kvm_proc.c revision 91075
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 91075 2002-02-22 19:10:09Z green $
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 91075 2002-02-22 19:10:09Z green $");
42
43#if defined(LIBC_SCCS) && !defined(lint)
44static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45#endif /* LIBC_SCCS and not lint */
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#include <sys/user.h>
56#include <sys/proc.h>
57#include <sys/exec.h>
58#include <sys/stat.h>
59#include <sys/ioctl.h>
60#include <sys/tty.h>
61#include <sys/file.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <unistd.h>
65#include <nlist.h>
66#include <kvm.h>
67
68#include <vm/vm.h>
69#include <vm/vm_param.h>
70#include <vm/swap_pager.h>
71
72#include <sys/sysctl.h>
73
74#include <limits.h>
75#include <memory.h>
76#include <paths.h>
77
78#include "kvm_private.h"
79
80#if used
81static char *
82kvm_readswap(kd, p, va, cnt)
83	kvm_t *kd;
84	const struct proc *p;
85	u_long va;
86	u_long *cnt;
87{
88#ifdef __FreeBSD__
89	/* XXX Stubbed out, our vm system is differnet */
90	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91	return(0);
92#endif	/* __FreeBSD__ */
93}
94#endif
95
96#define KREAD(kd, addr, obj) \
97	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98
99/*
100 * Read proc's from memory file into buffer bp, which has space to hold
101 * at most maxcnt procs.
102 */
103static int
104kvm_proclist(kd, what, arg, p, bp, maxcnt)
105	kvm_t *kd;
106	int what, arg;
107	struct proc *p;
108	struct kinfo_proc *bp;
109	int maxcnt;
110{
111	register int cnt = 0;
112	struct kinfo_proc kinfo_proc, *kp;
113	struct pgrp pgrp;
114	struct session sess;
115	struct tty tty;
116	struct vmspace vmspace;
117	struct procsig procsig;
118	struct pstats pstats;
119	struct ucred ucred;
120	struct thread mainthread;
121	struct proc proc;
122	struct proc pproc;
123	struct timeval tv;
124
125	kp = &kinfo_proc;
126	kp->ki_structsize = sizeof(kinfo_proc);
127	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128		memset(kp, 0, sizeof *kp);
129		if (KREAD(kd, (u_long)p, &proc)) {
130			_kvm_err(kd, kd->program, "can't read proc at %x", p);
131			return (-1);
132		}
133		if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
134		    &mainthread)) {
135			_kvm_err(kd, kd->program, "can't read thread at %x",
136			    TAILQ_FIRST(&proc.p_threads));
137			return (-1);
138		}
139		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
140			kp->ki_ruid = ucred.cr_ruid;
141			kp->ki_svuid = ucred.cr_svuid;
142			kp->ki_rgid = ucred.cr_rgid;
143			kp->ki_svgid = ucred.cr_svgid;
144			kp->ki_ngroups = ucred.cr_ngroups;
145			bcopy(ucred.cr_groups, kp->ki_groups,
146			    NGROUPS * sizeof(gid_t));
147			kp->ki_uid = ucred.cr_uid;
148		}
149
150		switch(what) {
151
152		case KERN_PROC_PID:
153			if (proc.p_pid != (pid_t)arg)
154				continue;
155			break;
156
157		case KERN_PROC_UID:
158			if (kp->ki_uid != (uid_t)arg)
159				continue;
160			break;
161
162		case KERN_PROC_RUID:
163			if (kp->ki_ruid != (uid_t)arg)
164				continue;
165			break;
166		}
167		/*
168		 * We're going to add another proc to the set.  If this
169		 * will overflow the buffer, assume the reason is because
170		 * nprocs (or the proc list) is corrupt and declare an error.
171		 */
172		if (cnt >= maxcnt) {
173			_kvm_err(kd, kd->program, "nprocs corrupt");
174			return (-1);
175		}
176		/*
177		 * gather kinfo_proc
178		 */
179		kp->ki_paddr = p;
180		kp->ki_addr = proc.p_uarea;
181		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
182		kp->ki_args = proc.p_args;
183		kp->ki_tracep = proc.p_tracep;
184		kp->ki_textvp = proc.p_textvp;
185		kp->ki_fd = proc.p_fd;
186		kp->ki_vmspace = proc.p_vmspace;
187		if (proc.p_procsig != NULL) {
188			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
189				_kvm_err(kd, kd->program,
190				    "can't read procsig at %x", proc.p_procsig);
191				return (-1);
192			}
193			kp->ki_sigignore = procsig.ps_sigignore;
194			kp->ki_sigcatch = procsig.ps_sigcatch;
195		}
196		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
197			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
198				_kvm_err(kd, kd->program,
199				    "can't read stats at %x", proc.p_stats);
200				return (-1);
201			}
202			kp->ki_start = pstats.p_start;
203			kp->ki_rusage = pstats.p_ru;
204			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
205			    pstats.p_cru.ru_stime.tv_sec;
206			kp->ki_childtime.tv_usec =
207			    pstats.p_cru.ru_utime.tv_usec +
208			    pstats.p_cru.ru_stime.tv_usec;
209		}
210		if (proc.p_oppid)
211			kp->ki_ppid = proc.p_oppid;
212		else if (proc.p_pptr) {
213			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
214				_kvm_err(kd, kd->program,
215				    "can't read pproc at %x", proc.p_pptr);
216				return (-1);
217			}
218			kp->ki_ppid = pproc.p_pid;
219		} else
220			kp->ki_ppid = 0;
221		if (proc.p_pgrp == NULL)
222			goto nopgrp;
223		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
224			_kvm_err(kd, kd->program, "can't read pgrp at %x",
225				 proc.p_pgrp);
226			return (-1);
227		}
228		kp->ki_pgid = pgrp.pg_id;
229		kp->ki_jobc = pgrp.pg_jobc;
230		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
231			_kvm_err(kd, kd->program, "can't read session at %x",
232				pgrp.pg_session);
233			return (-1);
234		}
235		kp->ki_sid = sess.s_sid;
236		(void)memcpy(kp->ki_login, sess.s_login,
237						sizeof(kp->ki_login));
238		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
239		if (sess.s_leader == p)
240			kp->ki_kiflag |= KI_SLEADER;
241		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
242			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
243				_kvm_err(kd, kd->program,
244					 "can't read tty at %x", sess.s_ttyp);
245				return (-1);
246			}
247			kp->ki_tdev = tty.t_dev;
248			if (tty.t_pgrp != NULL) {
249				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
250					_kvm_err(kd, kd->program,
251						 "can't read tpgrp at &x",
252						tty.t_pgrp);
253					return (-1);
254				}
255				kp->ki_tpgid = pgrp.pg_id;
256			} else
257				kp->ki_tpgid = -1;
258			if (tty.t_session != NULL) {
259				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
260					_kvm_err(kd, kd->program,
261					    "can't read session at %x",
262					    tty.t_session);
263					return (-1);
264				}
265				kp->ki_tsid = sess.s_sid;
266			}
267		} else {
268nopgrp:
269			kp->ki_tdev = NODEV;
270		}
271		if (mainthread.td_wmesg)	/* XXXKSE */
272			(void)kvm_read(kd, (u_long)mainthread.td_wmesg,
273			    kp->ki_wmesg, WMESGLEN);
274
275#ifdef sparc
276		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
277		    (char *)&kp->ki_rssize,
278		    sizeof(kp->ki_rssize));
279		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
280		    (char *)&kp->ki_tsize,
281		    3 * sizeof(kp->ki_rssize));	/* XXX */
282#else
283		(void)kvm_read(kd, (u_long)proc.p_vmspace,
284		    (char *)&vmspace, sizeof(vmspace));
285		kp->ki_size = vmspace.vm_map.size;
286		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
287		kp->ki_swrss = vmspace.vm_swrss;
288		kp->ki_tsize = vmspace.vm_tsize;
289		kp->ki_dsize = vmspace.vm_dsize;
290		kp->ki_ssize = vmspace.vm_ssize;
291#endif
292
293		switch (what) {
294
295		case KERN_PROC_PGRP:
296			if (kp->ki_pgid != (pid_t)arg)
297				continue;
298			break;
299
300		case KERN_PROC_TTY:
301			if ((proc.p_flag & P_CONTROLT) == 0 ||
302			     kp->ki_tdev != (dev_t)arg)
303				continue;
304			break;
305		}
306		if (proc.p_comm[0] != 0) {
307			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
308			kp->ki_comm[MAXCOMLEN] = 0;
309		}
310		if (mainthread.td_blocked != 0) {	/* XXXKSE */
311			kp->ki_kiflag |= KI_MTXBLOCK;
312			if (mainthread.td_mtxname)	/* XXXKSE */
313				(void)kvm_read(kd, (u_long)mainthread.td_mtxname,
314				    kp->ki_mtxname, MTXNAMELEN);
315			kp->ki_mtxname[MTXNAMELEN] = 0;
316		}
317		bintime2timeval(&proc.p_runtime, &tv);
318		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
319		kp->ki_pid = proc.p_pid;
320		kp->ki_siglist = proc.p_siglist;
321		kp->ki_sigmask = proc.p_sigmask;
322		kp->ki_xstat = proc.p_xstat;
323		kp->ki_acflag = proc.p_acflag;
324		kp->ki_pctcpu = proc.p_kse.ke_pctcpu;		/* XXXKSE */
325		kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;	/* XXXKSE */
326		kp->ki_slptime = proc.p_kse.ke_slptime;		/* XXXKSE */
327		kp->ki_swtime = proc.p_swtime;
328		kp->ki_flag = proc.p_flag;
329		kp->ki_sflag = proc.p_sflag;
330		kp->ki_wchan = mainthread.td_wchan;		/* XXXKSE */
331		kp->ki_traceflag = proc.p_traceflag;
332		kp->ki_stat = proc.p_stat;
333		kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */
334		kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */
335		kp->ki_pri.pri_level = mainthread.td_priority;	/* XXXKSE */
336		kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */
337		kp->ki_nice = proc.p_ksegrp.kg_nice;		/* XXXKSE */
338		kp->ki_lock = proc.p_lock;
339		kp->ki_rqindex = proc.p_kse.ke_rqindex;		/* XXXKSE */
340		kp->ki_oncpu = proc.p_kse.ke_oncpu;		/* XXXKSE */
341		kp->ki_lastcpu = mainthread.td_lastcpu;	/* XXXKSE */
342		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
343		++bp;
344		++cnt;
345	}
346	return (cnt);
347}
348
349/*
350 * Build proc info array by reading in proc list from a crash dump.
351 * Return number of procs read.  maxcnt is the max we will read.
352 */
353static int
354kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
355	kvm_t *kd;
356	int what, arg;
357	u_long a_allproc;
358	u_long a_zombproc;
359	int maxcnt;
360{
361	register struct kinfo_proc *bp = kd->procbase;
362	register int acnt, zcnt;
363	struct proc *p;
364
365	if (KREAD(kd, a_allproc, &p)) {
366		_kvm_err(kd, kd->program, "cannot read allproc");
367		return (-1);
368	}
369	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
370	if (acnt < 0)
371		return (acnt);
372
373	if (KREAD(kd, a_zombproc, &p)) {
374		_kvm_err(kd, kd->program, "cannot read zombproc");
375		return (-1);
376	}
377	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
378	if (zcnt < 0)
379		zcnt = 0;
380
381	return (acnt + zcnt);
382}
383
384struct kinfo_proc *
385kvm_getprocs(kd, op, arg, cnt)
386	kvm_t *kd;
387	int op, arg;
388	int *cnt;
389{
390	int mib[4], st, nprocs;
391	size_t size;
392
393	if (kd->procbase != 0) {
394		free((void *)kd->procbase);
395		/*
396		 * Clear this pointer in case this call fails.  Otherwise,
397		 * kvm_close() will free it again.
398		 */
399		kd->procbase = 0;
400	}
401	if (ISALIVE(kd)) {
402		size = 0;
403		mib[0] = CTL_KERN;
404		mib[1] = KERN_PROC;
405		mib[2] = op;
406		mib[3] = arg;
407		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
408		if (st == -1) {
409			_kvm_syserr(kd, kd->program, "kvm_getprocs");
410			return (0);
411		}
412		do {
413			size += size / 10;
414			kd->procbase = (struct kinfo_proc *)
415			    _kvm_realloc(kd, kd->procbase, size);
416			if (kd->procbase == 0)
417				return (0);
418			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
419			    kd->procbase, &size, NULL, 0);
420		} while (st == -1 && errno == ENOMEM);
421		if (st == -1) {
422			_kvm_syserr(kd, kd->program, "kvm_getprocs");
423			return (0);
424		}
425		if (size > 0 &&
426		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
427			_kvm_err(kd, kd->program,
428			    "kinfo_proc size mismatch (expected %d, got %d)",
429			    sizeof(struct kinfo_proc),
430			    kd->procbase->ki_structsize);
431			return (0);
432		}
433		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
434	} else {
435		struct nlist nl[4], *p;
436
437		nl[0].n_name = "_nprocs";
438		nl[1].n_name = "_allproc";
439		nl[2].n_name = "_zombproc";
440		nl[3].n_name = 0;
441
442		if (kvm_nlist(kd, nl) != 0) {
443			for (p = nl; p->n_type != 0; ++p)
444				;
445			_kvm_err(kd, kd->program,
446				 "%s: no such symbol", p->n_name);
447			return (0);
448		}
449		if (KREAD(kd, nl[0].n_value, &nprocs)) {
450			_kvm_err(kd, kd->program, "can't read nprocs");
451			return (0);
452		}
453		size = nprocs * sizeof(struct kinfo_proc);
454		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
455		if (kd->procbase == 0)
456			return (0);
457
458		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
459				      nl[2].n_value, nprocs);
460#ifdef notdef
461		size = nprocs * sizeof(struct kinfo_proc);
462		(void)realloc(kd->procbase, size);
463#endif
464	}
465	*cnt = nprocs;
466	return (kd->procbase);
467}
468
469void
470_kvm_freeprocs(kd)
471	kvm_t *kd;
472{
473	if (kd->procbase) {
474		free(kd->procbase);
475		kd->procbase = 0;
476	}
477}
478
479void *
480_kvm_realloc(kd, p, n)
481	kvm_t *kd;
482	void *p;
483	size_t n;
484{
485	void *np = (void *)realloc(p, n);
486
487	if (np == 0) {
488		free(p);
489		_kvm_err(kd, kd->program, "out of memory");
490	}
491	return (np);
492}
493
494#ifndef MAX
495#define MAX(a, b) ((a) > (b) ? (a) : (b))
496#endif
497
498/*
499 * Read in an argument vector from the user address space of process kp.
500 * addr if the user-space base address of narg null-terminated contiguous
501 * strings.  This is used to read in both the command arguments and
502 * environment strings.  Read at most maxcnt characters of strings.
503 */
504static char **
505kvm_argv(kd, kp, addr, narg, maxcnt)
506	kvm_t *kd;
507	struct kinfo_proc *kp;
508	register u_long addr;
509	register int narg;
510	register int maxcnt;
511{
512	register char *np, *cp, *ep, *ap;
513	register u_long oaddr = -1;
514	register int len, cc;
515	register char **argv;
516
517	/*
518	 * Check that there aren't an unreasonable number of agruments,
519	 * and that the address is in user space.
520	 */
521	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
522		return (0);
523
524	/*
525	 * kd->argv : work space for fetching the strings from the target
526	 *            process's space, and is converted for returning to caller
527	 */
528	if (kd->argv == 0) {
529		/*
530		 * Try to avoid reallocs.
531		 */
532		kd->argc = MAX(narg + 1, 32);
533		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
534						sizeof(*kd->argv));
535		if (kd->argv == 0)
536			return (0);
537	} else if (narg + 1 > kd->argc) {
538		kd->argc = MAX(2 * kd->argc, narg + 1);
539		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
540						sizeof(*kd->argv));
541		if (kd->argv == 0)
542			return (0);
543	}
544	/*
545	 * kd->argspc : returned to user, this is where the kd->argv
546	 *              arrays are left pointing to the collected strings.
547	 */
548	if (kd->argspc == 0) {
549		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
550		if (kd->argspc == 0)
551			return (0);
552		kd->arglen = PAGE_SIZE;
553	}
554	/*
555	 * kd->argbuf : used to pull in pages from the target process.
556	 *              the strings are copied out of here.
557	 */
558	if (kd->argbuf == 0) {
559		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
560		if (kd->argbuf == 0)
561			return (0);
562	}
563
564	/* Pull in the target process'es argv vector */
565	cc = sizeof(char *) * narg;
566	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
567		return (0);
568	/*
569	 * ap : saved start address of string we're working on in kd->argspc
570	 * np : pointer to next place to write in kd->argspc
571	 * len: length of data in kd->argspc
572	 * argv: pointer to the argv vector that we are hunting around the
573	 *       target process space for, and converting to addresses in
574	 *       our address space (kd->argspc).
575	 */
576	ap = np = kd->argspc;
577	argv = kd->argv;
578	len = 0;
579	/*
580	 * Loop over pages, filling in the argument vector.
581	 * Note that the argv strings could be pointing *anywhere* in
582	 * the user address space and are no longer contiguous.
583	 * Note that *argv is modified when we are going to fetch a string
584	 * that crosses a page boundary.  We copy the next part of the string
585	 * into to "np" and eventually convert the pointer.
586	 */
587	while (argv < kd->argv + narg && *argv != 0) {
588
589		/* get the address that the current argv string is on */
590		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
591
592		/* is it the same page as the last one? */
593		if (addr != oaddr) {
594			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
595			    PAGE_SIZE)
596				return (0);
597			oaddr = addr;
598		}
599
600		/* offset within the page... kd->argbuf */
601		addr = (u_long)*argv & (PAGE_SIZE - 1);
602
603		/* cp = start of string, cc = count of chars in this chunk */
604		cp = kd->argbuf + addr;
605		cc = PAGE_SIZE - addr;
606
607		/* dont get more than asked for by user process */
608		if (maxcnt > 0 && cc > maxcnt - len)
609			cc = maxcnt - len;
610
611		/* pointer to end of string if we found it in this page */
612		ep = memchr(cp, '\0', cc);
613		if (ep != 0)
614			cc = ep - cp + 1;
615		/*
616		 * at this point, cc is the count of the chars that we are
617		 * going to retrieve this time. we may or may not have found
618		 * the end of it.  (ep points to the null if the end is known)
619		 */
620
621		/* will we exceed the malloc/realloced buffer? */
622		if (len + cc > kd->arglen) {
623			register int off;
624			register char **pp;
625			register char *op = kd->argspc;
626
627			kd->arglen *= 2;
628			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
629							  kd->arglen);
630			if (kd->argspc == 0)
631				return (0);
632			/*
633			 * Adjust argv pointers in case realloc moved
634			 * the string space.
635			 */
636			off = kd->argspc - op;
637			for (pp = kd->argv; pp < argv; pp++)
638				*pp += off;
639			ap += off;
640			np += off;
641		}
642		/* np = where to put the next part of the string in kd->argspc*/
643		/* np is kinda redundant.. could use "kd->argspc + len" */
644		memcpy(np, cp, cc);
645		np += cc;	/* inc counters */
646		len += cc;
647
648		/*
649		 * if end of string found, set the *argv pointer to the
650		 * saved beginning of string, and advance. argv points to
651		 * somewhere in kd->argv..  This is initially relative
652		 * to the target process, but when we close it off, we set
653		 * it to point in our address space.
654		 */
655		if (ep != 0) {
656			*argv++ = ap;
657			ap = np;
658		} else {
659			/* update the address relative to the target process */
660			*argv += cc;
661		}
662
663		if (maxcnt > 0 && len >= maxcnt) {
664			/*
665			 * We're stopping prematurely.  Terminate the
666			 * current string.
667			 */
668			if (ep == 0) {
669				*np = '\0';
670				*argv++ = ap;
671			}
672			break;
673		}
674	}
675	/* Make sure argv is terminated. */
676	*argv = 0;
677	return (kd->argv);
678}
679
680static void
681ps_str_a(p, addr, n)
682	struct ps_strings *p;
683	u_long *addr;
684	int *n;
685{
686	*addr = (u_long)p->ps_argvstr;
687	*n = p->ps_nargvstr;
688}
689
690static void
691ps_str_e(p, addr, n)
692	struct ps_strings *p;
693	u_long *addr;
694	int *n;
695{
696	*addr = (u_long)p->ps_envstr;
697	*n = p->ps_nenvstr;
698}
699
700/*
701 * Determine if the proc indicated by p is still active.
702 * This test is not 100% foolproof in theory, but chances of
703 * being wrong are very low.
704 */
705static int
706proc_verify(curkp)
707	struct kinfo_proc *curkp;
708{
709	struct kinfo_proc newkp;
710	int mib[4];
711	size_t len;
712
713	mib[0] = CTL_KERN;
714	mib[1] = KERN_PROC;
715	mib[2] = KERN_PROC_PID;
716	mib[3] = curkp->ki_pid;
717	len = sizeof(newkp);
718	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
719		return (0);
720	return (curkp->ki_pid == newkp.ki_pid &&
721	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
722}
723
724static char **
725kvm_doargv(kd, kp, nchr, info)
726	kvm_t *kd;
727	struct kinfo_proc *kp;
728	int nchr;
729	void (*info)(struct ps_strings *, u_long *, int *);
730{
731	char **ap;
732	u_long addr;
733	int cnt;
734	static struct ps_strings arginfo;
735	static u_long ps_strings;
736	size_t len;
737
738	if (ps_strings == NULL) {
739		len = sizeof(ps_strings);
740		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
741		    0) == -1)
742			ps_strings = PS_STRINGS;
743	}
744
745	/*
746	 * Pointers are stored at the top of the user stack.
747	 */
748	if (kp->ki_stat == SZOMB ||
749	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
750		      sizeof(arginfo)) != sizeof(arginfo))
751		return (0);
752
753	(*info)(&arginfo, &addr, &cnt);
754	if (cnt == 0)
755		return (0);
756	ap = kvm_argv(kd, kp, addr, cnt, nchr);
757	/*
758	 * For live kernels, make sure this process didn't go away.
759	 */
760	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
761		ap = 0;
762	return (ap);
763}
764
765/*
766 * Get the command args.  This code is now machine independent.
767 */
768char **
769kvm_getargv(kd, kp, nchr)
770	kvm_t *kd;
771	const struct kinfo_proc *kp;
772	int nchr;
773{
774	int oid[4];
775	int i;
776	size_t bufsz;
777	static unsigned long buflen;
778	static char *buf, *p;
779	static char **bufp;
780	static int argc;
781
782	if (!ISALIVE(kd)) {
783		_kvm_err(kd, kd->program,
784		    "cannot read user space from dead kernel");
785		return (0);
786	}
787
788	if (!buflen) {
789		bufsz = sizeof(buflen);
790		i = sysctlbyname("kern.ps_arg_cache_limit",
791		    &buflen, &bufsz, NULL, 0);
792		if (i == -1) {
793			buflen = 0;
794		} else {
795			buf = malloc(buflen);
796			if (buf == NULL)
797				buflen = 0;
798			argc = 32;
799			bufp = malloc(sizeof(char *) * argc);
800		}
801	}
802	if (buf != NULL) {
803		oid[0] = CTL_KERN;
804		oid[1] = KERN_PROC;
805		oid[2] = KERN_PROC_ARGS;
806		oid[3] = kp->ki_pid;
807		bufsz = buflen;
808		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
809		if (i == 0 && bufsz > 0) {
810			i = 0;
811			p = buf;
812			do {
813				bufp[i++] = p;
814				p += strlen(p) + 1;
815				if (i >= argc) {
816					argc += argc;
817					bufp = realloc(bufp,
818					    sizeof(char *) * argc);
819				}
820			} while (p < buf + bufsz);
821			bufp[i++] = 0;
822			return (bufp);
823		}
824	}
825	if (kp->ki_flag & P_SYSTEM)
826		return (NULL);
827	return (kvm_doargv(kd, kp, nchr, ps_str_a));
828}
829
830char **
831kvm_getenvv(kd, kp, nchr)
832	kvm_t *kd;
833	const struct kinfo_proc *kp;
834	int nchr;
835{
836	return (kvm_doargv(kd, kp, nchr, ps_str_e));
837}
838
839/*
840 * Read from user space.  The user context is given by p.
841 */
842ssize_t
843kvm_uread(kd, kp, uva, buf, len)
844	kvm_t *kd;
845	struct kinfo_proc *kp;
846	register u_long uva;
847	register char *buf;
848	register size_t len;
849{
850	register char *cp;
851	char procfile[MAXPATHLEN];
852	ssize_t amount;
853	int fd;
854
855	if (!ISALIVE(kd)) {
856		_kvm_err(kd, kd->program,
857		    "cannot read user space from dead kernel");
858		return (0);
859	}
860
861	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
862	fd = open(procfile, O_RDONLY, 0);
863	if (fd < 0) {
864		_kvm_err(kd, kd->program, "cannot open %s", procfile);
865		close(fd);
866		return (0);
867	}
868
869	cp = buf;
870	while (len > 0) {
871		errno = 0;
872		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
873			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
874			    uva, procfile);
875			break;
876		}
877		amount = read(fd, cp, len);
878		if (amount < 0) {
879			_kvm_syserr(kd, kd->program, "error reading %s",
880			    procfile);
881			break;
882		}
883		if (amount == 0) {
884			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
885			break;
886		}
887		cp += amount;
888		uva += amount;
889		len -= amount;
890	}
891
892	close(fd);
893	return ((ssize_t)(cp - buf));
894}
895