s_expm1.c revision 256281
1239310Sdim/* @(#)s_expm1.c 5.1 93/09/24 */
2239310Sdim/*
3239310Sdim * ====================================================
4239310Sdim * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5239310Sdim *
6239310Sdim * Developed at SunPro, a Sun Microsystems, Inc. business.
7239310Sdim * Permission to use, copy, modify, and distribute this
8239310Sdim * software is freely granted, provided that this notice
9239310Sdim * is preserved.
10239310Sdim * ====================================================
11239310Sdim */
12239310Sdim
13239310Sdim#include <sys/cdefs.h>
14239310Sdim__FBSDID("$FreeBSD: stable/10/lib/msun/src/s_expm1.c 251343 2013-06-03 19:51:32Z kargl $");
15239310Sdim
16239310Sdim/* expm1(x)
17239310Sdim * Returns exp(x)-1, the exponential of x minus 1.
18239310Sdim *
19239310Sdim * Method
20239310Sdim *   1. Argument reduction:
21239310Sdim *	Given x, find r and integer k such that
22239310Sdim *
23239310Sdim *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
24239310Sdim *
25239310Sdim *      Here a correction term c will be computed to compensate
26239310Sdim *	the error in r when rounded to a floating-point number.
27239310Sdim *
28239310Sdim *   2. Approximating expm1(r) by a special rational function on
29239310Sdim *	the interval [0,0.34658]:
30239310Sdim *	Since
31239310Sdim *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
32239310Sdim *	we define R1(r*r) by
33239310Sdim *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
34239310Sdim *	That is,
35239310Sdim *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
36239310Sdim *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
37239310Sdim *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
38239310Sdim *      We use a special Reme algorithm on [0,0.347] to generate
39239310Sdim * 	a polynomial of degree 5 in r*r to approximate R1. The
40239310Sdim *	maximum error of this polynomial approximation is bounded
41239310Sdim *	by 2**-61. In other words,
42239310Sdim *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
43239310Sdim *	where 	Q1  =  -1.6666666666666567384E-2,
44239310Sdim * 		Q2  =   3.9682539681370365873E-4,
45239310Sdim * 		Q3  =  -9.9206344733435987357E-6,
46239310Sdim * 		Q4  =   2.5051361420808517002E-7,
47239310Sdim * 		Q5  =  -6.2843505682382617102E-9;
48239310Sdim *		z   =  r*r,
49239310Sdim *	with error bounded by
50239310Sdim *	    |                  5           |     -61
51239310Sdim *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
52239310Sdim *	    |                              |
53239310Sdim *
54239310Sdim *	expm1(r) = exp(r)-1 is then computed by the following
55239310Sdim * 	specific way which minimize the accumulation rounding error:
56239310Sdim *			       2     3
57239310Sdim *			      r     r    [ 3 - (R1 + R1*r/2)  ]
58239310Sdim *	      expm1(r) = r + --- + --- * [--------------------]
59239310Sdim *		              2     2    [ 6 - r*(3 - R1*r/2) ]
60239310Sdim *
61239310Sdim *	To compensate the error in the argument reduction, we use
62239310Sdim *		expm1(r+c) = expm1(r) + c + expm1(r)*c
63239310Sdim *			   ~ expm1(r) + c + r*c
64239310Sdim *	Thus c+r*c will be added in as the correction terms for
65239310Sdim *	expm1(r+c). Now rearrange the term to avoid optimization
66239310Sdim * 	screw up:
67239310Sdim *		        (      2                                    2 )
68239310Sdim *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
69239310Sdim *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
70239310Sdim *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
71239310Sdim *                      (                                             )
72239310Sdim *
73239310Sdim *		   = r - E
74239310Sdim *   3. Scale back to obtain expm1(x):
75239310Sdim *	From step 1, we have
76239310Sdim *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
77239310Sdim *		    = or     2^k*[expm1(r) + (1-2^-k)]
78239310Sdim *   4. Implementation notes:
79239310Sdim *	(A). To save one multiplication, we scale the coefficient Qi
80239310Sdim *	     to Qi*2^i, and replace z by (x^2)/2.
81239310Sdim *	(B). To achieve maximum accuracy, we compute expm1(x) by
82239310Sdim *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
83239310Sdim *	  (ii)  if k=0, return r-E
84239310Sdim *	  (iii) if k=-1, return 0.5*(r-E)-0.5
85239310Sdim *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
86239310Sdim *	       	       else	     return  1.0+2.0*(r-E);
87239310Sdim *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
88239310Sdim *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
89239310Sdim *	  (vii) return 2^k(1-((E+2^-k)-r))
90239310Sdim *
91239310Sdim * Special cases:
92239310Sdim *	expm1(INF) is INF, expm1(NaN) is NaN;
93239310Sdim *	expm1(-INF) is -1, and
94239310Sdim *	for finite argument, only expm1(0)=0 is exact.
95239310Sdim *
96239310Sdim * Accuracy:
97239310Sdim *	according to an error analysis, the error is always less than
98239310Sdim *	1 ulp (unit in the last place).
99239310Sdim *
100239310Sdim * Misc. info.
101239310Sdim *	For IEEE double
102239310Sdim *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
103239310Sdim *
104239310Sdim * Constants:
105239310Sdim * The hexadecimal values are the intended ones for the following
106239310Sdim * constants. The decimal values may be used, provided that the
107239310Sdim * compiler will convert from decimal to binary accurately enough
108239310Sdim * to produce the hexadecimal values shown.
109239310Sdim */
110239310Sdim
111239310Sdim#include <float.h>
112239310Sdim
113239310Sdim#include "math.h"
114239310Sdim#include "math_private.h"
115239310Sdim
116239310Sdimstatic const double
117239310Sdimone		= 1.0,
118239310Sdimtiny		= 1.0e-300,
119239310Sdimo_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
120239310Sdimln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
121239310Sdimln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
122239310Sdiminvln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
123239310Sdim/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
124239310SdimQ1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
125239310SdimQ2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
126239310SdimQ3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
127239310SdimQ4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
128239310SdimQ5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
129239310Sdim
130239310Sdimstatic volatile double huge = 1.0e+300;
131239310Sdim
132239310Sdimdouble
133239310Sdimexpm1(double x)
134239310Sdim{
135239310Sdim	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
136239310Sdim	int32_t k,xsb;
137239310Sdim	u_int32_t hx;
138239310Sdim
139239310Sdim	GET_HIGH_WORD(hx,x);
140239310Sdim	xsb = hx&0x80000000;		/* sign bit of x */
141239310Sdim	hx &= 0x7fffffff;		/* high word of |x| */
142239310Sdim
143239310Sdim    /* filter out huge and non-finite argument */
144239310Sdim	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
145239310Sdim	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
146239310Sdim                if(hx>=0x7ff00000) {
147239310Sdim		    u_int32_t low;
148239310Sdim		    GET_LOW_WORD(low,x);
149239310Sdim		    if(((hx&0xfffff)|low)!=0)
150239310Sdim		         return x+x; 	 /* NaN */
151239310Sdim		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
152239310Sdim	        }
153239310Sdim	        if(x > o_threshold) return huge*huge; /* overflow */
154239310Sdim	    }
155239310Sdim	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
156239310Sdim		if(x+tiny<0.0)		/* raise inexact */
157239310Sdim		return tiny-one;	/* return -1 */
158239310Sdim	    }
159239310Sdim	}
160239310Sdim
161239310Sdim    /* argument reduction */
162239310Sdim	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
163239310Sdim	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
164239310Sdim		if(xsb==0)
165239310Sdim		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
166239310Sdim		else
167239310Sdim		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
168239310Sdim	    } else {
169239310Sdim		k  = invln2*x+((xsb==0)?0.5:-0.5);
170239310Sdim		t  = k;
171239310Sdim		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
172239310Sdim		lo = t*ln2_lo;
173239310Sdim	    }
174239310Sdim	    STRICT_ASSIGN(double, x, hi - lo);
175239310Sdim	    c  = (hi-x)-lo;
176239310Sdim	}
177239310Sdim	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
178239310Sdim	    t = huge+x;	/* return x with inexact flags when x!=0 */
179239310Sdim	    return x - (t-(huge+x));
180239310Sdim	}
181239310Sdim	else k = 0;
182239310Sdim
183239310Sdim    /* x is now in primary range */
184239310Sdim	hfx = 0.5*x;
185239310Sdim	hxs = x*hfx;
186239310Sdim	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
187239310Sdim	t  = 3.0-r1*hfx;
188239310Sdim	e  = hxs*((r1-t)/(6.0 - x*t));
189239310Sdim	if(k==0) return x - (x*e-hxs);		/* c is 0 */
190239310Sdim	else {
191239310Sdim	    INSERT_WORDS(twopk,0x3ff00000+(k<<20),0);	/* 2^k */
192239310Sdim	    e  = (x*(e-c)-c);
193239310Sdim	    e -= hxs;
194239310Sdim	    if(k== -1) return 0.5*(x-e)-0.5;
195239310Sdim	    if(k==1) {
196239310Sdim	       	if(x < -0.25) return -2.0*(e-(x+0.5));
197239310Sdim	       	else 	      return  one+2.0*(x-e);
198239310Sdim	    }
199239310Sdim	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
200239310Sdim	        y = one-(e-x);
201239310Sdim		if (k == 1024) y = y*2.0*0x1p1023;
202239310Sdim		else y = y*twopk;
203239310Sdim	        return y-one;
204239310Sdim	    }
205239310Sdim	    t = one;
206239310Sdim	    if(k<20) {
207239310Sdim	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
208239310Sdim	       	y = t-(e-x);
209239310Sdim		y = y*twopk;
210239310Sdim	   } else {
211239310Sdim		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
212239310Sdim	       	y = x-(e+t);
213239310Sdim	       	y += one;
214239310Sdim		y = y*twopk;
215239310Sdim	    }
216239310Sdim	}
217239310Sdim	return y;
218239310Sdim}
219239310Sdim
220239310Sdim#if (LDBL_MANT_DIG == 53)
221239310Sdim__weak_reference(expm1, expm1l);
222239310Sdim#endif
223239310Sdim