trees.c revision 17651
1129203Scognet/* trees.c -- output deflated data using Huffman coding
2129203Scognet * Copyright (C) 1995-1996 Jean-loup Gailly
3129203Scognet * For conditions of distribution and use, see copyright notice in zlib.h
4129203Scognet */
5129203Scognet
6129203Scognet/*
7129203Scognet *  ALGORITHM
8129203Scognet *
9129203Scognet *      The "deflation" process uses several Huffman trees. The more
10129203Scognet *      common source values are represented by shorter bit sequences.
11129203Scognet *
12129203Scognet *      Each code tree is stored in a compressed form which is itself
13129203Scognet * a Huffman encoding of the lengths of all the code strings (in
14129203Scognet * ascending order by source values).  The actual code strings are
15129203Scognet * reconstructed from the lengths in the inflate process, as described
16129203Scognet * in the deflate specification.
17129203Scognet *
18129203Scognet *  REFERENCES
19129203Scognet *
20129203Scognet *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21129203Scognet *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22129203Scognet *
23 *      Storer, James A.
24 *          Data Compression:  Methods and Theory, pp. 49-50.
25 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
26 *
27 *      Sedgewick, R.
28 *          Algorithms, p290.
29 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32/* $Id: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
33
34#include "deflate.h"
35
36#ifdef DEBUG
37#  include <ctype.h>
38#endif
39
40/* ===========================================================================
41 * Constants
42 */
43
44#define MAX_BL_BITS 7
45/* Bit length codes must not exceed MAX_BL_BITS bits */
46
47#define END_BLOCK 256
48/* end of block literal code */
49
50#define REP_3_6      16
51/* repeat previous bit length 3-6 times (2 bits of repeat count) */
52
53#define REPZ_3_10    17
54/* repeat a zero length 3-10 times  (3 bits of repeat count) */
55
56#define REPZ_11_138  18
57/* repeat a zero length 11-138 times  (7 bits of repeat count) */
58
59local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
60   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
61
62local int extra_dbits[D_CODES] /* extra bits for each distance code */
63   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
64
65local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
66   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
67
68local uch bl_order[BL_CODES]
69   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
70/* The lengths of the bit length codes are sent in order of decreasing
71 * probability, to avoid transmitting the lengths for unused bit length codes.
72 */
73
74#define Buf_size (8 * 2*sizeof(char))
75/* Number of bits used within bi_buf. (bi_buf might be implemented on
76 * more than 16 bits on some systems.)
77 */
78
79/* ===========================================================================
80 * Local data. These are initialized only once.
81 */
82
83local ct_data static_ltree[L_CODES+2];
84/* The static literal tree. Since the bit lengths are imposed, there is no
85 * need for the L_CODES extra codes used during heap construction. However
86 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
87 * below).
88 */
89
90local ct_data static_dtree[D_CODES];
91/* The static distance tree. (Actually a trivial tree since all codes use
92 * 5 bits.)
93 */
94
95local uch dist_code[512];
96/* distance codes. The first 256 values correspond to the distances
97 * 3 .. 258, the last 256 values correspond to the top 8 bits of
98 * the 15 bit distances.
99 */
100
101local uch length_code[MAX_MATCH-MIN_MATCH+1];
102/* length code for each normalized match length (0 == MIN_MATCH) */
103
104local int base_length[LENGTH_CODES];
105/* First normalized length for each code (0 = MIN_MATCH) */
106
107local int base_dist[D_CODES];
108/* First normalized distance for each code (0 = distance of 1) */
109
110struct static_tree_desc_s {
111    ct_data *static_tree;        /* static tree or NULL */
112    intf    *extra_bits;         /* extra bits for each code or NULL */
113    int     extra_base;          /* base index for extra_bits */
114    int     elems;               /* max number of elements in the tree */
115    int     max_length;          /* max bit length for the codes */
116};
117
118local static_tree_desc  static_l_desc =
119{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
120
121local static_tree_desc  static_d_desc =
122{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
123
124local static_tree_desc  static_bl_desc =
125{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
126
127/* ===========================================================================
128 * Local (static) routines in this file.
129 */
130
131local void tr_static_init OF((void));
132local void init_block     OF((deflate_state *s));
133local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
134local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
135local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
136local void build_tree     OF((deflate_state *s, tree_desc *desc));
137local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
138local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
139local int  build_bl_tree  OF((deflate_state *s));
140local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
141                              int blcodes));
142local void compress_block OF((deflate_state *s, ct_data *ltree,
143                              ct_data *dtree));
144local void set_data_type  OF((deflate_state *s));
145local unsigned bi_reverse OF((unsigned value, int length));
146local void bi_windup      OF((deflate_state *s));
147local void bi_flush       OF((deflate_state *s));
148local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
149                              int header));
150
151#ifndef DEBUG
152#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
153   /* Send a code of the given tree. c and tree must not have side effects */
154
155#else /* DEBUG */
156#  define send_code(s, c, tree) \
157     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
158       send_bits(s, tree[c].Code, tree[c].Len); }
159#endif
160
161#define d_code(dist) \
162   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
163/* Mapping from a distance to a distance code. dist is the distance - 1 and
164 * must not have side effects. dist_code[256] and dist_code[257] are never
165 * used.
166 */
167
168/* ===========================================================================
169 * Output a short LSB first on the stream.
170 * IN assertion: there is enough room in pendingBuf.
171 */
172#define put_short(s, w) { \
173    put_byte(s, (uch)((w) & 0xff)); \
174    put_byte(s, (uch)((ush)(w) >> 8)); \
175}
176
177/* ===========================================================================
178 * Send a value on a given number of bits.
179 * IN assertion: length <= 16 and value fits in length bits.
180 */
181#ifdef DEBUG
182local void send_bits      OF((deflate_state *s, int value, int length));
183
184local void send_bits(s, value, length)
185    deflate_state *s;
186    int value;  /* value to send */
187    int length; /* number of bits */
188{
189    Tracevv((stderr," l %2d v %4x ", length, value));
190    Assert(length > 0 && length <= 15, "invalid length");
191    s->bits_sent += (ulg)length;
192
193    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
194     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
195     * unused bits in value.
196     */
197    if (s->bi_valid > (int)Buf_size - length) {
198        s->bi_buf |= (value << s->bi_valid);
199        put_short(s, s->bi_buf);
200        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
201        s->bi_valid += length - Buf_size;
202    } else {
203        s->bi_buf |= value << s->bi_valid;
204        s->bi_valid += length;
205    }
206}
207#else /* !DEBUG */
208
209#define send_bits(s, value, length) \
210{ int len = length;\
211  if (s->bi_valid > (int)Buf_size - len) {\
212    int val = value;\
213    s->bi_buf |= (val << s->bi_valid);\
214    put_short(s, s->bi_buf);\
215    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
216    s->bi_valid += len - Buf_size;\
217  } else {\
218    s->bi_buf |= (value) << s->bi_valid;\
219    s->bi_valid += len;\
220  }\
221}
222#endif /* DEBUG */
223
224
225#define MAX(a,b) (a >= b ? a : b)
226/* the arguments must not have side effects */
227
228/* ===========================================================================
229 * Initialize the various 'constant' tables. In a multi-threaded environment,
230 * this function may be called by two threads concurrently, but this is
231 * harmless since both invocations do exactly the same thing.
232 */
233local void tr_static_init()
234{
235    static int static_init_done = 0;
236    int n;        /* iterates over tree elements */
237    int bits;     /* bit counter */
238    int length;   /* length value */
239    int code;     /* code value */
240    int dist;     /* distance index */
241    ush bl_count[MAX_BITS+1];
242    /* number of codes at each bit length for an optimal tree */
243
244    if (static_init_done) return;
245
246    /* Initialize the mapping length (0..255) -> length code (0..28) */
247    length = 0;
248    for (code = 0; code < LENGTH_CODES-1; code++) {
249        base_length[code] = length;
250        for (n = 0; n < (1<<extra_lbits[code]); n++) {
251            length_code[length++] = (uch)code;
252        }
253    }
254    Assert (length == 256, "tr_static_init: length != 256");
255    /* Note that the length 255 (match length 258) can be represented
256     * in two different ways: code 284 + 5 bits or code 285, so we
257     * overwrite length_code[255] to use the best encoding:
258     */
259    length_code[length-1] = (uch)code;
260
261    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
262    dist = 0;
263    for (code = 0 ; code < 16; code++) {
264        base_dist[code] = dist;
265        for (n = 0; n < (1<<extra_dbits[code]); n++) {
266            dist_code[dist++] = (uch)code;
267        }
268    }
269    Assert (dist == 256, "tr_static_init: dist != 256");
270    dist >>= 7; /* from now on, all distances are divided by 128 */
271    for ( ; code < D_CODES; code++) {
272        base_dist[code] = dist << 7;
273        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
274            dist_code[256 + dist++] = (uch)code;
275        }
276    }
277    Assert (dist == 256, "tr_static_init: 256+dist != 512");
278
279    /* Construct the codes of the static literal tree */
280    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
281    n = 0;
282    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
283    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
284    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
285    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
286    /* Codes 286 and 287 do not exist, but we must include them in the
287     * tree construction to get a canonical Huffman tree (longest code
288     * all ones)
289     */
290    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
291
292    /* The static distance tree is trivial: */
293    for (n = 0; n < D_CODES; n++) {
294        static_dtree[n].Len = 5;
295        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
296    }
297    static_init_done = 1;
298}
299
300/* ===========================================================================
301 * Initialize the tree data structures for a new zlib stream.
302 */
303void _tr_init(s)
304    deflate_state *s;
305{
306    tr_static_init();
307
308    s->compressed_len = 0L;
309
310    s->l_desc.dyn_tree = s->dyn_ltree;
311    s->l_desc.stat_desc = &static_l_desc;
312
313    s->d_desc.dyn_tree = s->dyn_dtree;
314    s->d_desc.stat_desc = &static_d_desc;
315
316    s->bl_desc.dyn_tree = s->bl_tree;
317    s->bl_desc.stat_desc = &static_bl_desc;
318
319    s->bi_buf = 0;
320    s->bi_valid = 0;
321    s->last_eob_len = 8; /* enough lookahead for inflate */
322#ifdef DEBUG
323    s->bits_sent = 0L;
324#endif
325
326    /* Initialize the first block of the first file: */
327    init_block(s);
328}
329
330/* ===========================================================================
331 * Initialize a new block.
332 */
333local void init_block(s)
334    deflate_state *s;
335{
336    int n; /* iterates over tree elements */
337
338    /* Initialize the trees. */
339    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
340    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
341    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
342
343    s->dyn_ltree[END_BLOCK].Freq = 1;
344    s->opt_len = s->static_len = 0L;
345    s->last_lit = s->matches = 0;
346}
347
348#define SMALLEST 1
349/* Index within the heap array of least frequent node in the Huffman tree */
350
351
352/* ===========================================================================
353 * Remove the smallest element from the heap and recreate the heap with
354 * one less element. Updates heap and heap_len.
355 */
356#define pqremove(s, tree, top) \
357{\
358    top = s->heap[SMALLEST]; \
359    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
360    pqdownheap(s, tree, SMALLEST); \
361}
362
363/* ===========================================================================
364 * Compares to subtrees, using the tree depth as tie breaker when
365 * the subtrees have equal frequency. This minimizes the worst case length.
366 */
367#define smaller(tree, n, m, depth) \
368   (tree[n].Freq < tree[m].Freq || \
369   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
370
371/* ===========================================================================
372 * Restore the heap property by moving down the tree starting at node k,
373 * exchanging a node with the smallest of its two sons if necessary, stopping
374 * when the heap property is re-established (each father smaller than its
375 * two sons).
376 */
377local void pqdownheap(s, tree, k)
378    deflate_state *s;
379    ct_data *tree;  /* the tree to restore */
380    int k;               /* node to move down */
381{
382    int v = s->heap[k];
383    int j = k << 1;  /* left son of k */
384    while (j <= s->heap_len) {
385        /* Set j to the smallest of the two sons: */
386        if (j < s->heap_len &&
387            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
388            j++;
389        }
390        /* Exit if v is smaller than both sons */
391        if (smaller(tree, v, s->heap[j], s->depth)) break;
392
393        /* Exchange v with the smallest son */
394        s->heap[k] = s->heap[j];  k = j;
395
396        /* And continue down the tree, setting j to the left son of k */
397        j <<= 1;
398    }
399    s->heap[k] = v;
400}
401
402/* ===========================================================================
403 * Compute the optimal bit lengths for a tree and update the total bit length
404 * for the current block.
405 * IN assertion: the fields freq and dad are set, heap[heap_max] and
406 *    above are the tree nodes sorted by increasing frequency.
407 * OUT assertions: the field len is set to the optimal bit length, the
408 *     array bl_count contains the frequencies for each bit length.
409 *     The length opt_len is updated; static_len is also updated if stree is
410 *     not null.
411 */
412local void gen_bitlen(s, desc)
413    deflate_state *s;
414    tree_desc *desc;    /* the tree descriptor */
415{
416    ct_data *tree  = desc->dyn_tree;
417    int max_code   = desc->max_code;
418    ct_data *stree = desc->stat_desc->static_tree;
419    intf *extra    = desc->stat_desc->extra_bits;
420    int base       = desc->stat_desc->extra_base;
421    int max_length = desc->stat_desc->max_length;
422    int h;              /* heap index */
423    int n, m;           /* iterate over the tree elements */
424    int bits;           /* bit length */
425    int xbits;          /* extra bits */
426    ush f;              /* frequency */
427    int overflow = 0;   /* number of elements with bit length too large */
428
429    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
430
431    /* In a first pass, compute the optimal bit lengths (which may
432     * overflow in the case of the bit length tree).
433     */
434    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
435
436    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
437        n = s->heap[h];
438        bits = tree[tree[n].Dad].Len + 1;
439        if (bits > max_length) bits = max_length, overflow++;
440        tree[n].Len = (ush)bits;
441        /* We overwrite tree[n].Dad which is no longer needed */
442
443        if (n > max_code) continue; /* not a leaf node */
444
445        s->bl_count[bits]++;
446        xbits = 0;
447        if (n >= base) xbits = extra[n-base];
448        f = tree[n].Freq;
449        s->opt_len += (ulg)f * (bits + xbits);
450        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
451    }
452    if (overflow == 0) return;
453
454    Trace((stderr,"\nbit length overflow\n"));
455    /* This happens for example on obj2 and pic of the Calgary corpus */
456
457    /* Find the first bit length which could increase: */
458    do {
459        bits = max_length-1;
460        while (s->bl_count[bits] == 0) bits--;
461        s->bl_count[bits]--;      /* move one leaf down the tree */
462        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
463        s->bl_count[max_length]--;
464        /* The brother of the overflow item also moves one step up,
465         * but this does not affect bl_count[max_length]
466         */
467        overflow -= 2;
468    } while (overflow > 0);
469
470    /* Now recompute all bit lengths, scanning in increasing frequency.
471     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
472     * lengths instead of fixing only the wrong ones. This idea is taken
473     * from 'ar' written by Haruhiko Okumura.)
474     */
475    for (bits = max_length; bits != 0; bits--) {
476        n = s->bl_count[bits];
477        while (n != 0) {
478            m = s->heap[--h];
479            if (m > max_code) continue;
480            if (tree[m].Len != (unsigned) bits) {
481                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
482                s->opt_len += ((long)bits - (long)tree[m].Len)
483                              *(long)tree[m].Freq;
484                tree[m].Len = (ush)bits;
485            }
486            n--;
487        }
488    }
489}
490
491/* ===========================================================================
492 * Generate the codes for a given tree and bit counts (which need not be
493 * optimal).
494 * IN assertion: the array bl_count contains the bit length statistics for
495 * the given tree and the field len is set for all tree elements.
496 * OUT assertion: the field code is set for all tree elements of non
497 *     zero code length.
498 */
499local void gen_codes (tree, max_code, bl_count)
500    ct_data *tree;             /* the tree to decorate */
501    int max_code;              /* largest code with non zero frequency */
502    ushf *bl_count;            /* number of codes at each bit length */
503{
504    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
505    ush code = 0;              /* running code value */
506    int bits;                  /* bit index */
507    int n;                     /* code index */
508
509    /* The distribution counts are first used to generate the code values
510     * without bit reversal.
511     */
512    for (bits = 1; bits <= MAX_BITS; bits++) {
513        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
514    }
515    /* Check that the bit counts in bl_count are consistent. The last code
516     * must be all ones.
517     */
518    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
519            "inconsistent bit counts");
520    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
521
522    for (n = 0;  n <= max_code; n++) {
523        int len = tree[n].Len;
524        if (len == 0) continue;
525        /* Now reverse the bits */
526        tree[n].Code = bi_reverse(next_code[len]++, len);
527
528        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
529             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
530    }
531}
532
533/* ===========================================================================
534 * Construct one Huffman tree and assigns the code bit strings and lengths.
535 * Update the total bit length for the current block.
536 * IN assertion: the field freq is set for all tree elements.
537 * OUT assertions: the fields len and code are set to the optimal bit length
538 *     and corresponding code. The length opt_len is updated; static_len is
539 *     also updated if stree is not null. The field max_code is set.
540 */
541local void build_tree(s, desc)
542    deflate_state *s;
543    tree_desc *desc; /* the tree descriptor */
544{
545    ct_data *tree   = desc->dyn_tree;
546    ct_data *stree  = desc->stat_desc->static_tree;
547    int elems       = desc->stat_desc->elems;
548    int n, m;          /* iterate over heap elements */
549    int max_code = -1; /* largest code with non zero frequency */
550    int node;          /* new node being created */
551
552    /* Construct the initial heap, with least frequent element in
553     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
554     * heap[0] is not used.
555     */
556    s->heap_len = 0, s->heap_max = HEAP_SIZE;
557
558    for (n = 0; n < elems; n++) {
559        if (tree[n].Freq != 0) {
560            s->heap[++(s->heap_len)] = max_code = n;
561            s->depth[n] = 0;
562        } else {
563            tree[n].Len = 0;
564        }
565    }
566
567    /* The pkzip format requires that at least one distance code exists,
568     * and that at least one bit should be sent even if there is only one
569     * possible code. So to avoid special checks later on we force at least
570     * two codes of non zero frequency.
571     */
572    while (s->heap_len < 2) {
573        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
574        tree[node].Freq = 1;
575        s->depth[node] = 0;
576        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
577        /* node is 0 or 1 so it does not have extra bits */
578    }
579    desc->max_code = max_code;
580
581    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
582     * establish sub-heaps of increasing lengths:
583     */
584    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
585
586    /* Construct the Huffman tree by repeatedly combining the least two
587     * frequent nodes.
588     */
589    node = elems;              /* next internal node of the tree */
590    do {
591        pqremove(s, tree, n);  /* n = node of least frequency */
592        m = s->heap[SMALLEST]; /* m = node of next least frequency */
593
594        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
595        s->heap[--(s->heap_max)] = m;
596
597        /* Create a new node father of n and m */
598        tree[node].Freq = tree[n].Freq + tree[m].Freq;
599        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
600        tree[n].Dad = tree[m].Dad = (ush)node;
601#ifdef DUMP_BL_TREE
602        if (tree == s->bl_tree) {
603            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
604                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
605        }
606#endif
607        /* and insert the new node in the heap */
608        s->heap[SMALLEST] = node++;
609        pqdownheap(s, tree, SMALLEST);
610
611    } while (s->heap_len >= 2);
612
613    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
614
615    /* At this point, the fields freq and dad are set. We can now
616     * generate the bit lengths.
617     */
618    gen_bitlen(s, (tree_desc *)desc);
619
620    /* The field len is now set, we can generate the bit codes */
621    gen_codes ((ct_data *)tree, max_code, s->bl_count);
622}
623
624/* ===========================================================================
625 * Scan a literal or distance tree to determine the frequencies of the codes
626 * in the bit length tree.
627 */
628local void scan_tree (s, tree, max_code)
629    deflate_state *s;
630    ct_data *tree;   /* the tree to be scanned */
631    int max_code;    /* and its largest code of non zero frequency */
632{
633    int n;                     /* iterates over all tree elements */
634    int prevlen = -1;          /* last emitted length */
635    int curlen;                /* length of current code */
636    int nextlen = tree[0].Len; /* length of next code */
637    int count = 0;             /* repeat count of the current code */
638    int max_count = 7;         /* max repeat count */
639    int min_count = 4;         /* min repeat count */
640
641    if (nextlen == 0) max_count = 138, min_count = 3;
642    tree[max_code+1].Len = (ush)0xffff; /* guard */
643
644    for (n = 0; n <= max_code; n++) {
645        curlen = nextlen; nextlen = tree[n+1].Len;
646        if (++count < max_count && curlen == nextlen) {
647            continue;
648        } else if (count < min_count) {
649            s->bl_tree[curlen].Freq += count;
650        } else if (curlen != 0) {
651            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
652            s->bl_tree[REP_3_6].Freq++;
653        } else if (count <= 10) {
654            s->bl_tree[REPZ_3_10].Freq++;
655        } else {
656            s->bl_tree[REPZ_11_138].Freq++;
657        }
658        count = 0; prevlen = curlen;
659        if (nextlen == 0) {
660            max_count = 138, min_count = 3;
661        } else if (curlen == nextlen) {
662            max_count = 6, min_count = 3;
663        } else {
664            max_count = 7, min_count = 4;
665        }
666    }
667}
668
669/* ===========================================================================
670 * Send a literal or distance tree in compressed form, using the codes in
671 * bl_tree.
672 */
673local void send_tree (s, tree, max_code)
674    deflate_state *s;
675    ct_data *tree; /* the tree to be scanned */
676    int max_code;       /* and its largest code of non zero frequency */
677{
678    int n;                     /* iterates over all tree elements */
679    int prevlen = -1;          /* last emitted length */
680    int curlen;                /* length of current code */
681    int nextlen = tree[0].Len; /* length of next code */
682    int count = 0;             /* repeat count of the current code */
683    int max_count = 7;         /* max repeat count */
684    int min_count = 4;         /* min repeat count */
685
686    /* tree[max_code+1].Len = -1; */  /* guard already set */
687    if (nextlen == 0) max_count = 138, min_count = 3;
688
689    for (n = 0; n <= max_code; n++) {
690        curlen = nextlen; nextlen = tree[n+1].Len;
691        if (++count < max_count && curlen == nextlen) {
692            continue;
693        } else if (count < min_count) {
694            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
695
696        } else if (curlen != 0) {
697            if (curlen != prevlen) {
698                send_code(s, curlen, s->bl_tree); count--;
699            }
700            Assert(count >= 3 && count <= 6, " 3_6?");
701            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
702
703        } else if (count <= 10) {
704            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
705
706        } else {
707            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
708        }
709        count = 0; prevlen = curlen;
710        if (nextlen == 0) {
711            max_count = 138, min_count = 3;
712        } else if (curlen == nextlen) {
713            max_count = 6, min_count = 3;
714        } else {
715            max_count = 7, min_count = 4;
716        }
717    }
718}
719
720/* ===========================================================================
721 * Construct the Huffman tree for the bit lengths and return the index in
722 * bl_order of the last bit length code to send.
723 */
724local int build_bl_tree(s)
725    deflate_state *s;
726{
727    int max_blindex;  /* index of last bit length code of non zero freq */
728
729    /* Determine the bit length frequencies for literal and distance trees */
730    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
731    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
732
733    /* Build the bit length tree: */
734    build_tree(s, (tree_desc *)(&(s->bl_desc)));
735    /* opt_len now includes the length of the tree representations, except
736     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
737     */
738
739    /* Determine the number of bit length codes to send. The pkzip format
740     * requires that at least 4 bit length codes be sent. (appnote.txt says
741     * 3 but the actual value used is 4.)
742     */
743    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
744        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
745    }
746    /* Update opt_len to include the bit length tree and counts */
747    s->opt_len += 3*(max_blindex+1) + 5+5+4;
748    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
749            s->opt_len, s->static_len));
750
751    return max_blindex;
752}
753
754/* ===========================================================================
755 * Send the header for a block using dynamic Huffman trees: the counts, the
756 * lengths of the bit length codes, the literal tree and the distance tree.
757 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
758 */
759local void send_all_trees(s, lcodes, dcodes, blcodes)
760    deflate_state *s;
761    int lcodes, dcodes, blcodes; /* number of codes for each tree */
762{
763    int rank;                    /* index in bl_order */
764
765    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
766    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
767            "too many codes");
768    Tracev((stderr, "\nbl counts: "));
769    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
770    send_bits(s, dcodes-1,   5);
771    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
772    for (rank = 0; rank < blcodes; rank++) {
773        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
774        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
775    }
776    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
777
778    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
779    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
780
781    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
782    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
783}
784
785/* ===========================================================================
786 * Send a stored block
787 */
788void _tr_stored_block(s, buf, stored_len, eof)
789    deflate_state *s;
790    charf *buf;       /* input block */
791    ulg stored_len;   /* length of input block */
792    int eof;          /* true if this is the last block for a file */
793{
794    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
795    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
796    s->compressed_len += (stored_len + 4) << 3;
797
798    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
799}
800
801/* ===========================================================================
802 * Send one empty static block to give enough lookahead for inflate.
803 * This takes 10 bits, of which 7 may remain in the bit buffer.
804 * The current inflate code requires 9 bits of lookahead. If the
805 * last two codes for the previous block (real code plus EOB) were coded
806 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
807 * the last real code. In this case we send two empty static blocks instead
808 * of one. (There are no problems if the previous block is stored or fixed.)
809 * To simplify the code, we assume the worst case of last real code encoded
810 * on one bit only.
811 */
812void _tr_align(s)
813    deflate_state *s;
814{
815    send_bits(s, STATIC_TREES<<1, 3);
816    send_code(s, END_BLOCK, static_ltree);
817    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
818    bi_flush(s);
819    /* Of the 10 bits for the empty block, we have already sent
820     * (10 - bi_valid) bits. The lookahead for the last real code (before
821     * the EOB of the previous block) was thus at least one plus the length
822     * of the EOB plus what we have just sent of the empty static block.
823     */
824    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
825        send_bits(s, STATIC_TREES<<1, 3);
826        send_code(s, END_BLOCK, static_ltree);
827        s->compressed_len += 10L;
828        bi_flush(s);
829    }
830    s->last_eob_len = 7;
831}
832
833/* ===========================================================================
834 * Determine the best encoding for the current block: dynamic trees, static
835 * trees or store, and output the encoded block to the zip file. This function
836 * returns the total compressed length for the file so far.
837 */
838ulg _tr_flush_block(s, buf, stored_len, eof)
839    deflate_state *s;
840    charf *buf;       /* input block, or NULL if too old */
841    ulg stored_len;   /* length of input block */
842    int eof;          /* true if this is the last block for a file */
843{
844    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
845    int max_blindex = 0;  /* index of last bit length code of non zero freq */
846
847    /* Build the Huffman trees unless a stored block is forced */
848    if (s->level > 0) {
849
850	 /* Check if the file is ascii or binary */
851	if (s->data_type == Z_UNKNOWN) set_data_type(s);
852
853	/* Construct the literal and distance trees */
854	build_tree(s, (tree_desc *)(&(s->l_desc)));
855	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
856		s->static_len));
857
858	build_tree(s, (tree_desc *)(&(s->d_desc)));
859	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
860		s->static_len));
861	/* At this point, opt_len and static_len are the total bit lengths of
862	 * the compressed block data, excluding the tree representations.
863	 */
864
865	/* Build the bit length tree for the above two trees, and get the index
866	 * in bl_order of the last bit length code to send.
867	 */
868	max_blindex = build_bl_tree(s);
869
870	/* Determine the best encoding. Compute first the block length in bytes*/
871	opt_lenb = (s->opt_len+3+7)>>3;
872	static_lenb = (s->static_len+3+7)>>3;
873
874	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
875		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
876		s->last_lit));
877
878	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
879
880    } else {
881        Assert(buf != (char*)0, "lost buf");
882	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
883    }
884
885    /* If compression failed and this is the first and last block,
886     * and if the .zip file can be seeked (to rewrite the local header),
887     * the whole file is transformed into a stored file:
888     */
889#ifdef STORED_FILE_OK
890#  ifdef FORCE_STORED_FILE
891    if (eof && s->compressed_len == 0L) { /* force stored file */
892#  else
893    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
894#  endif
895        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
896        if (buf == (charf*)0) error ("block vanished");
897
898        copy_block(buf, (unsigned)stored_len, 0); /* without header */
899        s->compressed_len = stored_len << 3;
900        s->method = STORED;
901    } else
902#endif /* STORED_FILE_OK */
903
904#ifdef FORCE_STORED
905    if (buf != (char*)0) { /* force stored block */
906#else
907    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
908                       /* 4: two words for the lengths */
909#endif
910        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
911         * Otherwise we can't have processed more than WSIZE input bytes since
912         * the last block flush, because compression would have been
913         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
914         * transform a block into a stored block.
915         */
916        _tr_stored_block(s, buf, stored_len, eof);
917
918#ifdef FORCE_STATIC
919    } else if (static_lenb >= 0) { /* force static trees */
920#else
921    } else if (static_lenb == opt_lenb) {
922#endif
923        send_bits(s, (STATIC_TREES<<1)+eof, 3);
924        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
925        s->compressed_len += 3 + s->static_len;
926    } else {
927        send_bits(s, (DYN_TREES<<1)+eof, 3);
928        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
929                       max_blindex+1);
930        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
931        s->compressed_len += 3 + s->opt_len;
932    }
933    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
934    init_block(s);
935
936    if (eof) {
937        bi_windup(s);
938        s->compressed_len += 7;  /* align on byte boundary */
939    }
940    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
941           s->compressed_len-7*eof));
942
943    return s->compressed_len >> 3;
944}
945
946/* ===========================================================================
947 * Save the match info and tally the frequency counts. Return true if
948 * the current block must be flushed.
949 */
950int _tr_tally (s, dist, lc)
951    deflate_state *s;
952    unsigned dist;  /* distance of matched string */
953    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
954{
955    s->d_buf[s->last_lit] = (ush)dist;
956    s->l_buf[s->last_lit++] = (uch)lc;
957    if (dist == 0) {
958        /* lc is the unmatched char */
959        s->dyn_ltree[lc].Freq++;
960    } else {
961        s->matches++;
962        /* Here, lc is the match length - MIN_MATCH */
963        dist--;             /* dist = match distance - 1 */
964        Assert((ush)dist < (ush)MAX_DIST(s) &&
965               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
966               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
967
968        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
969        s->dyn_dtree[d_code(dist)].Freq++;
970    }
971
972    /* Try to guess if it is profitable to stop the current block here */
973    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
974        /* Compute an upper bound for the compressed length */
975        ulg out_length = (ulg)s->last_lit*8L;
976        ulg in_length = (ulg)((long)s->strstart - s->block_start);
977        int dcode;
978        for (dcode = 0; dcode < D_CODES; dcode++) {
979            out_length += (ulg)s->dyn_dtree[dcode].Freq *
980                (5L+extra_dbits[dcode]);
981        }
982        out_length >>= 3;
983        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
984               s->last_lit, in_length, out_length,
985               100L - out_length*100L/in_length));
986        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
987    }
988    return (s->last_lit == s->lit_bufsize-1);
989    /* We avoid equality with lit_bufsize because of wraparound at 64K
990     * on 16 bit machines and because stored blocks are restricted to
991     * 64K-1 bytes.
992     */
993}
994
995/* ===========================================================================
996 * Send the block data compressed using the given Huffman trees
997 */
998local void compress_block(s, ltree, dtree)
999    deflate_state *s;
1000    ct_data *ltree; /* literal tree */
1001    ct_data *dtree; /* distance tree */
1002{
1003    unsigned dist;      /* distance of matched string */
1004    int lc;             /* match length or unmatched char (if dist == 0) */
1005    unsigned lx = 0;    /* running index in l_buf */
1006    unsigned code;      /* the code to send */
1007    int extra;          /* number of extra bits to send */
1008
1009    if (s->last_lit != 0) do {
1010        dist = s->d_buf[lx];
1011        lc = s->l_buf[lx++];
1012        if (dist == 0) {
1013            send_code(s, lc, ltree); /* send a literal byte */
1014            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1015        } else {
1016            /* Here, lc is the match length - MIN_MATCH */
1017            code = length_code[lc];
1018            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1019            extra = extra_lbits[code];
1020            if (extra != 0) {
1021                lc -= base_length[code];
1022                send_bits(s, lc, extra);       /* send the extra length bits */
1023            }
1024            dist--; /* dist is now the match distance - 1 */
1025            code = d_code(dist);
1026            Assert (code < D_CODES, "bad d_code");
1027
1028            send_code(s, code, dtree);       /* send the distance code */
1029            extra = extra_dbits[code];
1030            if (extra != 0) {
1031                dist -= base_dist[code];
1032                send_bits(s, dist, extra);   /* send the extra distance bits */
1033            }
1034        } /* literal or match pair ? */
1035
1036        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1037        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1038
1039    } while (lx < s->last_lit);
1040
1041    send_code(s, END_BLOCK, ltree);
1042    s->last_eob_len = ltree[END_BLOCK].Len;
1043}
1044
1045/* ===========================================================================
1046 * Set the data type to ASCII or BINARY, using a crude approximation:
1047 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1048 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1049 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1050 */
1051local void set_data_type(s)
1052    deflate_state *s;
1053{
1054    int n = 0;
1055    unsigned ascii_freq = 0;
1056    unsigned bin_freq = 0;
1057    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1058    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1059    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1060    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1061}
1062
1063/* ===========================================================================
1064 * Reverse the first len bits of a code, using straightforward code (a faster
1065 * method would use a table)
1066 * IN assertion: 1 <= len <= 15
1067 */
1068local unsigned bi_reverse(code, len)
1069    unsigned code; /* the value to invert */
1070    int len;       /* its bit length */
1071{
1072    register unsigned res = 0;
1073    do {
1074        res |= code & 1;
1075        code >>= 1, res <<= 1;
1076    } while (--len > 0);
1077    return res >> 1;
1078}
1079
1080/* ===========================================================================
1081 * Flush the bit buffer, keeping at most 7 bits in it.
1082 */
1083local void bi_flush(s)
1084    deflate_state *s;
1085{
1086    if (s->bi_valid == 16) {
1087        put_short(s, s->bi_buf);
1088        s->bi_buf = 0;
1089        s->bi_valid = 0;
1090    } else if (s->bi_valid >= 8) {
1091        put_byte(s, (Byte)s->bi_buf);
1092        s->bi_buf >>= 8;
1093        s->bi_valid -= 8;
1094    }
1095}
1096
1097/* ===========================================================================
1098 * Flush the bit buffer and align the output on a byte boundary
1099 */
1100local void bi_windup(s)
1101    deflate_state *s;
1102{
1103    if (s->bi_valid > 8) {
1104        put_short(s, s->bi_buf);
1105    } else if (s->bi_valid > 0) {
1106        put_byte(s, (Byte)s->bi_buf);
1107    }
1108    s->bi_buf = 0;
1109    s->bi_valid = 0;
1110#ifdef DEBUG
1111    s->bits_sent = (s->bits_sent+7) & ~7;
1112#endif
1113}
1114
1115/* ===========================================================================
1116 * Copy a stored block, storing first the length and its
1117 * one's complement if requested.
1118 */
1119local void copy_block(s, buf, len, header)
1120    deflate_state *s;
1121    charf    *buf;    /* the input data */
1122    unsigned len;     /* its length */
1123    int      header;  /* true if block header must be written */
1124{
1125    bi_windup(s);        /* align on byte boundary */
1126    s->last_eob_len = 8; /* enough lookahead for inflate */
1127
1128    if (header) {
1129        put_short(s, (ush)len);
1130        put_short(s, (ush)~len);
1131#ifdef DEBUG
1132        s->bits_sent += 2*16;
1133#endif
1134    }
1135#ifdef DEBUG
1136    s->bits_sent += (ulg)len<<3;
1137#endif
1138    while (len--) {
1139        put_byte(s, *buf++);
1140    }
1141}
1142