kvm_proc.c revision 99072
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 99072 2002-06-29 17:26:22Z julian $
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 99072 2002-06-29 17:26:22Z julian $");
42
43#if defined(LIBC_SCCS) && !defined(lint)
44static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45#endif /* LIBC_SCCS and not lint */
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#include <sys/user.h>
56#include <sys/proc.h>
57#include <sys/exec.h>
58#include <sys/stat.h>
59#include <sys/ioctl.h>
60#include <sys/tty.h>
61#include <sys/file.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <unistd.h>
65#include <nlist.h>
66#include <kvm.h>
67
68#include <vm/vm.h>
69#include <vm/vm_param.h>
70#include <vm/swap_pager.h>
71
72#include <sys/sysctl.h>
73
74#include <limits.h>
75#include <memory.h>
76#include <paths.h>
77
78#include "kvm_private.h"
79
80#if used
81static char *
82kvm_readswap(kd, p, va, cnt)
83	kvm_t *kd;
84	const struct proc *p;
85	u_long va;
86	u_long *cnt;
87{
88#ifdef __FreeBSD__
89	/* XXX Stubbed out, our vm system is differnet */
90	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91	return(0);
92#endif	/* __FreeBSD__ */
93}
94#endif
95
96#define KREAD(kd, addr, obj) \
97	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98
99/*
100 * Read proc's from memory file into buffer bp, which has space to hold
101 * at most maxcnt procs.
102 */
103static int
104kvm_proclist(kd, what, arg, p, bp, maxcnt)
105	kvm_t *kd;
106	int what, arg;
107	struct proc *p;
108	struct kinfo_proc *bp;
109	int maxcnt;
110{
111	int cnt = 0;
112	struct kinfo_proc kinfo_proc, *kp;
113	struct pgrp pgrp;
114	struct session sess;
115	struct tty tty;
116	struct vmspace vmspace;
117	struct procsig procsig;
118	struct pstats pstats;
119	struct ucred ucred;
120	struct thread mainthread;
121	struct proc proc;
122	struct proc pproc;
123	struct timeval tv;
124
125	kp = &kinfo_proc;
126	kp->ki_structsize = sizeof(kinfo_proc);
127	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128		memset(kp, 0, sizeof *kp);
129		if (KREAD(kd, (u_long)p, &proc)) {
130			_kvm_err(kd, kd->program, "can't read proc at %x", p);
131			return (-1);
132		}
133		if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
134		    &mainthread)) {
135			_kvm_err(kd, kd->program, "can't read thread at %x",
136			    TAILQ_FIRST(&proc.p_threads));
137			return (-1);
138		}
139		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
140			kp->ki_ruid = ucred.cr_ruid;
141			kp->ki_svuid = ucred.cr_svuid;
142			kp->ki_rgid = ucred.cr_rgid;
143			kp->ki_svgid = ucred.cr_svgid;
144			kp->ki_ngroups = ucred.cr_ngroups;
145			bcopy(ucred.cr_groups, kp->ki_groups,
146			    NGROUPS * sizeof(gid_t));
147			kp->ki_uid = ucred.cr_uid;
148		}
149
150		switch(what) {
151
152		case KERN_PROC_PID:
153			if (proc.p_pid != (pid_t)arg)
154				continue;
155			break;
156
157		case KERN_PROC_UID:
158			if (kp->ki_uid != (uid_t)arg)
159				continue;
160			break;
161
162		case KERN_PROC_RUID:
163			if (kp->ki_ruid != (uid_t)arg)
164				continue;
165			break;
166		}
167		/*
168		 * We're going to add another proc to the set.  If this
169		 * will overflow the buffer, assume the reason is because
170		 * nprocs (or the proc list) is corrupt and declare an error.
171		 */
172		if (cnt >= maxcnt) {
173			_kvm_err(kd, kd->program, "nprocs corrupt");
174			return (-1);
175		}
176		/*
177		 * gather kinfo_proc
178		 */
179		kp->ki_paddr = p;
180		kp->ki_addr = proc.p_uarea;
181		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
182		kp->ki_args = proc.p_args;
183		kp->ki_tracep = proc.p_tracep;
184		kp->ki_textvp = proc.p_textvp;
185		kp->ki_fd = proc.p_fd;
186		kp->ki_vmspace = proc.p_vmspace;
187		if (proc.p_procsig != NULL) {
188			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
189				_kvm_err(kd, kd->program,
190				    "can't read procsig at %x", proc.p_procsig);
191				return (-1);
192			}
193			kp->ki_sigignore = procsig.ps_sigignore;
194			kp->ki_sigcatch = procsig.ps_sigcatch;
195		}
196		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
197			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
198				_kvm_err(kd, kd->program,
199				    "can't read stats at %x", proc.p_stats);
200				return (-1);
201			}
202			kp->ki_start = pstats.p_start;
203			kp->ki_rusage = pstats.p_ru;
204			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
205			    pstats.p_cru.ru_stime.tv_sec;
206			kp->ki_childtime.tv_usec =
207			    pstats.p_cru.ru_utime.tv_usec +
208			    pstats.p_cru.ru_stime.tv_usec;
209		}
210		if (proc.p_oppid)
211			kp->ki_ppid = proc.p_oppid;
212		else if (proc.p_pptr) {
213			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
214				_kvm_err(kd, kd->program,
215				    "can't read pproc at %x", proc.p_pptr);
216				return (-1);
217			}
218			kp->ki_ppid = pproc.p_pid;
219		} else
220			kp->ki_ppid = 0;
221		if (proc.p_pgrp == NULL)
222			goto nopgrp;
223		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
224			_kvm_err(kd, kd->program, "can't read pgrp at %x",
225				 proc.p_pgrp);
226			return (-1);
227		}
228		kp->ki_pgid = pgrp.pg_id;
229		kp->ki_jobc = pgrp.pg_jobc;
230		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
231			_kvm_err(kd, kd->program, "can't read session at %x",
232				pgrp.pg_session);
233			return (-1);
234		}
235		kp->ki_sid = sess.s_sid;
236		(void)memcpy(kp->ki_login, sess.s_login,
237						sizeof(kp->ki_login));
238		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
239		if (sess.s_leader == p)
240			kp->ki_kiflag |= KI_SLEADER;
241		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
242			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
243				_kvm_err(kd, kd->program,
244					 "can't read tty at %x", sess.s_ttyp);
245				return (-1);
246			}
247			kp->ki_tdev = tty.t_dev;
248			if (tty.t_pgrp != NULL) {
249				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
250					_kvm_err(kd, kd->program,
251						 "can't read tpgrp at &x",
252						tty.t_pgrp);
253					return (-1);
254				}
255				kp->ki_tpgid = pgrp.pg_id;
256			} else
257				kp->ki_tpgid = -1;
258			if (tty.t_session != NULL) {
259				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
260					_kvm_err(kd, kd->program,
261					    "can't read session at %x",
262					    tty.t_session);
263					return (-1);
264				}
265				kp->ki_tsid = sess.s_sid;
266			}
267		} else {
268nopgrp:
269			kp->ki_tdev = NODEV;
270		}
271		if (mainthread.td_wmesg)	/* XXXKSE */
272			(void)kvm_read(kd, (u_long)mainthread.td_wmesg,
273			    kp->ki_wmesg, WMESGLEN);
274
275#ifdef sparc
276		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
277		    (char *)&kp->ki_rssize,
278		    sizeof(kp->ki_rssize));
279		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
280		    (char *)&kp->ki_tsize,
281		    3 * sizeof(kp->ki_rssize));	/* XXX */
282#else
283		(void)kvm_read(kd, (u_long)proc.p_vmspace,
284		    (char *)&vmspace, sizeof(vmspace));
285		kp->ki_size = vmspace.vm_map.size;
286		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
287		kp->ki_swrss = vmspace.vm_swrss;
288		kp->ki_tsize = vmspace.vm_tsize;
289		kp->ki_dsize = vmspace.vm_dsize;
290		kp->ki_ssize = vmspace.vm_ssize;
291#endif
292
293		switch (what) {
294
295		case KERN_PROC_PGRP:
296			if (kp->ki_pgid != (pid_t)arg)
297				continue;
298			break;
299
300		case KERN_PROC_TTY:
301			if ((proc.p_flag & P_CONTROLT) == 0 ||
302			     kp->ki_tdev != (dev_t)arg)
303				continue;
304			break;
305		}
306		if (proc.p_comm[0] != 0) {
307			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
308			kp->ki_comm[MAXCOMLEN] = 0;
309		}
310		if (mainthread.td_blocked != 0) {	/* XXXKSE */
311			kp->ki_kiflag |= KI_MTXBLOCK;
312			if (mainthread.td_mtxname)	/* XXXKSE */
313				(void)kvm_read(kd, (u_long)mainthread.td_mtxname,
314				    kp->ki_mtxname, MTXNAMELEN);
315			kp->ki_mtxname[MTXNAMELEN] = 0;
316		}
317		bintime2timeval(&proc.p_runtime, &tv);
318		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
319		kp->ki_pid = proc.p_pid;
320		kp->ki_siglist = proc.p_siglist;
321		kp->ki_sigmask = proc.p_sigmask;
322		kp->ki_xstat = proc.p_xstat;
323		kp->ki_acflag = proc.p_acflag;
324		kp->ki_pctcpu = proc.p_kse.ke_pctcpu;		/* XXXKSE */
325		kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;	/* XXXKSE */
326		kp->ki_slptime = proc.p_kse.ke_slptime;		/* XXXKSE */
327		kp->ki_swtime = proc.p_swtime;
328		kp->ki_flag = proc.p_flag;	/* WILDLY INNACURATE XXXKSE */
329		kp->ki_sflag = proc.p_sflag;
330		kp->ki_wchan = mainthread.td_wchan;		/* XXXKSE */
331		kp->ki_traceflag = proc.p_traceflag;
332		if (proc.p_state == PRS_NORMAL) { /*  XXXKSE very aproximate */
333			if ((mainthread.td_state == TDS_RUNQ) ||
334			    (mainthread.td_state == TDS_RUNNING)) {
335				kp->ki_stat = SRUN;
336			} else if (mainthread.td_state == TDS_SLP) {
337				kp->ki_stat = SSLEEP;
338			} else if (P_SHOULDSTOP(&proc)) {
339				kp->ki_stat = SSTOP;
340			} else if (mainthread.td_state == TDS_MTX) {
341				kp->ki_stat = SMTX;
342			} else {
343				kp->ki_stat = SWAIT;
344			}
345		} else if (proc.p_state == PRS_ZOMBIE) {
346			kp->ki_stat = SZOMB;
347		} else {
348			kp->ki_stat = SIDL;
349		}
350		kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */
351		kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */
352		kp->ki_pri.pri_level = mainthread.td_priority;	/* XXXKSE */
353		kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */
354		kp->ki_nice = proc.p_ksegrp.kg_nice;		/* XXXKSE */
355		kp->ki_lock = proc.p_lock;
356		kp->ki_rqindex = proc.p_kse.ke_rqindex;		/* XXXKSE */
357		kp->ki_oncpu = proc.p_kse.ke_oncpu;		/* XXXKSE */
358		kp->ki_lastcpu = mainthread.td_lastcpu;	/* XXXKSE */
359		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
360		++bp;
361		++cnt;
362	}
363	return (cnt);
364}
365
366/*
367 * Build proc info array by reading in proc list from a crash dump.
368 * Return number of procs read.  maxcnt is the max we will read.
369 */
370static int
371kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
372	kvm_t *kd;
373	int what, arg;
374	u_long a_allproc;
375	u_long a_zombproc;
376	int maxcnt;
377{
378	struct kinfo_proc *bp = kd->procbase;
379	int acnt, zcnt;
380	struct proc *p;
381
382	if (KREAD(kd, a_allproc, &p)) {
383		_kvm_err(kd, kd->program, "cannot read allproc");
384		return (-1);
385	}
386	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
387	if (acnt < 0)
388		return (acnt);
389
390	if (KREAD(kd, a_zombproc, &p)) {
391		_kvm_err(kd, kd->program, "cannot read zombproc");
392		return (-1);
393	}
394	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
395	if (zcnt < 0)
396		zcnt = 0;
397
398	return (acnt + zcnt);
399}
400
401struct kinfo_proc *
402kvm_getprocs(kd, op, arg, cnt)
403	kvm_t *kd;
404	int op, arg;
405	int *cnt;
406{
407	int mib[4], st, nprocs;
408	size_t size;
409
410	if (kd->procbase != 0) {
411		free((void *)kd->procbase);
412		/*
413		 * Clear this pointer in case this call fails.  Otherwise,
414		 * kvm_close() will free it again.
415		 */
416		kd->procbase = 0;
417	}
418	if (ISALIVE(kd)) {
419		size = 0;
420		mib[0] = CTL_KERN;
421		mib[1] = KERN_PROC;
422		mib[2] = op;
423		mib[3] = arg;
424		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
425		if (st == -1) {
426			_kvm_syserr(kd, kd->program, "kvm_getprocs");
427			return (0);
428		}
429		/*
430		 * We can't continue with a size of 0 because we pass
431		 * it to realloc() (via _kvm_realloc()), and passing 0
432		 * to realloc() results in undefined behavior.
433		 */
434		if (size == 0) {
435			/*
436			 * XXX: We should probably return an invalid,
437			 * but non-NULL, pointer here so any client
438			 * program trying to dereference it will
439			 * crash.  However, _kvm_freeprocs() calls
440			 * free() on kd->procbase if it isn't NULL,
441			 * and free()'ing a junk pointer isn't good.
442			 * Then again, _kvm_freeprocs() isn't used
443			 * anywhere . . .
444			 */
445			kd->procbase = _kvm_malloc(kd, 1);
446			goto liveout;
447		}
448		do {
449			size += size / 10;
450			kd->procbase = (struct kinfo_proc *)
451			    _kvm_realloc(kd, kd->procbase, size);
452			if (kd->procbase == 0)
453				return (0);
454			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
455			    kd->procbase, &size, NULL, 0);
456		} while (st == -1 && errno == ENOMEM);
457		if (st == -1) {
458			_kvm_syserr(kd, kd->program, "kvm_getprocs");
459			return (0);
460		}
461		/*
462		 * We have to check the size again because sysctl()
463		 * may "round up" oldlenp if oldp is NULL; hence it
464		 * might've told us that there was data to get when
465		 * there really isn't any.
466		 */
467		if (size > 0 &&
468		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
469			_kvm_err(kd, kd->program,
470			    "kinfo_proc size mismatch (expected %d, got %d)",
471			    sizeof(struct kinfo_proc),
472			    kd->procbase->ki_structsize);
473			return (0);
474		}
475liveout:
476		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
477	} else {
478		struct nlist nl[4], *p;
479
480		nl[0].n_name = "_nprocs";
481		nl[1].n_name = "_allproc";
482		nl[2].n_name = "_zombproc";
483		nl[3].n_name = 0;
484
485		if (kvm_nlist(kd, nl) != 0) {
486			for (p = nl; p->n_type != 0; ++p)
487				;
488			_kvm_err(kd, kd->program,
489				 "%s: no such symbol", p->n_name);
490			return (0);
491		}
492		if (KREAD(kd, nl[0].n_value, &nprocs)) {
493			_kvm_err(kd, kd->program, "can't read nprocs");
494			return (0);
495		}
496		size = nprocs * sizeof(struct kinfo_proc);
497		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
498		if (kd->procbase == 0)
499			return (0);
500
501		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
502				      nl[2].n_value, nprocs);
503#ifdef notdef
504		size = nprocs * sizeof(struct kinfo_proc);
505		(void)realloc(kd->procbase, size);
506#endif
507	}
508	*cnt = nprocs;
509	return (kd->procbase);
510}
511
512void
513_kvm_freeprocs(kd)
514	kvm_t *kd;
515{
516	if (kd->procbase) {
517		free(kd->procbase);
518		kd->procbase = 0;
519	}
520}
521
522void *
523_kvm_realloc(kd, p, n)
524	kvm_t *kd;
525	void *p;
526	size_t n;
527{
528	void *np = (void *)realloc(p, n);
529
530	if (np == 0) {
531		free(p);
532		_kvm_err(kd, kd->program, "out of memory");
533	}
534	return (np);
535}
536
537#ifndef MAX
538#define MAX(a, b) ((a) > (b) ? (a) : (b))
539#endif
540
541/*
542 * Read in an argument vector from the user address space of process kp.
543 * addr if the user-space base address of narg null-terminated contiguous
544 * strings.  This is used to read in both the command arguments and
545 * environment strings.  Read at most maxcnt characters of strings.
546 */
547static char **
548kvm_argv(kd, kp, addr, narg, maxcnt)
549	kvm_t *kd;
550	struct kinfo_proc *kp;
551	u_long addr;
552	int narg;
553	int maxcnt;
554{
555	char *np, *cp, *ep, *ap;
556	u_long oaddr = -1;
557	int len, cc;
558	char **argv;
559
560	/*
561	 * Check that there aren't an unreasonable number of agruments,
562	 * and that the address is in user space.
563	 */
564	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
565		return (0);
566
567	/*
568	 * kd->argv : work space for fetching the strings from the target
569	 *            process's space, and is converted for returning to caller
570	 */
571	if (kd->argv == 0) {
572		/*
573		 * Try to avoid reallocs.
574		 */
575		kd->argc = MAX(narg + 1, 32);
576		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
577						sizeof(*kd->argv));
578		if (kd->argv == 0)
579			return (0);
580	} else if (narg + 1 > kd->argc) {
581		kd->argc = MAX(2 * kd->argc, narg + 1);
582		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
583						sizeof(*kd->argv));
584		if (kd->argv == 0)
585			return (0);
586	}
587	/*
588	 * kd->argspc : returned to user, this is where the kd->argv
589	 *              arrays are left pointing to the collected strings.
590	 */
591	if (kd->argspc == 0) {
592		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
593		if (kd->argspc == 0)
594			return (0);
595		kd->arglen = PAGE_SIZE;
596	}
597	/*
598	 * kd->argbuf : used to pull in pages from the target process.
599	 *              the strings are copied out of here.
600	 */
601	if (kd->argbuf == 0) {
602		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
603		if (kd->argbuf == 0)
604			return (0);
605	}
606
607	/* Pull in the target process'es argv vector */
608	cc = sizeof(char *) * narg;
609	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
610		return (0);
611	/*
612	 * ap : saved start address of string we're working on in kd->argspc
613	 * np : pointer to next place to write in kd->argspc
614	 * len: length of data in kd->argspc
615	 * argv: pointer to the argv vector that we are hunting around the
616	 *       target process space for, and converting to addresses in
617	 *       our address space (kd->argspc).
618	 */
619	ap = np = kd->argspc;
620	argv = kd->argv;
621	len = 0;
622	/*
623	 * Loop over pages, filling in the argument vector.
624	 * Note that the argv strings could be pointing *anywhere* in
625	 * the user address space and are no longer contiguous.
626	 * Note that *argv is modified when we are going to fetch a string
627	 * that crosses a page boundary.  We copy the next part of the string
628	 * into to "np" and eventually convert the pointer.
629	 */
630	while (argv < kd->argv + narg && *argv != 0) {
631
632		/* get the address that the current argv string is on */
633		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
634
635		/* is it the same page as the last one? */
636		if (addr != oaddr) {
637			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
638			    PAGE_SIZE)
639				return (0);
640			oaddr = addr;
641		}
642
643		/* offset within the page... kd->argbuf */
644		addr = (u_long)*argv & (PAGE_SIZE - 1);
645
646		/* cp = start of string, cc = count of chars in this chunk */
647		cp = kd->argbuf + addr;
648		cc = PAGE_SIZE - addr;
649
650		/* dont get more than asked for by user process */
651		if (maxcnt > 0 && cc > maxcnt - len)
652			cc = maxcnt - len;
653
654		/* pointer to end of string if we found it in this page */
655		ep = memchr(cp, '\0', cc);
656		if (ep != 0)
657			cc = ep - cp + 1;
658		/*
659		 * at this point, cc is the count of the chars that we are
660		 * going to retrieve this time. we may or may not have found
661		 * the end of it.  (ep points to the null if the end is known)
662		 */
663
664		/* will we exceed the malloc/realloced buffer? */
665		if (len + cc > kd->arglen) {
666			int off;
667			char **pp;
668			char *op = kd->argspc;
669
670			kd->arglen *= 2;
671			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
672							  kd->arglen);
673			if (kd->argspc == 0)
674				return (0);
675			/*
676			 * Adjust argv pointers in case realloc moved
677			 * the string space.
678			 */
679			off = kd->argspc - op;
680			for (pp = kd->argv; pp < argv; pp++)
681				*pp += off;
682			ap += off;
683			np += off;
684		}
685		/* np = where to put the next part of the string in kd->argspc*/
686		/* np is kinda redundant.. could use "kd->argspc + len" */
687		memcpy(np, cp, cc);
688		np += cc;	/* inc counters */
689		len += cc;
690
691		/*
692		 * if end of string found, set the *argv pointer to the
693		 * saved beginning of string, and advance. argv points to
694		 * somewhere in kd->argv..  This is initially relative
695		 * to the target process, but when we close it off, we set
696		 * it to point in our address space.
697		 */
698		if (ep != 0) {
699			*argv++ = ap;
700			ap = np;
701		} else {
702			/* update the address relative to the target process */
703			*argv += cc;
704		}
705
706		if (maxcnt > 0 && len >= maxcnt) {
707			/*
708			 * We're stopping prematurely.  Terminate the
709			 * current string.
710			 */
711			if (ep == 0) {
712				*np = '\0';
713				*argv++ = ap;
714			}
715			break;
716		}
717	}
718	/* Make sure argv is terminated. */
719	*argv = 0;
720	return (kd->argv);
721}
722
723static void
724ps_str_a(p, addr, n)
725	struct ps_strings *p;
726	u_long *addr;
727	int *n;
728{
729	*addr = (u_long)p->ps_argvstr;
730	*n = p->ps_nargvstr;
731}
732
733static void
734ps_str_e(p, addr, n)
735	struct ps_strings *p;
736	u_long *addr;
737	int *n;
738{
739	*addr = (u_long)p->ps_envstr;
740	*n = p->ps_nenvstr;
741}
742
743/*
744 * Determine if the proc indicated by p is still active.
745 * This test is not 100% foolproof in theory, but chances of
746 * being wrong are very low.
747 */
748static int
749proc_verify(curkp)
750	struct kinfo_proc *curkp;
751{
752	struct kinfo_proc newkp;
753	int mib[4];
754	size_t len;
755
756	mib[0] = CTL_KERN;
757	mib[1] = KERN_PROC;
758	mib[2] = KERN_PROC_PID;
759	mib[3] = curkp->ki_pid;
760	len = sizeof(newkp);
761	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
762		return (0);
763	return (curkp->ki_pid == newkp.ki_pid &&
764	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
765}
766
767static char **
768kvm_doargv(kd, kp, nchr, info)
769	kvm_t *kd;
770	struct kinfo_proc *kp;
771	int nchr;
772	void (*info)(struct ps_strings *, u_long *, int *);
773{
774	char **ap;
775	u_long addr;
776	int cnt;
777	static struct ps_strings arginfo;
778	static u_long ps_strings;
779	size_t len;
780
781	if (ps_strings == NULL) {
782		len = sizeof(ps_strings);
783		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
784		    0) == -1)
785			ps_strings = PS_STRINGS;
786	}
787
788	/*
789	 * Pointers are stored at the top of the user stack.
790	 */
791	if (kp->ki_stat == SZOMB ||
792	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
793		      sizeof(arginfo)) != sizeof(arginfo))
794		return (0);
795
796	(*info)(&arginfo, &addr, &cnt);
797	if (cnt == 0)
798		return (0);
799	ap = kvm_argv(kd, kp, addr, cnt, nchr);
800	/*
801	 * For live kernels, make sure this process didn't go away.
802	 */
803	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
804		ap = 0;
805	return (ap);
806}
807
808/*
809 * Get the command args.  This code is now machine independent.
810 */
811char **
812kvm_getargv(kd, kp, nchr)
813	kvm_t *kd;
814	const struct kinfo_proc *kp;
815	int nchr;
816{
817	int oid[4];
818	int i;
819	size_t bufsz;
820	static unsigned long buflen;
821	static char *buf, *p;
822	static char **bufp;
823	static int argc;
824
825	if (!ISALIVE(kd)) {
826		_kvm_err(kd, kd->program,
827		    "cannot read user space from dead kernel");
828		return (0);
829	}
830
831	if (!buflen) {
832		bufsz = sizeof(buflen);
833		i = sysctlbyname("kern.ps_arg_cache_limit",
834		    &buflen, &bufsz, NULL, 0);
835		if (i == -1) {
836			buflen = 0;
837		} else {
838			buf = malloc(buflen);
839			if (buf == NULL)
840				buflen = 0;
841			argc = 32;
842			bufp = malloc(sizeof(char *) * argc);
843		}
844	}
845	if (buf != NULL) {
846		oid[0] = CTL_KERN;
847		oid[1] = KERN_PROC;
848		oid[2] = KERN_PROC_ARGS;
849		oid[3] = kp->ki_pid;
850		bufsz = buflen;
851		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
852		if (i == 0 && bufsz > 0) {
853			i = 0;
854			p = buf;
855			do {
856				bufp[i++] = p;
857				p += strlen(p) + 1;
858				if (i >= argc) {
859					argc += argc;
860					bufp = realloc(bufp,
861					    sizeof(char *) * argc);
862				}
863			} while (p < buf + bufsz);
864			bufp[i++] = 0;
865			return (bufp);
866		}
867	}
868	if (kp->ki_flag & P_SYSTEM)
869		return (NULL);
870	return (kvm_doargv(kd, kp, nchr, ps_str_a));
871}
872
873char **
874kvm_getenvv(kd, kp, nchr)
875	kvm_t *kd;
876	const struct kinfo_proc *kp;
877	int nchr;
878{
879	return (kvm_doargv(kd, kp, nchr, ps_str_e));
880}
881
882/*
883 * Read from user space.  The user context is given by p.
884 */
885ssize_t
886kvm_uread(kd, kp, uva, buf, len)
887	kvm_t *kd;
888	struct kinfo_proc *kp;
889	u_long uva;
890	char *buf;
891	size_t len;
892{
893	char *cp;
894	char procfile[MAXPATHLEN];
895	ssize_t amount;
896	int fd;
897
898	if (!ISALIVE(kd)) {
899		_kvm_err(kd, kd->program,
900		    "cannot read user space from dead kernel");
901		return (0);
902	}
903
904	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
905	fd = open(procfile, O_RDONLY, 0);
906	if (fd < 0) {
907		_kvm_err(kd, kd->program, "cannot open %s", procfile);
908		close(fd);
909		return (0);
910	}
911
912	cp = buf;
913	while (len > 0) {
914		errno = 0;
915		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
916			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
917			    uva, procfile);
918			break;
919		}
920		amount = read(fd, cp, len);
921		if (amount < 0) {
922			_kvm_syserr(kd, kd->program, "error reading %s",
923			    procfile);
924			break;
925		}
926		if (amount == 0) {
927			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
928			break;
929		}
930		cp += amount;
931		uva += amount;
932		len -= amount;
933	}
934
935	close(fd);
936	return ((ssize_t)(cp - buf));
937}
938