kvm_proc.c revision 99142
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 99142 2002-06-30 17:06:46Z julian $
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 99142 2002-06-30 17:06:46Z julian $");
42
43#if defined(LIBC_SCCS) && !defined(lint)
44static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45#endif /* LIBC_SCCS and not lint */
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#include <sys/user.h>
56#include <sys/proc.h>
57#include <sys/exec.h>
58#include <sys/stat.h>
59#include <sys/ioctl.h>
60#include <sys/tty.h>
61#include <sys/file.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <unistd.h>
65#include <nlist.h>
66#include <kvm.h>
67
68#include <vm/vm.h>
69#include <vm/vm_param.h>
70#include <vm/swap_pager.h>
71
72#include <sys/sysctl.h>
73
74#include <limits.h>
75#include <memory.h>
76#include <paths.h>
77
78#include "kvm_private.h"
79
80#if used
81static char *
82kvm_readswap(kd, p, va, cnt)
83	kvm_t *kd;
84	const struct proc *p;
85	u_long va;
86	u_long *cnt;
87{
88#ifdef __FreeBSD__
89	/* XXX Stubbed out, our vm system is differnet */
90	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91	return(0);
92#endif	/* __FreeBSD__ */
93}
94#endif
95
96#define KREAD(kd, addr, obj) \
97	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98
99/*
100 * Read proc's from memory file into buffer bp, which has space to hold
101 * at most maxcnt procs.
102 */
103static int
104kvm_proclist(kd, what, arg, p, bp, maxcnt)
105	kvm_t *kd;
106	int what, arg;
107	struct proc *p;
108	struct kinfo_proc *bp;
109	int maxcnt;
110{
111	int cnt = 0;
112	struct kinfo_proc kinfo_proc, *kp;
113	struct pgrp pgrp;
114	struct session sess;
115	struct tty tty;
116	struct vmspace vmspace;
117	struct procsig procsig;
118	struct pstats pstats;
119	struct ucred ucred;
120	struct thread mainthread;
121	struct proc proc;
122	struct proc pproc;
123	struct timeval tv;
124
125	kp = &kinfo_proc;
126	kp->ki_structsize = sizeof(kinfo_proc);
127	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128		memset(kp, 0, sizeof *kp);
129		if (KREAD(kd, (u_long)p, &proc)) {
130			_kvm_err(kd, kd->program, "can't read proc at %x", p);
131			return (-1);
132		}
133		if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
134		    &mainthread)) {
135			_kvm_err(kd, kd->program, "can't read thread at %x",
136			    TAILQ_FIRST(&proc.p_threads));
137			return (-1);
138		}
139		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
140			kp->ki_ruid = ucred.cr_ruid;
141			kp->ki_svuid = ucred.cr_svuid;
142			kp->ki_rgid = ucred.cr_rgid;
143			kp->ki_svgid = ucred.cr_svgid;
144			kp->ki_ngroups = ucred.cr_ngroups;
145			bcopy(ucred.cr_groups, kp->ki_groups,
146			    NGROUPS * sizeof(gid_t));
147			kp->ki_uid = ucred.cr_uid;
148		}
149
150		switch(what) {
151
152		case KERN_PROC_PID:
153			if (proc.p_pid != (pid_t)arg)
154				continue;
155			break;
156
157		case KERN_PROC_UID:
158			if (kp->ki_uid != (uid_t)arg)
159				continue;
160			break;
161
162		case KERN_PROC_RUID:
163			if (kp->ki_ruid != (uid_t)arg)
164				continue;
165			break;
166		}
167		/*
168		 * We're going to add another proc to the set.  If this
169		 * will overflow the buffer, assume the reason is because
170		 * nprocs (or the proc list) is corrupt and declare an error.
171		 */
172		if (cnt >= maxcnt) {
173			_kvm_err(kd, kd->program, "nprocs corrupt");
174			return (-1);
175		}
176		/*
177		 * gather kinfo_proc
178		 */
179		kp->ki_paddr = p;
180		kp->ki_addr = proc.p_uarea;
181		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
182		kp->ki_args = proc.p_args;
183		kp->ki_tracep = proc.p_tracep;
184		kp->ki_textvp = proc.p_textvp;
185		kp->ki_fd = proc.p_fd;
186		kp->ki_vmspace = proc.p_vmspace;
187		if (proc.p_procsig != NULL) {
188			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
189				_kvm_err(kd, kd->program,
190				    "can't read procsig at %x", proc.p_procsig);
191				return (-1);
192			}
193			kp->ki_sigignore = procsig.ps_sigignore;
194			kp->ki_sigcatch = procsig.ps_sigcatch;
195		}
196		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
197			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
198				_kvm_err(kd, kd->program,
199				    "can't read stats at %x", proc.p_stats);
200				return (-1);
201			}
202			kp->ki_start = pstats.p_start;
203			kp->ki_rusage = pstats.p_ru;
204			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
205			    pstats.p_cru.ru_stime.tv_sec;
206			kp->ki_childtime.tv_usec =
207			    pstats.p_cru.ru_utime.tv_usec +
208			    pstats.p_cru.ru_stime.tv_usec;
209		}
210		if (proc.p_oppid)
211			kp->ki_ppid = proc.p_oppid;
212		else if (proc.p_pptr) {
213			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
214				_kvm_err(kd, kd->program,
215				    "can't read pproc at %x", proc.p_pptr);
216				return (-1);
217			}
218			kp->ki_ppid = pproc.p_pid;
219		} else
220			kp->ki_ppid = 0;
221		if (proc.p_pgrp == NULL)
222			goto nopgrp;
223		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
224			_kvm_err(kd, kd->program, "can't read pgrp at %x",
225				 proc.p_pgrp);
226			return (-1);
227		}
228		kp->ki_pgid = pgrp.pg_id;
229		kp->ki_jobc = pgrp.pg_jobc;
230		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
231			_kvm_err(kd, kd->program, "can't read session at %x",
232				pgrp.pg_session);
233			return (-1);
234		}
235		kp->ki_sid = sess.s_sid;
236		(void)memcpy(kp->ki_login, sess.s_login,
237						sizeof(kp->ki_login));
238		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
239		if (sess.s_leader == p)
240			kp->ki_kiflag |= KI_SLEADER;
241		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
242			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
243				_kvm_err(kd, kd->program,
244					 "can't read tty at %x", sess.s_ttyp);
245				return (-1);
246			}
247			kp->ki_tdev = tty.t_dev;
248			if (tty.t_pgrp != NULL) {
249				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
250					_kvm_err(kd, kd->program,
251						 "can't read tpgrp at &x",
252						tty.t_pgrp);
253					return (-1);
254				}
255				kp->ki_tpgid = pgrp.pg_id;
256			} else
257				kp->ki_tpgid = -1;
258			if (tty.t_session != NULL) {
259				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
260					_kvm_err(kd, kd->program,
261					    "can't read session at %x",
262					    tty.t_session);
263					return (-1);
264				}
265				kp->ki_tsid = sess.s_sid;
266			}
267		} else {
268nopgrp:
269			kp->ki_tdev = NODEV;
270		}
271		if ((proc.p_state != PRS_ZOMBIE) && mainthread.td_wmesg)	/* XXXKSE */
272			(void)kvm_read(kd, (u_long)mainthread.td_wmesg,
273			    kp->ki_wmesg, WMESGLEN);
274
275#ifdef sparc
276		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
277		    (char *)&kp->ki_rssize,
278		    sizeof(kp->ki_rssize));
279		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
280		    (char *)&kp->ki_tsize,
281		    3 * sizeof(kp->ki_rssize));	/* XXX */
282#else
283		(void)kvm_read(kd, (u_long)proc.p_vmspace,
284		    (char *)&vmspace, sizeof(vmspace));
285		kp->ki_size = vmspace.vm_map.size;
286		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
287		kp->ki_swrss = vmspace.vm_swrss;
288		kp->ki_tsize = vmspace.vm_tsize;
289		kp->ki_dsize = vmspace.vm_dsize;
290		kp->ki_ssize = vmspace.vm_ssize;
291#endif
292
293		switch (what) {
294
295		case KERN_PROC_PGRP:
296			if (kp->ki_pgid != (pid_t)arg)
297				continue;
298			break;
299
300		case KERN_PROC_TTY:
301			if ((proc.p_flag & P_CONTROLT) == 0 ||
302			     kp->ki_tdev != (dev_t)arg)
303				continue;
304			break;
305		}
306		if (proc.p_comm[0] != 0) {
307			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
308			kp->ki_comm[MAXCOMLEN] = 0;
309		}
310		if ((proc.p_state != PRS_ZOMBIE) &&
311		    mainthread.td_blocked != 0) {
312			kp->ki_kiflag |= KI_MTXBLOCK;
313			if (mainthread.td_mtxname)
314				(void)kvm_read(kd,
315				    (u_long)mainthread.td_mtxname,
316				    kp->ki_mtxname, MTXNAMELEN);
317			kp->ki_mtxname[MTXNAMELEN] = 0;
318		}
319		bintime2timeval(&proc.p_runtime, &tv);
320		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
321		kp->ki_pid = proc.p_pid;
322		kp->ki_siglist = proc.p_siglist;
323		kp->ki_sigmask = proc.p_sigmask;
324		kp->ki_xstat = proc.p_xstat;
325		kp->ki_acflag = proc.p_acflag;
326		if (proc.p_state != PRS_ZOMBIE) {
327			kp->ki_pctcpu = proc.p_kse.ke_pctcpu;
328			kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;
329			kp->ki_slptime = proc.p_kse.ke_slptime;
330			kp->ki_swtime = proc.p_swtime;
331			kp->ki_flag = proc.p_flag;
332			kp->ki_sflag = proc.p_sflag;
333			kp->ki_wchan = mainthread.td_wchan;
334			kp->ki_traceflag = proc.p_traceflag;
335			if (proc.p_state == PRS_NORMAL) {
336				if ((mainthread.td_state == TDS_RUNQ) ||
337				    (mainthread.td_state == TDS_RUNNING)) {
338					kp->ki_stat = SRUN;
339				} else if (mainthread.td_state == TDS_SLP) {
340					kp->ki_stat = SSLEEP;
341				} else if (P_SHOULDSTOP(&proc)) {
342					kp->ki_stat = SSTOP;
343				} else if (mainthread.td_state == TDS_MTX) {
344					kp->ki_stat = SMTX;
345				} else {
346					kp->ki_stat = SWAIT;
347				}
348			} else {
349				kp->ki_stat = SIDL;
350			}
351			kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class;
352			kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri;
353			kp->ki_pri.pri_level = mainthread.td_priority;
354			kp->ki_pri.pri_native = mainthread.td_base_pri;
355			kp->ki_nice = proc.p_ksegrp.kg_nice;
356			kp->ki_lock = proc.p_lock;
357			kp->ki_rqindex = proc.p_kse.ke_rqindex;
358			kp->ki_oncpu = proc.p_kse.ke_oncpu;
359			kp->ki_lastcpu = mainthread.td_lastcpu;
360		} else {
361			kp->ki_stat = SZOMB;
362		}
363		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
364		++bp;
365		++cnt;
366	}
367	return (cnt);
368}
369
370/*
371 * Build proc info array by reading in proc list from a crash dump.
372 * Return number of procs read.  maxcnt is the max we will read.
373 */
374static int
375kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
376	kvm_t *kd;
377	int what, arg;
378	u_long a_allproc;
379	u_long a_zombproc;
380	int maxcnt;
381{
382	struct kinfo_proc *bp = kd->procbase;
383	int acnt, zcnt;
384	struct proc *p;
385
386	if (KREAD(kd, a_allproc, &p)) {
387		_kvm_err(kd, kd->program, "cannot read allproc");
388		return (-1);
389	}
390	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
391	if (acnt < 0)
392		return (acnt);
393
394	if (KREAD(kd, a_zombproc, &p)) {
395		_kvm_err(kd, kd->program, "cannot read zombproc");
396		return (-1);
397	}
398	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
399	if (zcnt < 0)
400		zcnt = 0;
401
402	return (acnt + zcnt);
403}
404
405struct kinfo_proc *
406kvm_getprocs(kd, op, arg, cnt)
407	kvm_t *kd;
408	int op, arg;
409	int *cnt;
410{
411	int mib[4], st, nprocs;
412	size_t size;
413
414	if (kd->procbase != 0) {
415		free((void *)kd->procbase);
416		/*
417		 * Clear this pointer in case this call fails.  Otherwise,
418		 * kvm_close() will free it again.
419		 */
420		kd->procbase = 0;
421	}
422	if (ISALIVE(kd)) {
423		size = 0;
424		mib[0] = CTL_KERN;
425		mib[1] = KERN_PROC;
426		mib[2] = op;
427		mib[3] = arg;
428		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
429		if (st == -1) {
430			_kvm_syserr(kd, kd->program, "kvm_getprocs");
431			return (0);
432		}
433		/*
434		 * We can't continue with a size of 0 because we pass
435		 * it to realloc() (via _kvm_realloc()), and passing 0
436		 * to realloc() results in undefined behavior.
437		 */
438		if (size == 0) {
439			/*
440			 * XXX: We should probably return an invalid,
441			 * but non-NULL, pointer here so any client
442			 * program trying to dereference it will
443			 * crash.  However, _kvm_freeprocs() calls
444			 * free() on kd->procbase if it isn't NULL,
445			 * and free()'ing a junk pointer isn't good.
446			 * Then again, _kvm_freeprocs() isn't used
447			 * anywhere . . .
448			 */
449			kd->procbase = _kvm_malloc(kd, 1);
450			goto liveout;
451		}
452		do {
453			size += size / 10;
454			kd->procbase = (struct kinfo_proc *)
455			    _kvm_realloc(kd, kd->procbase, size);
456			if (kd->procbase == 0)
457				return (0);
458			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
459			    kd->procbase, &size, NULL, 0);
460		} while (st == -1 && errno == ENOMEM);
461		if (st == -1) {
462			_kvm_syserr(kd, kd->program, "kvm_getprocs");
463			return (0);
464		}
465		/*
466		 * We have to check the size again because sysctl()
467		 * may "round up" oldlenp if oldp is NULL; hence it
468		 * might've told us that there was data to get when
469		 * there really isn't any.
470		 */
471		if (size > 0 &&
472		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
473			_kvm_err(kd, kd->program,
474			    "kinfo_proc size mismatch (expected %d, got %d)",
475			    sizeof(struct kinfo_proc),
476			    kd->procbase->ki_structsize);
477			return (0);
478		}
479liveout:
480		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
481	} else {
482		struct nlist nl[4], *p;
483
484		nl[0].n_name = "_nprocs";
485		nl[1].n_name = "_allproc";
486		nl[2].n_name = "_zombproc";
487		nl[3].n_name = 0;
488
489		if (kvm_nlist(kd, nl) != 0) {
490			for (p = nl; p->n_type != 0; ++p)
491				;
492			_kvm_err(kd, kd->program,
493				 "%s: no such symbol", p->n_name);
494			return (0);
495		}
496		if (KREAD(kd, nl[0].n_value, &nprocs)) {
497			_kvm_err(kd, kd->program, "can't read nprocs");
498			return (0);
499		}
500		size = nprocs * sizeof(struct kinfo_proc);
501		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
502		if (kd->procbase == 0)
503			return (0);
504
505		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
506				      nl[2].n_value, nprocs);
507#ifdef notdef
508		size = nprocs * sizeof(struct kinfo_proc);
509		(void)realloc(kd->procbase, size);
510#endif
511	}
512	*cnt = nprocs;
513	return (kd->procbase);
514}
515
516void
517_kvm_freeprocs(kd)
518	kvm_t *kd;
519{
520	if (kd->procbase) {
521		free(kd->procbase);
522		kd->procbase = 0;
523	}
524}
525
526void *
527_kvm_realloc(kd, p, n)
528	kvm_t *kd;
529	void *p;
530	size_t n;
531{
532	void *np = (void *)realloc(p, n);
533
534	if (np == 0) {
535		free(p);
536		_kvm_err(kd, kd->program, "out of memory");
537	}
538	return (np);
539}
540
541#ifndef MAX
542#define MAX(a, b) ((a) > (b) ? (a) : (b))
543#endif
544
545/*
546 * Read in an argument vector from the user address space of process kp.
547 * addr if the user-space base address of narg null-terminated contiguous
548 * strings.  This is used to read in both the command arguments and
549 * environment strings.  Read at most maxcnt characters of strings.
550 */
551static char **
552kvm_argv(kd, kp, addr, narg, maxcnt)
553	kvm_t *kd;
554	struct kinfo_proc *kp;
555	u_long addr;
556	int narg;
557	int maxcnt;
558{
559	char *np, *cp, *ep, *ap;
560	u_long oaddr = -1;
561	int len, cc;
562	char **argv;
563
564	/*
565	 * Check that there aren't an unreasonable number of agruments,
566	 * and that the address is in user space.
567	 */
568	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
569		return (0);
570
571	/*
572	 * kd->argv : work space for fetching the strings from the target
573	 *            process's space, and is converted for returning to caller
574	 */
575	if (kd->argv == 0) {
576		/*
577		 * Try to avoid reallocs.
578		 */
579		kd->argc = MAX(narg + 1, 32);
580		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
581						sizeof(*kd->argv));
582		if (kd->argv == 0)
583			return (0);
584	} else if (narg + 1 > kd->argc) {
585		kd->argc = MAX(2 * kd->argc, narg + 1);
586		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
587						sizeof(*kd->argv));
588		if (kd->argv == 0)
589			return (0);
590	}
591	/*
592	 * kd->argspc : returned to user, this is where the kd->argv
593	 *              arrays are left pointing to the collected strings.
594	 */
595	if (kd->argspc == 0) {
596		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
597		if (kd->argspc == 0)
598			return (0);
599		kd->arglen = PAGE_SIZE;
600	}
601	/*
602	 * kd->argbuf : used to pull in pages from the target process.
603	 *              the strings are copied out of here.
604	 */
605	if (kd->argbuf == 0) {
606		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
607		if (kd->argbuf == 0)
608			return (0);
609	}
610
611	/* Pull in the target process'es argv vector */
612	cc = sizeof(char *) * narg;
613	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
614		return (0);
615	/*
616	 * ap : saved start address of string we're working on in kd->argspc
617	 * np : pointer to next place to write in kd->argspc
618	 * len: length of data in kd->argspc
619	 * argv: pointer to the argv vector that we are hunting around the
620	 *       target process space for, and converting to addresses in
621	 *       our address space (kd->argspc).
622	 */
623	ap = np = kd->argspc;
624	argv = kd->argv;
625	len = 0;
626	/*
627	 * Loop over pages, filling in the argument vector.
628	 * Note that the argv strings could be pointing *anywhere* in
629	 * the user address space and are no longer contiguous.
630	 * Note that *argv is modified when we are going to fetch a string
631	 * that crosses a page boundary.  We copy the next part of the string
632	 * into to "np" and eventually convert the pointer.
633	 */
634	while (argv < kd->argv + narg && *argv != 0) {
635
636		/* get the address that the current argv string is on */
637		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
638
639		/* is it the same page as the last one? */
640		if (addr != oaddr) {
641			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
642			    PAGE_SIZE)
643				return (0);
644			oaddr = addr;
645		}
646
647		/* offset within the page... kd->argbuf */
648		addr = (u_long)*argv & (PAGE_SIZE - 1);
649
650		/* cp = start of string, cc = count of chars in this chunk */
651		cp = kd->argbuf + addr;
652		cc = PAGE_SIZE - addr;
653
654		/* dont get more than asked for by user process */
655		if (maxcnt > 0 && cc > maxcnt - len)
656			cc = maxcnt - len;
657
658		/* pointer to end of string if we found it in this page */
659		ep = memchr(cp, '\0', cc);
660		if (ep != 0)
661			cc = ep - cp + 1;
662		/*
663		 * at this point, cc is the count of the chars that we are
664		 * going to retrieve this time. we may or may not have found
665		 * the end of it.  (ep points to the null if the end is known)
666		 */
667
668		/* will we exceed the malloc/realloced buffer? */
669		if (len + cc > kd->arglen) {
670			int off;
671			char **pp;
672			char *op = kd->argspc;
673
674			kd->arglen *= 2;
675			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
676							  kd->arglen);
677			if (kd->argspc == 0)
678				return (0);
679			/*
680			 * Adjust argv pointers in case realloc moved
681			 * the string space.
682			 */
683			off = kd->argspc - op;
684			for (pp = kd->argv; pp < argv; pp++)
685				*pp += off;
686			ap += off;
687			np += off;
688		}
689		/* np = where to put the next part of the string in kd->argspc*/
690		/* np is kinda redundant.. could use "kd->argspc + len" */
691		memcpy(np, cp, cc);
692		np += cc;	/* inc counters */
693		len += cc;
694
695		/*
696		 * if end of string found, set the *argv pointer to the
697		 * saved beginning of string, and advance. argv points to
698		 * somewhere in kd->argv..  This is initially relative
699		 * to the target process, but when we close it off, we set
700		 * it to point in our address space.
701		 */
702		if (ep != 0) {
703			*argv++ = ap;
704			ap = np;
705		} else {
706			/* update the address relative to the target process */
707			*argv += cc;
708		}
709
710		if (maxcnt > 0 && len >= maxcnt) {
711			/*
712			 * We're stopping prematurely.  Terminate the
713			 * current string.
714			 */
715			if (ep == 0) {
716				*np = '\0';
717				*argv++ = ap;
718			}
719			break;
720		}
721	}
722	/* Make sure argv is terminated. */
723	*argv = 0;
724	return (kd->argv);
725}
726
727static void
728ps_str_a(p, addr, n)
729	struct ps_strings *p;
730	u_long *addr;
731	int *n;
732{
733	*addr = (u_long)p->ps_argvstr;
734	*n = p->ps_nargvstr;
735}
736
737static void
738ps_str_e(p, addr, n)
739	struct ps_strings *p;
740	u_long *addr;
741	int *n;
742{
743	*addr = (u_long)p->ps_envstr;
744	*n = p->ps_nenvstr;
745}
746
747/*
748 * Determine if the proc indicated by p is still active.
749 * This test is not 100% foolproof in theory, but chances of
750 * being wrong are very low.
751 */
752static int
753proc_verify(curkp)
754	struct kinfo_proc *curkp;
755{
756	struct kinfo_proc newkp;
757	int mib[4];
758	size_t len;
759
760	mib[0] = CTL_KERN;
761	mib[1] = KERN_PROC;
762	mib[2] = KERN_PROC_PID;
763	mib[3] = curkp->ki_pid;
764	len = sizeof(newkp);
765	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
766		return (0);
767	return (curkp->ki_pid == newkp.ki_pid &&
768	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
769}
770
771static char **
772kvm_doargv(kd, kp, nchr, info)
773	kvm_t *kd;
774	struct kinfo_proc *kp;
775	int nchr;
776	void (*info)(struct ps_strings *, u_long *, int *);
777{
778	char **ap;
779	u_long addr;
780	int cnt;
781	static struct ps_strings arginfo;
782	static u_long ps_strings;
783	size_t len;
784
785	if (ps_strings == NULL) {
786		len = sizeof(ps_strings);
787		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
788		    0) == -1)
789			ps_strings = PS_STRINGS;
790	}
791
792	/*
793	 * Pointers are stored at the top of the user stack.
794	 */
795	if (kp->ki_stat == SZOMB ||
796	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
797		      sizeof(arginfo)) != sizeof(arginfo))
798		return (0);
799
800	(*info)(&arginfo, &addr, &cnt);
801	if (cnt == 0)
802		return (0);
803	ap = kvm_argv(kd, kp, addr, cnt, nchr);
804	/*
805	 * For live kernels, make sure this process didn't go away.
806	 */
807	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
808		ap = 0;
809	return (ap);
810}
811
812/*
813 * Get the command args.  This code is now machine independent.
814 */
815char **
816kvm_getargv(kd, kp, nchr)
817	kvm_t *kd;
818	const struct kinfo_proc *kp;
819	int nchr;
820{
821	int oid[4];
822	int i;
823	size_t bufsz;
824	static unsigned long buflen;
825	static char *buf, *p;
826	static char **bufp;
827	static int argc;
828
829	if (!ISALIVE(kd)) {
830		_kvm_err(kd, kd->program,
831		    "cannot read user space from dead kernel");
832		return (0);
833	}
834
835	if (!buflen) {
836		bufsz = sizeof(buflen);
837		i = sysctlbyname("kern.ps_arg_cache_limit",
838		    &buflen, &bufsz, NULL, 0);
839		if (i == -1) {
840			buflen = 0;
841		} else {
842			buf = malloc(buflen);
843			if (buf == NULL)
844				buflen = 0;
845			argc = 32;
846			bufp = malloc(sizeof(char *) * argc);
847		}
848	}
849	if (buf != NULL) {
850		oid[0] = CTL_KERN;
851		oid[1] = KERN_PROC;
852		oid[2] = KERN_PROC_ARGS;
853		oid[3] = kp->ki_pid;
854		bufsz = buflen;
855		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
856		if (i == 0 && bufsz > 0) {
857			i = 0;
858			p = buf;
859			do {
860				bufp[i++] = p;
861				p += strlen(p) + 1;
862				if (i >= argc) {
863					argc += argc;
864					bufp = realloc(bufp,
865					    sizeof(char *) * argc);
866				}
867			} while (p < buf + bufsz);
868			bufp[i++] = 0;
869			return (bufp);
870		}
871	}
872	if (kp->ki_flag & P_SYSTEM)
873		return (NULL);
874	return (kvm_doargv(kd, kp, nchr, ps_str_a));
875}
876
877char **
878kvm_getenvv(kd, kp, nchr)
879	kvm_t *kd;
880	const struct kinfo_proc *kp;
881	int nchr;
882{
883	return (kvm_doargv(kd, kp, nchr, ps_str_e));
884}
885
886/*
887 * Read from user space.  The user context is given by p.
888 */
889ssize_t
890kvm_uread(kd, kp, uva, buf, len)
891	kvm_t *kd;
892	struct kinfo_proc *kp;
893	u_long uva;
894	char *buf;
895	size_t len;
896{
897	char *cp;
898	char procfile[MAXPATHLEN];
899	ssize_t amount;
900	int fd;
901
902	if (!ISALIVE(kd)) {
903		_kvm_err(kd, kd->program,
904		    "cannot read user space from dead kernel");
905		return (0);
906	}
907
908	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
909	fd = open(procfile, O_RDONLY, 0);
910	if (fd < 0) {
911		_kvm_err(kd, kd->program, "cannot open %s", procfile);
912		close(fd);
913		return (0);
914	}
915
916	cp = buf;
917	while (len > 0) {
918		errno = 0;
919		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
920			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
921			    uva, procfile);
922			break;
923		}
924		amount = read(fd, cp, len);
925		if (amount < 0) {
926			_kvm_syserr(kd, kd->program, "error reading %s",
927			    procfile);
928			break;
929		}
930		if (amount == 0) {
931			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
932			break;
933		}
934		cp += amount;
935		uva += amount;
936		len -= amount;
937	}
938
939	close(fd);
940	return ((ssize_t)(cp - buf));
941}
942