %s",
1753		  obj->path, strerror(errno));
1754		return -1;
1755	    }
1756	}
1757
1758	/* Process the non-PLT relocations. */
1759	if (reloc_non_plt(obj, rtldobj))
1760		return -1;
1761
1762	if (obj->textrel) {	/* Re-protected the text segment. */
1763	    if (mprotect(obj->mapbase, obj->textsize,
1764	      PROT_READ|PROT_EXEC) == -1) {
1765		_rtld_error("%s: Cannot write-protect text segment: %s",
1766		  obj->path, strerror(errno));
1767		return -1;
1768	    }
1769	}
1770
1771	/* Process the PLT relocations. */
1772	if (reloc_plt(obj) == -1)
1773	    return -1;
1774	/* Relocate the jump slots if we are doing immediate binding. */
1775	if (obj->bind_now || bind_now)
1776	    if (reloc_jmpslots(obj) == -1)
1777		return -1;
1778
1779
1780	/*
1781	 * Set up the magic number and version in the Obj_Entry.  These
1782	 * were checked in the crt1.o from the original ElfKit, so we
1783	 * set them for backward compatibility.
1784	 */
1785	obj->magic = RTLD_MAGIC;
1786	obj->version = RTLD_VERSION;
1787
1788	/* Set the special PLT or GOT entries. */
1789	init_pltgot(obj);
1790    }
1791
1792    return 0;
1793}
1794
1795/*
1796 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1797 * before the process exits.
1798 */
1799static void
1800rtld_exit(void)
1801{
1802    Obj_Entry *obj;
1803    int	lockstate;
1804
1805    lockstate = wlock_acquire(rtld_bind_lock);
1806    dbg("rtld_exit()");
1807    /* Clear all the reference counts so the fini functions will be called. */
1808    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1809	obj->refcount = 0;
1810    objlist_call_fini(&list_fini, &lockstate);
1811    /* No need to remove the items from the list, since we are exiting. */
1812    if (!libmap_disable)
1813        lm_fini();
1814    wlock_release(rtld_bind_lock, lockstate);
1815}
1816
1817static void *
1818path_enumerate(const char *path, path_enum_proc callback, void *arg)
1819{
1820#ifdef COMPAT_32BIT
1821    const char *trans;
1822#endif
1823    if (path == NULL)
1824	return (NULL);
1825
1826    path += strspn(path, ":;");
1827    while (*path != '\0') {
1828	size_t len;
1829	char  *res;
1830
1831	len = strcspn(path, ":;");
1832#ifdef COMPAT_32BIT
1833	trans = lm_findn(NULL, path, len);
1834	if (trans)
1835	    res = callback(trans, strlen(trans), arg);
1836	else
1837#endif
1838	res = callback(path, len, arg);
1839
1840	if (res != NULL)
1841	    return (res);
1842
1843	path += len;
1844	path += strspn(path, ":;");
1845    }
1846
1847    return (NULL);
1848}
1849
1850struct try_library_args {
1851    const char	*name;
1852    size_t	 namelen;
1853    char	*buffer;
1854    size_t	 buflen;
1855};
1856
1857static void *
1858try_library_path(const char *dir, size_t dirlen, void *param)
1859{
1860    struct try_library_args *arg;
1861
1862    arg = param;
1863    if (*dir == '/' || trust) {
1864	char *pathname;
1865
1866	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1867		return (NULL);
1868
1869	pathname = arg->buffer;
1870	strncpy(pathname, dir, dirlen);
1871	pathname[dirlen] = '/';
1872	strcpy(pathname + dirlen + 1, arg->name);
1873
1874	dbg("  Trying \"%s\"", pathname);
1875	if (access(pathname, F_OK) == 0) {		/* We found it */
1876	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1877	    strcpy(pathname, arg->buffer);
1878	    return (pathname);
1879	}
1880    }
1881    return (NULL);
1882}
1883
1884static char *
1885search_library_path(const char *name, const char *path)
1886{
1887    char *p;
1888    struct try_library_args arg;
1889
1890    if (path == NULL)
1891	return NULL;
1892
1893    arg.name = name;
1894    arg.namelen = strlen(name);
1895    arg.buffer = xmalloc(PATH_MAX);
1896    arg.buflen = PATH_MAX;
1897
1898    p = path_enumerate(path, try_library_path, &arg);
1899
1900    free(arg.buffer);
1901
1902    return (p);
1903}
1904
1905int
1906dlclose(void *handle)
1907{
1908    Obj_Entry *root;
1909    int lockstate;
1910
1911    lockstate = wlock_acquire(rtld_bind_lock);
1912    root = dlcheck(handle);
1913    if (root == NULL) {
1914	wlock_release(rtld_bind_lock, lockstate);
1915	return -1;
1916    }
1917    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1918	root->path);
1919
1920    /* Unreference the object and its dependencies. */
1921    root->dl_refcount--;
1922
1923    unref_dag(root);
1924
1925    if (root->refcount == 0) {
1926	/*
1927	 * The object is no longer referenced, so we must unload it.
1928	 * First, call the fini functions.
1929	 */
1930	objlist_call_fini(&list_fini, &lockstate);
1931	objlist_remove_unref(&list_fini);
1932
1933	/* Finish cleaning up the newly-unreferenced objects. */
1934	GDB_STATE(RT_DELETE,&root->linkmap);
1935	unload_object(root);
1936	GDB_STATE(RT_CONSISTENT,NULL);
1937    }
1938    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1939    wlock_release(rtld_bind_lock, lockstate);
1940    return 0;
1941}
1942
1943const char *
1944dlerror(void)
1945{
1946    char *msg = error_message;
1947    error_message = NULL;
1948    return msg;
1949}
1950
1951/*
1952 * This function is deprecated and has no effect.
1953 */
1954void
1955dllockinit(void *context,
1956	   void *(*lock_create)(void *context),
1957           void (*rlock_acquire)(void *lock),
1958           void (*wlock_acquire)(void *lock),
1959           void (*lock_release)(void *lock),
1960           void (*lock_destroy)(void *lock),
1961	   void (*context_destroy)(void *context))
1962{
1963    static void *cur_context;
1964    static void (*cur_context_destroy)(void *);
1965
1966    /* Just destroy the context from the previous call, if necessary. */
1967    if (cur_context_destroy != NULL)
1968	cur_context_destroy(cur_context);
1969    cur_context = context;
1970    cur_context_destroy = context_destroy;
1971}
1972
1973void *
1974dlopen(const char *name, int mode)
1975{
1976    Obj_Entry **old_obj_tail;
1977    Obj_Entry *obj;
1978    Objlist initlist;
1979    int result, lockstate;
1980
1981    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1982    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1983    if (ld_tracing != NULL)
1984	environ = (char **)*get_program_var_addr("environ");
1985
1986    objlist_init(&initlist);
1987
1988    lockstate = wlock_acquire(rtld_bind_lock);
1989    GDB_STATE(RT_ADD,NULL);
1990
1991    old_obj_tail = obj_tail;
1992    obj = NULL;
1993    if (name == NULL) {
1994	obj = obj_main;
1995	obj->refcount++;
1996    } else {
1997	obj = load_object(name, obj_main);
1998    }
1999
2000    if (obj) {
2001	obj->dl_refcount++;
2002	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2003	    objlist_push_tail(&list_global, obj);
2004	mode &= RTLD_MODEMASK;
2005	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2006	    assert(*old_obj_tail == obj);
2007	    result = load_needed_objects(obj);
2008	    init_dag(obj);
2009	    if (result != -1)
2010		result = rtld_verify_versions(&obj->dagmembers);
2011	    if (result != -1 && ld_tracing)
2012		goto trace;
2013	    if (result == -1 ||
2014	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2015		obj->dl_refcount--;
2016		unref_dag(obj);
2017		if (obj->refcount == 0)
2018		    unload_object(obj);
2019		obj = NULL;
2020	    } else {
2021		/* Make list of init functions to call. */
2022		initlist_add_objects(obj, &obj->next, &initlist);
2023	    }
2024	} else {
2025
2026	    /* Bump the reference counts for objects on this DAG. */
2027	    ref_dag(obj);
2028
2029	    if (ld_tracing)
2030		goto trace;
2031	}
2032    }
2033
2034    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2035	name);
2036    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2037
2038    /* Call the init functions. */
2039    objlist_call_init(&initlist, &lockstate);
2040    objlist_clear(&initlist);
2041    wlock_release(rtld_bind_lock, lockstate);
2042    return obj;
2043trace:
2044    trace_loaded_objects(obj);
2045    wlock_release(rtld_bind_lock, lockstate);
2046    exit(0);
2047}
2048
2049static void *
2050do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2051    int flags)
2052{
2053    DoneList donelist;
2054    const Obj_Entry *obj, *defobj;
2055    const Elf_Sym *def, *symp;
2056    unsigned long hash;
2057    int lockstate;
2058
2059    hash = elf_hash(name);
2060    def = NULL;
2061    defobj = NULL;
2062    flags |= SYMLOOK_IN_PLT;
2063
2064    lockstate = rlock_acquire(rtld_bind_lock);
2065    if (handle == NULL || handle == RTLD_NEXT ||
2066	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2067
2068	if ((obj = obj_from_addr(retaddr)) == NULL) {
2069	    _rtld_error("Cannot determine caller's shared object");
2070	    rlock_release(rtld_bind_lock, lockstate);
2071	    return NULL;
2072	}
2073	if (handle == NULL) {	/* Just the caller's shared object. */
2074	    def = symlook_obj(name, hash, obj, ve, flags);
2075	    defobj = obj;
2076	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2077		   handle == RTLD_SELF) { /* ... caller included */
2078	    if (handle == RTLD_NEXT)
2079		obj = obj->next;
2080	    for (; obj != NULL; obj = obj->next) {
2081	    	if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2082		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2083			def = symp;
2084			defobj = obj;
2085			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2086			    break;
2087		    }
2088		}
2089	    }
2090	    /*
2091	     * Search the dynamic linker itself, and possibly resolve the
2092	     * symbol from there.  This is how the application links to
2093	     * dynamic linker services such as dlopen.  Only the values listed
2094	     * in the "exports" array can be resolved from the dynamic linker.
2095	     */
2096	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2097		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2098		if (symp != NULL && is_exported(symp)) {
2099		    def = symp;
2100		    defobj = &obj_rtld;
2101		}
2102	    }
2103	} else {
2104	    assert(handle == RTLD_DEFAULT);
2105	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2106	}
2107    } else {
2108	if ((obj = dlcheck(handle)) == NULL) {
2109	    rlock_release(rtld_bind_lock, lockstate);
2110	    return NULL;
2111	}
2112
2113	donelist_init(&donelist);
2114	if (obj->mainprog) {
2115	    /* Search main program and all libraries loaded by it. */
2116	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2117			       &donelist);
2118	} else {
2119	    Needed_Entry fake;
2120
2121	    /* Search the whole DAG rooted at the given object. */
2122	    fake.next = NULL;
2123	    fake.obj = (Obj_Entry *)obj;
2124	    fake.name = 0;
2125	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2126				 &donelist);
2127	}
2128    }
2129
2130    if (def != NULL) {
2131	rlock_release(rtld_bind_lock, lockstate);
2132
2133	/*
2134	 * The value required by the caller is derived from the value
2135	 * of the symbol. For the ia64 architecture, we need to
2136	 * construct a function descriptor which the caller can use to
2137	 * call the function with the right 'gp' value. For other
2138	 * architectures and for non-functions, the value is simply
2139	 * the relocated value of the symbol.
2140	 */
2141	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2142	    return make_function_pointer(def, defobj);
2143	else
2144	    return defobj->relocbase + def->st_value;
2145    }
2146
2147    _rtld_error("Undefined symbol \"%s\"", name);
2148    rlock_release(rtld_bind_lock, lockstate);
2149    return NULL;
2150}
2151
2152void *
2153dlsym(void *handle, const char *name)
2154{
2155	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2156	    SYMLOOK_DLSYM);
2157}
2158
2159void *
2160dlvsym(void *handle, const char *name, const char *version)
2161{
2162	Ver_Entry ventry;
2163
2164	ventry.name = version;
2165	ventry.file = NULL;
2166	ventry.hash = elf_hash(version);
2167	ventry.flags= 0;
2168	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2169	    SYMLOOK_DLSYM);
2170}
2171
2172int
2173dladdr(const void *addr, Dl_info *info)
2174{
2175    const Obj_Entry *obj;
2176    const Elf_Sym *def;
2177    void *symbol_addr;
2178    unsigned long symoffset;
2179    int lockstate;
2180
2181    lockstate = rlock_acquire(rtld_bind_lock);
2182    obj = obj_from_addr(addr);
2183    if (obj == NULL) {
2184        _rtld_error("No shared object contains address");
2185	rlock_release(rtld_bind_lock, lockstate);
2186        return 0;
2187    }
2188    info->dli_fname = obj->path;
2189    info->dli_fbase = obj->mapbase;
2190    info->dli_saddr = (void *)0;
2191    info->dli_sname = NULL;
2192
2193    /*
2194     * Walk the symbol list looking for the symbol whose address is
2195     * closest to the address sent in.
2196     */
2197    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2198        def = obj->symtab + symoffset;
2199
2200        /*
2201         * For skip the symbol if st_shndx is either SHN_UNDEF or
2202         * SHN_COMMON.
2203         */
2204        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2205            continue;
2206
2207        /*
2208         * If the symbol is greater than the specified address, or if it
2209         * is further away from addr than the current nearest symbol,
2210         * then reject it.
2211         */
2212        symbol_addr = obj->relocbase + def->st_value;
2213        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2214            continue;
2215
2216        /* Update our idea of the nearest symbol. */
2217        info->dli_sname = obj->strtab + def->st_name;
2218        info->dli_saddr = symbol_addr;
2219
2220        /* Exact match? */
2221        if (info->dli_saddr == addr)
2222            break;
2223    }
2224    rlock_release(rtld_bind_lock, lockstate);
2225    return 1;
2226}
2227
2228int
2229dlinfo(void *handle, int request, void *p)
2230{
2231    const Obj_Entry *obj;
2232    int error, lockstate;
2233
2234    lockstate = rlock_acquire(rtld_bind_lock);
2235
2236    if (handle == NULL || handle == RTLD_SELF) {
2237	void *retaddr;
2238
2239	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2240	if ((obj = obj_from_addr(retaddr)) == NULL)
2241	    _rtld_error("Cannot determine caller's shared object");
2242    } else
2243	obj = dlcheck(handle);
2244
2245    if (obj == NULL) {
2246	rlock_release(rtld_bind_lock, lockstate);
2247	return (-1);
2248    }
2249
2250    error = 0;
2251    switch (request) {
2252    case RTLD_DI_LINKMAP:
2253	*((struct link_map const **)p) = &obj->linkmap;
2254	break;
2255    case RTLD_DI_ORIGIN:
2256	error = rtld_dirname(obj->path, p);
2257	break;
2258
2259    case RTLD_DI_SERINFOSIZE:
2260    case RTLD_DI_SERINFO:
2261	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2262	break;
2263
2264    default:
2265	_rtld_error("Invalid request %d passed to dlinfo()", request);
2266	error = -1;
2267    }
2268
2269    rlock_release(rtld_bind_lock, lockstate);
2270
2271    return (error);
2272}
2273
2274int
2275dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2276{
2277    struct dl_phdr_info phdr_info;
2278    const Obj_Entry *obj;
2279    int error, bind_lockstate, phdr_lockstate;
2280
2281    phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2282    bind_lockstate = rlock_acquire(rtld_bind_lock);
2283
2284    error = 0;
2285
2286    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2287	phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2288	phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2289	    STAILQ_FIRST(&obj->names)->name : obj->path;
2290	phdr_info.dlpi_phdr = obj->phdr;
2291	phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2292	phdr_info.dlpi_tls_modid = obj->tlsindex;
2293	phdr_info.dlpi_tls_data = obj->tlsinit;
2294	phdr_info.dlpi_adds = obj_loads;
2295	phdr_info.dlpi_subs = obj_loads - obj_count;
2296
2297	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2298		break;
2299
2300    }
2301    rlock_release(rtld_bind_lock, bind_lockstate);
2302    wlock_release(rtld_phdr_lock, phdr_lockstate);
2303
2304    return (error);
2305}
2306
2307struct fill_search_info_args {
2308    int		 request;
2309    unsigned int flags;
2310    Dl_serinfo  *serinfo;
2311    Dl_serpath  *serpath;
2312    char	*strspace;
2313};
2314
2315static void *
2316fill_search_info(const char *dir, size_t dirlen, void *param)
2317{
2318    struct fill_search_info_args *arg;
2319
2320    arg = param;
2321
2322    if (arg->request == RTLD_DI_SERINFOSIZE) {
2323	arg->serinfo->dls_cnt ++;
2324	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2325    } else {
2326	struct dl_serpath *s_entry;
2327
2328	s_entry = arg->serpath;
2329	s_entry->dls_name  = arg->strspace;
2330	s_entry->dls_flags = arg->flags;
2331
2332	strncpy(arg->strspace, dir, dirlen);
2333	arg->strspace[dirlen] = '\0';
2334
2335	arg->strspace += dirlen + 1;
2336	arg->serpath++;
2337    }
2338
2339    return (NULL);
2340}
2341
2342static int
2343do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2344{
2345    struct dl_serinfo _info;
2346    struct fill_search_info_args args;
2347
2348    args.request = RTLD_DI_SERINFOSIZE;
2349    args.serinfo = &_info;
2350
2351    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2352    _info.dls_cnt  = 0;
2353
2354    path_enumerate(ld_library_path, fill_search_info, &args);
2355    path_enumerate(obj->rpath, fill_search_info, &args);
2356    path_enumerate(gethints(), fill_search_info, &args);
2357    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2358
2359
2360    if (request == RTLD_DI_SERINFOSIZE) {
2361	info->dls_size = _info.dls_size;
2362	info->dls_cnt = _info.dls_cnt;
2363	return (0);
2364    }
2365
2366    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2367	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2368	return (-1);
2369    }
2370
2371    args.request  = RTLD_DI_SERINFO;
2372    args.serinfo  = info;
2373    args.serpath  = &info->dls_serpath[0];
2374    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2375
2376    args.flags = LA_SER_LIBPATH;
2377    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2378	return (-1);
2379
2380    args.flags = LA_SER_RUNPATH;
2381    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2382	return (-1);
2383
2384    args.flags = LA_SER_CONFIG;
2385    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2386	return (-1);
2387
2388    args.flags = LA_SER_DEFAULT;
2389    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2390	return (-1);
2391    return (0);
2392}
2393
2394static int
2395rtld_dirname(const char *path, char *bname)
2396{
2397    const char *endp;
2398
2399    /* Empty or NULL string gets treated as "." */
2400    if (path == NULL || *path == '\0') {
2401	bname[0] = '.';
2402	bname[1] = '\0';
2403	return (0);
2404    }
2405
2406    /* Strip trailing slashes */
2407    endp = path + strlen(path) - 1;
2408    while (endp > path && *endp == '/')
2409	endp--;
2410
2411    /* Find the start of the dir */
2412    while (endp > path && *endp != '/')
2413	endp--;
2414
2415    /* Either the dir is "/" or there are no slashes */
2416    if (endp == path) {
2417	bname[0] = *endp == '/' ? '/' : '.';
2418	bname[1] = '\0';
2419	return (0);
2420    } else {
2421	do {
2422	    endp--;
2423	} while (endp > path && *endp == '/');
2424    }
2425
2426    if (endp - path + 2 > PATH_MAX)
2427    {
2428	_rtld_error("Filename is too long: %s", path);
2429	return(-1);
2430    }
2431
2432    strncpy(bname, path, endp - path + 1);
2433    bname[endp - path + 1] = '\0';
2434    return (0);
2435}
2436
2437static int
2438rtld_dirname_abs(const char *path, char *base)
2439{
2440	char base_rel[PATH_MAX];
2441
2442	if (rtld_dirname(path, base) == -1)
2443		return (-1);
2444	if (base[0] == '/')
2445		return (0);
2446	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2447	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2448	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2449		return (-1);
2450	strcpy(base, base_rel);
2451	return (0);
2452}
2453
2454static void
2455linkmap_add(Obj_Entry *obj)
2456{
2457    struct link_map *l = &obj->linkmap;
2458    struct link_map *prev;
2459
2460    obj->linkmap.l_name = obj->path;
2461    obj->linkmap.l_addr = obj->mapbase;
2462    obj->linkmap.l_ld = obj->dynamic;
2463#ifdef __mips__
2464    /* GDB needs load offset on MIPS to use the symbols */
2465    obj->linkmap.l_offs = obj->relocbase;
2466#endif
2467
2468    if (r_debug.r_map == NULL) {
2469	r_debug.r_map = l;
2470	return;
2471    }
2472
2473    /*
2474     * Scan to the end of the list, but not past the entry for the
2475     * dynamic linker, which we want to keep at the very end.
2476     */
2477    for (prev = r_debug.r_map;
2478      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2479      prev = prev->l_next)
2480	;
2481
2482    /* Link in the new entry. */
2483    l->l_prev = prev;
2484    l->l_next = prev->l_next;
2485    if (l->l_next != NULL)
2486	l->l_next->l_prev = l;
2487    prev->l_next = l;
2488}
2489
2490static void
2491linkmap_delete(Obj_Entry *obj)
2492{
2493    struct link_map *l = &obj->linkmap;
2494
2495    if (l->l_prev == NULL) {
2496	if ((r_debug.r_map = l->l_next) != NULL)
2497	    l->l_next->l_prev = NULL;
2498	return;
2499    }
2500
2501    if ((l->l_prev->l_next = l->l_next) != NULL)
2502	l->l_next->l_prev = l->l_prev;
2503}
2504
2505/*
2506 * Function for the debugger to set a breakpoint on to gain control.
2507 *
2508 * The two parameters allow the debugger to easily find and determine
2509 * what the runtime loader is doing and to whom it is doing it.
2510 *
2511 * When the loadhook trap is hit (r_debug_state, set at program
2512 * initialization), the arguments can be found on the stack:
2513 *
2514 *  +8   struct link_map *m
2515 *  +4   struct r_debug  *rd
2516 *  +0   RetAddr
2517 */
2518void
2519r_debug_state(struct r_debug* rd, struct link_map *m)
2520{
2521}
2522
2523/*
2524 * Get address of the pointer variable in the main program.
2525 */
2526static const void **
2527get_program_var_addr(const char *name)
2528{
2529    const Obj_Entry *obj;
2530    unsigned long hash;
2531
2532    hash = elf_hash(name);
2533    for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2534	const Elf_Sym *def;
2535
2536	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2537	    const void **addr;
2538
2539	    addr = (const void **)(obj->relocbase + def->st_value);
2540	    return addr;
2541	}
2542    }
2543    return NULL;
2544}
2545
2546/*
2547 * Set a pointer variable in the main program to the given value.  This
2548 * is used to set key variables such as "environ" before any of the
2549 * init functions are called.
2550 */
2551static void
2552set_program_var(const char *name, const void *value)
2553{
2554    const void **addr;
2555
2556    if ((addr = get_program_var_addr(name)) != NULL) {
2557	dbg("\"%s\": *%p <-- %p", name, addr, value);
2558	*addr = value;
2559    }
2560}
2561
2562/*
2563 * Given a symbol name in a referencing object, find the corresponding
2564 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2565 * no definition was found.  Returns a pointer to the Obj_Entry of the
2566 * defining object via the reference parameter DEFOBJ_OUT.
2567 */
2568static const Elf_Sym *
2569symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2570    const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2571{
2572    DoneList donelist;
2573    const Elf_Sym *def;
2574    const Elf_Sym *symp;
2575    const Obj_Entry *obj;
2576    const Obj_Entry *defobj;
2577    const Objlist_Entry *elm;
2578    def = NULL;
2579    defobj = NULL;
2580    donelist_init(&donelist);
2581
2582    /* Look first in the referencing object if linked symbolically. */
2583    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2584	symp = symlook_obj(name, hash, refobj, ventry, flags);
2585	if (symp != NULL) {
2586	    def = symp;
2587	    defobj = refobj;
2588	}
2589    }
2590
2591    /* Search all objects loaded at program start up. */
2592    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2593	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2594	    &donelist);
2595	if (symp != NULL &&
2596	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2597	    def = symp;
2598	    defobj = obj;
2599	}
2600    }
2601
2602    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2603    STAILQ_FOREACH(elm, &list_global, link) {
2604       if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2605           break;
2606       symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2607	   flags, &donelist);
2608	if (symp != NULL &&
2609	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2610	    def = symp;
2611	    defobj = obj;
2612	}
2613    }
2614
2615    /* Search all dlopened DAGs containing the referencing object. */
2616    STAILQ_FOREACH(elm, &refobj->dldags, link) {
2617	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2618	    break;
2619	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2620	    flags, &donelist);
2621	if (symp != NULL &&
2622	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2623	    def = symp;
2624	    defobj = obj;
2625	}
2626    }
2627
2628    /*
2629     * Search the dynamic linker itself, and possibly resolve the
2630     * symbol from there.  This is how the application links to
2631     * dynamic linker services such as dlopen.  Only the values listed
2632     * in the "exports" array can be resolved from the dynamic linker.
2633     */
2634    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2635	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2636	if (symp != NULL && is_exported(symp)) {
2637	    def = symp;
2638	    defobj = &obj_rtld;
2639	}
2640    }
2641
2642    if (def != NULL)
2643	*defobj_out = defobj;
2644    return def;
2645}
2646
2647static const Elf_Sym *
2648symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2649  const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2650  DoneList *dlp)
2651{
2652    const Elf_Sym *symp;
2653    const Elf_Sym *def;
2654    const Obj_Entry *defobj;
2655    const Objlist_Entry *elm;
2656
2657    def = NULL;
2658    defobj = NULL;
2659    STAILQ_FOREACH(elm, objlist, link) {
2660	if (donelist_check(dlp, elm->obj))
2661	    continue;
2662	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2663	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2664		def = symp;
2665		defobj = elm->obj;
2666		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2667		    break;
2668	    }
2669	}
2670    }
2671    if (def != NULL)
2672	*defobj_out = defobj;
2673    return def;
2674}
2675
2676/*
2677 * Search the symbol table of a shared object and all objects needed
2678 * by it for a symbol of the given name.  Search order is
2679 * breadth-first.  Returns a pointer to the symbol, or NULL if no
2680 * definition was found.
2681 */
2682static const Elf_Sym *
2683symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2684  const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2685  DoneList *dlp)
2686{
2687    const Elf_Sym *def, *def_w;
2688    const Needed_Entry *n;
2689    const Obj_Entry *obj, *defobj, *defobj1;
2690
2691    def = def_w = NULL;
2692    defobj = NULL;
2693    for (n = needed; n != NULL; n = n->next) {
2694	if ((obj = n->obj) == NULL ||
2695	    donelist_check(dlp, obj) ||
2696	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2697	    continue;
2698	defobj = obj;
2699	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2700	    *defobj_out = defobj;
2701	    return (def);
2702	}
2703    }
2704    /*
2705     * There we come when either symbol definition is not found in
2706     * directly needed objects, or found symbol is weak.
2707     */
2708    for (n = needed; n != NULL; n = n->next) {
2709	if ((obj = n->obj) == NULL)
2710	    continue;
2711	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2712			       ventry, flags, dlp);
2713	if (def_w == NULL)
2714	    continue;
2715	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2716	    def = def_w;
2717	    defobj = defobj1;
2718	}
2719	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2720	    break;
2721    }
2722    if (def != NULL)
2723	*defobj_out = defobj;
2724    return (def);
2725}
2726
2727/*
2728 * Search the symbol table of a single shared object for a symbol of
2729 * the given name and version, if requested.  Returns a pointer to the
2730 * symbol, or NULL if no definition was found.
2731 *
2732 * The symbol's hash value is passed in for efficiency reasons; that
2733 * eliminates many recomputations of the hash value.
2734 */
2735const Elf_Sym *
2736symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2737    const Ver_Entry *ventry, int flags)
2738{
2739    unsigned long symnum;
2740    const Elf_Sym *vsymp;
2741    Elf_Versym verndx;
2742    int vcount;
2743
2744    if (obj->buckets == NULL)
2745	return NULL;
2746
2747    vsymp = NULL;
2748    vcount = 0;
2749    symnum = obj->buckets[hash % obj->nbuckets];
2750
2751    for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2752	const Elf_Sym *symp;
2753	const char *strp;
2754
2755	if (symnum >= obj->nchains)
2756		return NULL;	/* Bad object */
2757
2758	symp = obj->symtab + symnum;
2759	strp = obj->strtab + symp->st_name;
2760
2761	switch (ELF_ST_TYPE(symp->st_info)) {
2762	case STT_FUNC:
2763	case STT_NOTYPE:
2764	case STT_OBJECT:
2765	    if (symp->st_value == 0)
2766		continue;
2767		/* fallthrough */
2768	case STT_TLS:
2769	    if (symp->st_shndx != SHN_UNDEF)
2770		break;
2771#ifndef __mips__
2772	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2773		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2774		break;
2775		/* fallthrough */
2776#endif
2777	default:
2778	    continue;
2779	}
2780	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2781	    continue;
2782
2783	if (ventry == NULL) {
2784	    if (obj->versyms != NULL) {
2785		verndx = VER_NDX(obj->versyms[symnum]);
2786		if (verndx > obj->vernum) {
2787		    _rtld_error("%s: symbol %s references wrong version %d",
2788			obj->path, obj->strtab + symnum, verndx);
2789		    continue;
2790		}
2791		/*
2792		 * If we are not called from dlsym (i.e. this is a normal
2793		 * relocation from unversioned binary, accept the symbol
2794		 * immediately if it happens to have first version after
2795		 * this shared object became versioned. Otherwise, if
2796		 * symbol is versioned and not hidden, remember it. If it
2797		 * is the only symbol with this name exported by the
2798		 * shared object, it will be returned as a match at the
2799		 * end of the function. If symbol is global (verndx < 2)
2800		 * accept it unconditionally.
2801		 */
2802		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2803		    return symp;
2804	        else if (verndx >= VER_NDX_GIVEN) {
2805		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2806			if (vsymp == NULL)
2807			    vsymp = symp;
2808			vcount ++;
2809		    }
2810		    continue;
2811		}
2812	    }
2813	    return symp;
2814	} else {
2815	    if (obj->versyms == NULL) {
2816		if (object_match_name(obj, ventry->name)) {
2817		    _rtld_error("%s: object %s should provide version %s for "
2818			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2819			obj->strtab + symnum);
2820		    continue;
2821		}
2822	    } else {
2823		verndx = VER_NDX(obj->versyms[symnum]);
2824		if (verndx > obj->vernum) {
2825		    _rtld_error("%s: symbol %s references wrong version %d",
2826			obj->path, obj->strtab + symnum, verndx);
2827		    continue;
2828		}
2829		if (obj->vertab[verndx].hash != ventry->hash ||
2830		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2831		    /*
2832		     * Version does not match. Look if this is a global symbol
2833		     * and if it is not hidden. If global symbol (verndx < 2)
2834		     * is available, use it. Do not return symbol if we are
2835		     * called by dlvsym, because dlvsym looks for a specific
2836		     * version and default one is not what dlvsym wants.
2837		     */
2838		    if ((flags & SYMLOOK_DLSYM) ||
2839			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2840			(verndx >= VER_NDX_GIVEN))
2841			continue;
2842		}
2843	    }
2844	    return symp;
2845	}
2846    }
2847    return (vcount == 1) ? vsymp : NULL;
2848}
2849
2850static void
2851trace_loaded_objects(Obj_Entry *obj)
2852{
2853    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2854    int		c;
2855
2856    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2857	main_local = "";
2858
2859    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2860	fmt1 = "\t%o => %p (%x)\n";
2861
2862    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2863	fmt2 = "\t%o (%x)\n";
2864
2865    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2866
2867    for (; obj; obj = obj->next) {
2868	Needed_Entry		*needed;
2869	char			*name, *path;
2870	bool			is_lib;
2871
2872	if (list_containers && obj->needed != NULL)
2873	    printf("%s:\n", obj->path);
2874	for (needed = obj->needed; needed; needed = needed->next) {
2875	    if (needed->obj != NULL) {
2876		if (needed->obj->traced && !list_containers)
2877		    continue;
2878		needed->obj->traced = true;
2879		path = needed->obj->path;
2880	    } else
2881		path = "not found";
2882
2883	    name = (char *)obj->strtab + needed->name;
2884	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2885
2886	    fmt = is_lib ? fmt1 : fmt2;
2887	    while ((c = *fmt++) != '\0') {
2888		switch (c) {
2889		default:
2890		    putchar(c);
2891		    continue;
2892		case '\\':
2893		    switch (c = *fmt) {
2894		    case '\0':
2895			continue;
2896		    case 'n':
2897			putchar('\n');
2898			break;
2899		    case 't':
2900			putchar('\t');
2901			break;
2902		    }
2903		    break;
2904		case '%':
2905		    switch (c = *fmt) {
2906		    case '\0':
2907			continue;
2908		    case '%':
2909		    default:
2910			putchar(c);
2911			break;
2912		    case 'A':
2913			printf("%s", main_local);
2914			break;
2915		    case 'a':
2916			printf("%s", obj_main->path);
2917			break;
2918		    case 'o':
2919			printf("%s", name);
2920			break;
2921#if 0
2922		    case 'm':
2923			printf("%d", sodp->sod_major);
2924			break;
2925		    case 'n':
2926			printf("%d", sodp->sod_minor);
2927			break;
2928#endif
2929		    case 'p':
2930			printf("%s", path);
2931			break;
2932		    case 'x':
2933			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2934			break;
2935		    }
2936		    break;
2937		}
2938		++fmt;
2939	    }
2940	}
2941    }
2942}
2943
2944/*
2945 * Unload a dlopened object and its dependencies from memory and from
2946 * our data structures.  It is assumed that the DAG rooted in the
2947 * object has already been unreferenced, and that the object has a
2948 * reference count of 0.
2949 */
2950static void
2951unload_object(Obj_Entry *root)
2952{
2953    Obj_Entry *obj;
2954    Obj_Entry **linkp;
2955
2956    assert(root->refcount == 0);
2957
2958    /*
2959     * Pass over the DAG removing unreferenced objects from
2960     * appropriate lists.
2961     */
2962    unlink_object(root);
2963
2964    /* Unmap all objects that are no longer referenced. */
2965    linkp = &obj_list->next;
2966    while ((obj = *linkp) != NULL) {
2967	if (obj->refcount == 0) {
2968	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2969		obj->path);
2970	    dbg("unloading \"%s\"", obj->path);
2971	    munmap(obj->mapbase, obj->mapsize);
2972	    linkmap_delete(obj);
2973	    *linkp = obj->next;
2974	    obj_count--;
2975	    obj_free(obj);
2976	} else
2977	    linkp = &obj->next;
2978    }
2979    obj_tail = linkp;
2980}
2981
2982static void
2983unlink_object(Obj_Entry *root)
2984{
2985    Objlist_Entry *elm;
2986
2987    if (root->refcount == 0) {
2988	/* Remove the object from the RTLD_GLOBAL list. */
2989	objlist_remove(&list_global, root);
2990
2991    	/* Remove the object from all objects' DAG lists. */
2992    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2993	    objlist_remove(&elm->obj->dldags, root);
2994	    if (elm->obj != root)
2995		unlink_object(elm->obj);
2996	}
2997    }
2998}
2999
3000static void
3001ref_dag(Obj_Entry *root)
3002{
3003    Objlist_Entry *elm;
3004
3005    STAILQ_FOREACH(elm, &root->dagmembers, link)
3006	elm->obj->refcount++;
3007}
3008
3009static void
3010unref_dag(Obj_Entry *root)
3011{
3012    Objlist_Entry *elm;
3013
3014    STAILQ_FOREACH(elm, &root->dagmembers, link)
3015	elm->obj->refcount--;
3016}
3017
3018/*
3019 * Common code for MD __tls_get_addr().
3020 */
3021void *
3022tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3023{
3024    Elf_Addr* dtv = *dtvp;
3025    int lockstate;
3026
3027    /* Check dtv generation in case new modules have arrived */
3028    if (dtv[0] != tls_dtv_generation) {
3029	Elf_Addr* newdtv;
3030	int to_copy;
3031
3032	lockstate = wlock_acquire(rtld_bind_lock);
3033	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3034	to_copy = dtv[1];
3035	if (to_copy > tls_max_index)
3036	    to_copy = tls_max_index;
3037	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3038	newdtv[0] = tls_dtv_generation;
3039	newdtv[1] = tls_max_index;
3040	free(dtv);
3041	wlock_release(rtld_bind_lock, lockstate);
3042	*dtvp = newdtv;
3043    }
3044
3045    /* Dynamically allocate module TLS if necessary */
3046    if (!dtv[index + 1]) {
3047	/* Signal safe, wlock will block out signals. */
3048	lockstate = wlock_acquire(rtld_bind_lock);
3049	if (!dtv[index + 1])
3050	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3051	wlock_release(rtld_bind_lock, lockstate);
3052    }
3053    return (void*) (dtv[index + 1] + offset);
3054}
3055
3056/* XXX not sure what variants to use for arm. */
3057
3058#if defined(__ia64__) || defined(__powerpc__)
3059
3060/*
3061 * Allocate Static TLS using the Variant I method.
3062 */
3063void *
3064allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3065{
3066    Obj_Entry *obj;
3067    char *tcb;
3068    Elf_Addr **tls;
3069    Elf_Addr *dtv;
3070    Elf_Addr addr;
3071    int i;
3072
3073    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3074	return (oldtcb);
3075
3076    assert(tcbsize >= TLS_TCB_SIZE);
3077    tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3078    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3079
3080    if (oldtcb != NULL) {
3081	memcpy(tls, oldtcb, tls_static_space);
3082	free(oldtcb);
3083
3084	/* Adjust the DTV. */
3085	dtv = tls[0];
3086	for (i = 0; i < dtv[1]; i++) {
3087	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3088		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3089		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3090	    }
3091	}
3092    } else {
3093	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3094	tls[0] = dtv;
3095	dtv[0] = tls_dtv_generation;
3096	dtv[1] = tls_max_index;
3097
3098	for (obj = objs; obj; obj = obj->next) {
3099	    if (obj->tlsoffset) {
3100		addr = (Elf_Addr)tls + obj->tlsoffset;
3101		memset((void*) (addr + obj->tlsinitsize),
3102		       0, obj->tlssize - obj->tlsinitsize);
3103		if (obj->tlsinit)
3104		    memcpy((void*) addr, obj->tlsinit,
3105			   obj->tlsinitsize);
3106		dtv[obj->tlsindex + 1] = addr;
3107	    }
3108	}
3109    }
3110
3111    return (tcb);
3112}
3113
3114void
3115free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3116{
3117    Elf_Addr *dtv;
3118    Elf_Addr tlsstart, tlsend;
3119    int dtvsize, i;
3120
3121    assert(tcbsize >= TLS_TCB_SIZE);
3122
3123    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3124    tlsend = tlsstart + tls_static_space;
3125
3126    dtv = *(Elf_Addr **)tlsstart;
3127    dtvsize = dtv[1];
3128    for (i = 0; i < dtvsize; i++) {
3129	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3130	    free((void*)dtv[i+2]);
3131	}
3132    }
3133    free(dtv);
3134    free(tcb);
3135}
3136
3137#endif
3138
3139#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3140    defined(__arm__) || defined(__mips__)
3141
3142/*
3143 * Allocate Static TLS using the Variant II method.
3144 */
3145void *
3146allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3147{
3148    Obj_Entry *obj;
3149    size_t size;
3150    char *tls;
3151    Elf_Addr *dtv, *olddtv;
3152    Elf_Addr segbase, oldsegbase, addr;
3153    int i;
3154
3155    size = round(tls_static_space, tcbalign);
3156
3157    assert(tcbsize >= 2*sizeof(Elf_Addr));
3158    tls = calloc(1, size + tcbsize);
3159    dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3160
3161    segbase = (Elf_Addr)(tls + size);
3162    ((Elf_Addr*)segbase)[0] = segbase;
3163    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3164
3165    dtv[0] = tls_dtv_generation;
3166    dtv[1] = tls_max_index;
3167
3168    if (oldtls) {
3169	/*
3170	 * Copy the static TLS block over whole.
3171	 */
3172	oldsegbase = (Elf_Addr) oldtls;
3173	memcpy((void *)(segbase - tls_static_space),
3174	       (const void *)(oldsegbase - tls_static_space),
3175	       tls_static_space);
3176
3177	/*
3178	 * If any dynamic TLS blocks have been created tls_get_addr(),
3179	 * move them over.
3180	 */
3181	olddtv = ((Elf_Addr**)oldsegbase)[1];
3182	for (i = 0; i < olddtv[1]; i++) {
3183	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3184		dtv[i+2] = olddtv[i+2];
3185		olddtv[i+2] = 0;
3186	    }
3187	}
3188
3189	/*
3190	 * We assume that this block was the one we created with
3191	 * allocate_initial_tls().
3192	 */
3193	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3194    } else {
3195	for (obj = objs; obj; obj = obj->next) {
3196	    if (obj->tlsoffset) {
3197		addr = segbase - obj->tlsoffset;
3198		memset((void*) (addr + obj->tlsinitsize),
3199		       0, obj->tlssize - obj->tlsinitsize);
3200		if (obj->tlsinit)
3201		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3202		dtv[obj->tlsindex + 1] = addr;
3203	    }
3204	}
3205    }
3206
3207    return (void*) segbase;
3208}
3209
3210void
3211free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3212{
3213    size_t size;
3214    Elf_Addr* dtv;
3215    int dtvsize, i;
3216    Elf_Addr tlsstart, tlsend;
3217
3218    /*
3219     * Figure out the size of the initial TLS block so that we can
3220     * find stuff which ___tls_get_addr() allocated dynamically.
3221     */
3222    size = round(tls_static_space, tcbalign);
3223
3224    dtv = ((Elf_Addr**)tls)[1];
3225    dtvsize = dtv[1];
3226    tlsend = (Elf_Addr) tls;
3227    tlsstart = tlsend - size;
3228    for (i = 0; i < dtvsize; i++) {
3229	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3230	    free((void*) dtv[i+2]);
3231	}
3232    }
3233
3234    free((void*) tlsstart);
3235    free((void*) dtv);
3236}
3237
3238#endif
3239
3240/*
3241 * Allocate TLS block for module with given index.
3242 */
3243void *
3244allocate_module_tls(int index)
3245{
3246    Obj_Entry* obj;
3247    char* p;
3248
3249    for (obj = obj_list; obj; obj = obj->next) {
3250	if (obj->tlsindex == index)
3251	    break;
3252    }
3253    if (!obj) {
3254	_rtld_error("Can't find module with TLS index %d", index);
3255	die();
3256    }
3257
3258    p = malloc(obj->tlssize);
3259    memcpy(p, obj->tlsinit, obj->tlsinitsize);
3260    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3261
3262    return p;
3263}
3264
3265bool
3266allocate_tls_offset(Obj_Entry *obj)
3267{
3268    size_t off;
3269
3270    if (obj->tls_done)
3271	return true;
3272
3273    if (obj->tlssize == 0) {
3274	obj->tls_done = true;
3275	return true;
3276    }
3277
3278    if (obj->tlsindex == 1)
3279	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3280    else
3281	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3282				   obj->tlssize, obj->tlsalign);
3283
3284    /*
3285     * If we have already fixed the size of the static TLS block, we
3286     * must stay within that size. When allocating the static TLS, we
3287     * leave a small amount of space spare to be used for dynamically
3288     * loading modules which use static TLS.
3289     */
3290    if (tls_static_space) {
3291	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3292	    return false;
3293    }
3294
3295    tls_last_offset = obj->tlsoffset = off;
3296    tls_last_size = obj->tlssize;
3297    obj->tls_done = true;
3298
3299    return true;
3300}
3301
3302void
3303free_tls_offset(Obj_Entry *obj)
3304{
3305#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3306    defined(__arm__) || defined(__mips__)
3307    /*
3308     * If we were the last thing to allocate out of the static TLS
3309     * block, we give our space back to the 'allocator'. This is a
3310     * simplistic workaround to allow libGL.so.1 to be loaded and
3311     * unloaded multiple times. We only handle the Variant II
3312     * mechanism for now - this really needs a proper allocator.
3313     */
3314    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3315	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3316	tls_last_offset -= obj->tlssize;
3317	tls_last_size = 0;
3318    }
3319#endif
3320}
3321
3322void *
3323_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3324{
3325    void *ret;
3326    int lockstate;
3327
3328    lockstate = wlock_acquire(rtld_bind_lock);
3329    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3330    wlock_release(rtld_bind_lock, lockstate);
3331    return (ret);
3332}
3333
3334void
3335_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3336{
3337    int lockstate;
3338
3339    lockstate = wlock_acquire(rtld_bind_lock);
3340    free_tls(tcb, tcbsize, tcbalign);
3341    wlock_release(rtld_bind_lock, lockstate);
3342}
3343
3344static void
3345object_add_name(Obj_Entry *obj, const char *name)
3346{
3347    Name_Entry *entry;
3348    size_t len;
3349
3350    len = strlen(name);
3351    entry = malloc(sizeof(Name_Entry) + len);
3352
3353    if (entry != NULL) {
3354	strcpy(entry->name, name);
3355	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3356    }
3357}
3358
3359static int
3360object_match_name(const Obj_Entry *obj, const char *name)
3361{
3362    Name_Entry *entry;
3363
3364    STAILQ_FOREACH(entry, &obj->names, link) {
3365	if (strcmp(name, entry->name) == 0)
3366	    return (1);
3367    }
3368    return (0);
3369}
3370
3371static Obj_Entry *
3372locate_dependency(const Obj_Entry *obj, const char *name)
3373{
3374    const Objlist_Entry *entry;
3375    const Needed_Entry *needed;
3376
3377    STAILQ_FOREACH(entry, &list_main, link) {
3378	if (object_match_name(entry->obj, name))
3379	    return entry->obj;
3380    }
3381
3382    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3383	if (needed->obj == NULL)
3384	    continue;
3385	if (object_match_name(needed->obj, name))
3386	    return needed->obj;
3387    }
3388    _rtld_error("%s: Unexpected  inconsistency: dependency %s not found",
3389	obj->path, name);
3390    die();
3391}
3392
3393static int
3394check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3395    const Elf_Vernaux *vna)
3396{
3397    const Elf_Verdef *vd;
3398    const char *vername;
3399
3400    vername = refobj->strtab + vna->vna_name;
3401    vd = depobj->verdef;
3402    if (vd == NULL) {
3403	_rtld_error("%s: version %s required by %s not defined",
3404	    depobj->path, vername, refobj->path);
3405	return (-1);
3406    }
3407    for (;;) {
3408	if (vd->vd_version != VER_DEF_CURRENT) {
3409	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3410		depobj->path, vd->vd_version);
3411	    return (-1);
3412	}
3413	if (vna->vna_hash == vd->vd_hash) {
3414	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3415		((char *)vd + vd->vd_aux);
3416	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3417		return (0);
3418	}
3419	if (vd->vd_next == 0)
3420	    break;
3421	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3422    }
3423    if (vna->vna_flags & VER_FLG_WEAK)
3424	return (0);
3425    _rtld_error("%s: version %s required by %s not found",
3426	depobj->path, vername, refobj->path);
3427    return (-1);
3428}
3429
3430static int
3431rtld_verify_object_versions(Obj_Entry *obj)
3432{
3433    const Elf_Verneed *vn;
3434    const Elf_Verdef  *vd;
3435    const Elf_Verdaux *vda;
3436    const Elf_Vernaux *vna;
3437    const Obj_Entry *depobj;
3438    int maxvernum, vernum;
3439
3440    maxvernum = 0;
3441    /*
3442     * Walk over defined and required version records and figure out
3443     * max index used by any of them. Do very basic sanity checking
3444     * while there.
3445     */
3446    vn = obj->verneed;
3447    while (vn != NULL) {
3448	if (vn->vn_version != VER_NEED_CURRENT) {
3449	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3450		obj->path, vn->vn_version);
3451	    return (-1);
3452	}
3453	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3454	for (;;) {
3455	    vernum = VER_NEED_IDX(vna->vna_other);
3456	    if (vernum > maxvernum)
3457		maxvernum = vernum;
3458	    if (vna->vna_next == 0)
3459		 break;
3460	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3461	}
3462	if (vn->vn_next == 0)
3463	    break;
3464	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3465    }
3466
3467    vd = obj->verdef;
3468    while (vd != NULL) {
3469	if (vd->vd_version != VER_DEF_CURRENT) {
3470	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3471		obj->path, vd->vd_version);
3472	    return (-1);
3473	}
3474	vernum = VER_DEF_IDX(vd->vd_ndx);
3475	if (vernum > maxvernum)
3476		maxvernum = vernum;
3477	if (vd->vd_next == 0)
3478	    break;
3479	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3480    }
3481
3482    if (maxvernum == 0)
3483	return (0);
3484
3485    /*
3486     * Store version information in array indexable by version index.
3487     * Verify that object version requirements are satisfied along the
3488     * way.
3489     */
3490    obj->vernum = maxvernum + 1;
3491    obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3492
3493    vd = obj->verdef;
3494    while (vd != NULL) {
3495	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3496	    vernum = VER_DEF_IDX(vd->vd_ndx);
3497	    assert(vernum <= maxvernum);
3498	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3499	    obj->vertab[vernum].hash = vd->vd_hash;
3500	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3501	    obj->vertab[vernum].file = NULL;
3502	    obj->vertab[vernum].flags = 0;
3503	}
3504	if (vd->vd_next == 0)
3505	    break;
3506	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3507    }
3508
3509    vn = obj->verneed;
3510    while (vn != NULL) {
3511	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3512	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3513	for (;;) {
3514	    if (check_object_provided_version(obj, depobj, vna))
3515		return (-1);
3516	    vernum = VER_NEED_IDX(vna->vna_other);
3517	    assert(vernum <= maxvernum);
3518	    obj->vertab[vernum].hash = vna->vna_hash;
3519	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3520	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3521	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3522		VER_INFO_HIDDEN : 0;
3523	    if (vna->vna_next == 0)
3524		 break;
3525	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3526	}
3527	if (vn->vn_next == 0)
3528	    break;
3529	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3530    }
3531    return 0;
3532}
3533
3534static int
3535rtld_verify_versions(const Objlist *objlist)
3536{
3537    Objlist_Entry *entry;
3538    int rc;
3539
3540    rc = 0;
3541    STAILQ_FOREACH(entry, objlist, link) {
3542	/*
3543	 * Skip dummy objects or objects that have their version requirements
3544	 * already checked.
3545	 */
3546	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3547	    continue;
3548	if (rtld_verify_object_versions(entry->obj) == -1) {
3549	    rc = -1;
3550	    if (ld_tracing == NULL)
3551		break;
3552	}
3553    }
3554    if (rc == 0 || ld_tracing != NULL)
3555    	rc = rtld_verify_object_versions(&obj_rtld);
3556    return rc;
3557}
3558
3559const Ver_Entry *
3560fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3561{
3562    Elf_Versym vernum;
3563
3564    if (obj->vertab) {
3565	vernum = VER_NDX(obj->versyms[symnum]);
3566	if (vernum >= obj->vernum) {
3567	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3568		obj->path, obj->strtab + symnum, vernum);
3569	} else if (obj->vertab[vernum].hash != 0) {
3570	    return &obj->vertab[vernum];
3571	}
3572    }
3573    return NULL;
3574}
3575