kvm_proc.c revision 55127
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 55127 1999-12-27 07:14:58Z peter $
38 */
39
40#if defined(LIBC_SCCS) && !defined(lint)
41static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42#endif /* LIBC_SCCS and not lint */
43
44/*
45 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46 * users of this code, so we've factored it out into a separate module.
47 * Thus, we keep this grunge out of the other kvm applications (i.e.,
48 * most other applications are interested only in open/close/read/nlist).
49 */
50
51#include <sys/param.h>
52#include <sys/user.h>
53#include <sys/proc.h>
54#include <sys/exec.h>
55#include <sys/stat.h>
56#include <sys/ioctl.h>
57#include <sys/tty.h>
58#include <sys/file.h>
59#include <stdio.h>
60#include <stdlib.h>
61#include <unistd.h>
62#include <nlist.h>
63#include <kvm.h>
64
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/swap_pager.h>
68
69#include <sys/sysctl.h>
70
71#include <limits.h>
72#include <memory.h>
73#include <paths.h>
74
75#include "kvm_private.h"
76
77#if used
78static char *
79kvm_readswap(kd, p, va, cnt)
80	kvm_t *kd;
81	const struct proc *p;
82	u_long va;
83	u_long *cnt;
84{
85#ifdef __FreeBSD__
86	/* XXX Stubbed out, our vm system is differnet */
87	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
88	return(0);
89#endif	/* __FreeBSD__ */
90}
91#endif
92
93#define KREAD(kd, addr, obj) \
94	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
95
96/*
97 * Read proc's from memory file into buffer bp, which has space to hold
98 * at most maxcnt procs.
99 */
100static int
101kvm_proclist(kd, what, arg, p, bp, maxcnt)
102	kvm_t *kd;
103	int what, arg;
104	struct proc *p;
105	struct kinfo_proc *bp;
106	int maxcnt;
107{
108	register int cnt = 0;
109	struct eproc eproc;
110	struct pgrp pgrp;
111	struct session sess;
112	struct tty tty;
113	struct proc proc;
114	struct proc pproc;
115
116	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
117		if (KREAD(kd, (u_long)p, &proc)) {
118			_kvm_err(kd, kd->program, "can't read proc at %x", p);
119			return (-1);
120		}
121		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
122			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
123			             &eproc.e_ucred));
124
125		switch(what) {
126
127		case KERN_PROC_PID:
128			if (proc.p_pid != (pid_t)arg)
129				continue;
130			break;
131
132		case KERN_PROC_UID:
133			if (eproc.e_ucred.cr_uid != (uid_t)arg)
134				continue;
135			break;
136
137		case KERN_PROC_RUID:
138			if (eproc.e_pcred.p_ruid != (uid_t)arg)
139				continue;
140			break;
141		}
142		/*
143		 * We're going to add another proc to the set.  If this
144		 * will overflow the buffer, assume the reason is because
145		 * nprocs (or the proc list) is corrupt and declare an error.
146		 */
147		if (cnt >= maxcnt) {
148			_kvm_err(kd, kd->program, "nprocs corrupt");
149			return (-1);
150		}
151		/*
152		 * gather eproc
153		 */
154		eproc.e_paddr = p;
155		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
156			_kvm_err(kd, kd->program, "can't read pgrp at %x",
157				 proc.p_pgrp);
158			return (-1);
159		}
160		if (proc.p_oppid)
161		  eproc.e_ppid = proc.p_oppid;
162		else if (proc.p_pptr) {
163		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
164			_kvm_err(kd, kd->program, "can't read pproc at %x",
165				 proc.p_pptr);
166			return (-1);
167		  }
168		  eproc.e_ppid = pproc.p_pid;
169		} else
170		  eproc.e_ppid = 0;
171		eproc.e_sess = pgrp.pg_session;
172		eproc.e_pgid = pgrp.pg_id;
173		eproc.e_jobc = pgrp.pg_jobc;
174		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
175			_kvm_err(kd, kd->program, "can't read session at %x",
176				pgrp.pg_session);
177			return (-1);
178		}
179		(void)memcpy(eproc.e_login, sess.s_login,
180						sizeof(eproc.e_login));
181		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
182			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
183				_kvm_err(kd, kd->program,
184					 "can't read tty at %x", sess.s_ttyp);
185				return (-1);
186			}
187			eproc.e_tdev = tty.t_dev;
188			eproc.e_tsess = tty.t_session;
189			if (tty.t_pgrp != NULL) {
190				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
191					_kvm_err(kd, kd->program,
192						 "can't read tpgrp at &x",
193						tty.t_pgrp);
194					return (-1);
195				}
196				eproc.e_tpgid = pgrp.pg_id;
197			} else
198				eproc.e_tpgid = -1;
199		} else
200			eproc.e_tdev = NODEV;
201		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
202		if (sess.s_leader == p)
203			eproc.e_flag |= EPROC_SLEADER;
204		if (proc.p_wmesg)
205			(void)kvm_read(kd, (u_long)proc.p_wmesg,
206			    eproc.e_wmesg, WMESGLEN);
207
208#ifdef sparc
209		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
210		    (char *)&eproc.e_vm.vm_rssize,
211		    sizeof(eproc.e_vm.vm_rssize));
212		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
213		    (char *)&eproc.e_vm.vm_tsize,
214		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
215#else
216		(void)kvm_read(kd, (u_long)proc.p_vmspace,
217		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
218#endif
219		eproc.e_xsize = eproc.e_xrssize = 0;
220		eproc.e_xccount = eproc.e_xswrss = 0;
221
222		switch (what) {
223
224		case KERN_PROC_PGRP:
225			if (eproc.e_pgid != (pid_t)arg)
226				continue;
227			break;
228
229		case KERN_PROC_TTY:
230			if ((proc.p_flag & P_CONTROLT) == 0 ||
231			     eproc.e_tdev != (dev_t)arg)
232				continue;
233			break;
234		}
235		bcopy(&proc, &bp->kp_proc, sizeof(proc));
236		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
237		++bp;
238		++cnt;
239	}
240	return (cnt);
241}
242
243/*
244 * Build proc info array by reading in proc list from a crash dump.
245 * Return number of procs read.  maxcnt is the max we will read.
246 */
247static int
248kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
249	kvm_t *kd;
250	int what, arg;
251	u_long a_allproc;
252	u_long a_zombproc;
253	int maxcnt;
254{
255	register struct kinfo_proc *bp = kd->procbase;
256	register int acnt, zcnt;
257	struct proc *p;
258
259	if (KREAD(kd, a_allproc, &p)) {
260		_kvm_err(kd, kd->program, "cannot read allproc");
261		return (-1);
262	}
263	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
264	if (acnt < 0)
265		return (acnt);
266
267	if (KREAD(kd, a_zombproc, &p)) {
268		_kvm_err(kd, kd->program, "cannot read zombproc");
269		return (-1);
270	}
271	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
272	if (zcnt < 0)
273		zcnt = 0;
274
275	return (acnt + zcnt);
276}
277
278struct kinfo_proc *
279kvm_getprocs(kd, op, arg, cnt)
280	kvm_t *kd;
281	int op, arg;
282	int *cnt;
283{
284	int mib[4], st, nprocs;
285	size_t size;
286
287	if (kd->procbase != 0) {
288		free((void *)kd->procbase);
289		/*
290		 * Clear this pointer in case this call fails.  Otherwise,
291		 * kvm_close() will free it again.
292		 */
293		kd->procbase = 0;
294	}
295	if (ISALIVE(kd)) {
296		size = 0;
297		mib[0] = CTL_KERN;
298		mib[1] = KERN_PROC;
299		mib[2] = op;
300		mib[3] = arg;
301		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
302		if (st == -1) {
303			_kvm_syserr(kd, kd->program, "kvm_getprocs");
304			return (0);
305		}
306		do {
307			size += size / 10;
308			kd->procbase = (struct kinfo_proc *)
309			    _kvm_realloc(kd, kd->procbase, size);
310			if (kd->procbase == 0)
311				return (0);
312			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
313			    kd->procbase, &size, NULL, 0);
314		} while (st == -1 && errno == ENOMEM);
315		if (st == -1) {
316			_kvm_syserr(kd, kd->program, "kvm_getprocs");
317			return (0);
318		}
319		if (size % sizeof(struct kinfo_proc) != 0) {
320			_kvm_err(kd, kd->program,
321				"proc size mismatch (%d total, %d chunks)",
322				size, sizeof(struct kinfo_proc));
323			return (0);
324		}
325		nprocs = size / sizeof(struct kinfo_proc);
326	} else {
327		struct nlist nl[4], *p;
328
329		nl[0].n_name = "_nprocs";
330		nl[1].n_name = "_allproc";
331		nl[2].n_name = "_zombproc";
332		nl[3].n_name = 0;
333
334		if (kvm_nlist(kd, nl) != 0) {
335			for (p = nl; p->n_type != 0; ++p)
336				;
337			_kvm_err(kd, kd->program,
338				 "%s: no such symbol", p->n_name);
339			return (0);
340		}
341		if (KREAD(kd, nl[0].n_value, &nprocs)) {
342			_kvm_err(kd, kd->program, "can't read nprocs");
343			return (0);
344		}
345		size = nprocs * sizeof(struct kinfo_proc);
346		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
347		if (kd->procbase == 0)
348			return (0);
349
350		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
351				      nl[2].n_value, nprocs);
352#ifdef notdef
353		size = nprocs * sizeof(struct kinfo_proc);
354		(void)realloc(kd->procbase, size);
355#endif
356	}
357	*cnt = nprocs;
358	return (kd->procbase);
359}
360
361void
362_kvm_freeprocs(kd)
363	kvm_t *kd;
364{
365	if (kd->procbase) {
366		free(kd->procbase);
367		kd->procbase = 0;
368	}
369}
370
371void *
372_kvm_realloc(kd, p, n)
373	kvm_t *kd;
374	void *p;
375	size_t n;
376{
377	void *np = (void *)realloc(p, n);
378
379	if (np == 0) {
380		free(p);
381		_kvm_err(kd, kd->program, "out of memory");
382	}
383	return (np);
384}
385
386#ifndef MAX
387#define MAX(a, b) ((a) > (b) ? (a) : (b))
388#endif
389
390/*
391 * Read in an argument vector from the user address space of process p.
392 * addr if the user-space base address of narg null-terminated contiguous
393 * strings.  This is used to read in both the command arguments and
394 * environment strings.  Read at most maxcnt characters of strings.
395 */
396static char **
397kvm_argv(kd, p, addr, narg, maxcnt)
398	kvm_t *kd;
399	const struct proc *p;
400	register u_long addr;
401	register int narg;
402	register int maxcnt;
403{
404	register char *np, *cp, *ep, *ap;
405	register u_long oaddr = -1;
406	register int len, cc;
407	register char **argv;
408
409	/*
410	 * Check that there aren't an unreasonable number of agruments,
411	 * and that the address is in user space.
412	 */
413	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
414		return (0);
415
416	/*
417	 * kd->argv : work space for fetching the strings from the target
418	 *            process's space, and is converted for returning to caller
419	 */
420	if (kd->argv == 0) {
421		/*
422		 * Try to avoid reallocs.
423		 */
424		kd->argc = MAX(narg + 1, 32);
425		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
426						sizeof(*kd->argv));
427		if (kd->argv == 0)
428			return (0);
429	} else if (narg + 1 > kd->argc) {
430		kd->argc = MAX(2 * kd->argc, narg + 1);
431		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
432						sizeof(*kd->argv));
433		if (kd->argv == 0)
434			return (0);
435	}
436	/*
437	 * kd->argspc : returned to user, this is where the kd->argv
438	 *              arrays are left pointing to the collected strings.
439	 */
440	if (kd->argspc == 0) {
441		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
442		if (kd->argspc == 0)
443			return (0);
444		kd->arglen = PAGE_SIZE;
445	}
446	/*
447	 * kd->argbuf : used to pull in pages from the target process.
448	 *              the strings are copied out of here.
449	 */
450	if (kd->argbuf == 0) {
451		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
452		if (kd->argbuf == 0)
453			return (0);
454	}
455
456	/* Pull in the target process'es argv vector */
457	cc = sizeof(char *) * narg;
458	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
459		return (0);
460	/*
461	 * ap : saved start address of string we're working on in kd->argspc
462	 * np : pointer to next place to write in kd->argspc
463	 * len: length of data in kd->argspc
464	 * argv: pointer to the argv vector that we are hunting around the
465	 *       target process space for, and converting to addresses in
466	 *       our address space (kd->argspc).
467	 */
468	ap = np = kd->argspc;
469	argv = kd->argv;
470	len = 0;
471	/*
472	 * Loop over pages, filling in the argument vector.
473	 * Note that the argv strings could be pointing *anywhere* in
474	 * the user address space and are no longer contiguous.
475	 * Note that *argv is modified when we are going to fetch a string
476	 * that crosses a page boundary.  We copy the next part of the string
477	 * into to "np" and eventually convert the pointer.
478	 */
479	while (argv < kd->argv + narg && *argv != 0) {
480
481		/* get the address that the current argv string is on */
482		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
483
484		/* is it the same page as the last one? */
485		if (addr != oaddr) {
486			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
487			    PAGE_SIZE)
488				return (0);
489			oaddr = addr;
490		}
491
492		/* offset within the page... kd->argbuf */
493		addr = (u_long)*argv & (PAGE_SIZE - 1);
494
495		/* cp = start of string, cc = count of chars in this chunk */
496		cp = kd->argbuf + addr;
497		cc = PAGE_SIZE - addr;
498
499		/* dont get more than asked for by user process */
500		if (maxcnt > 0 && cc > maxcnt - len)
501			cc = maxcnt - len;
502
503		/* pointer to end of string if we found it in this page */
504		ep = memchr(cp, '\0', cc);
505		if (ep != 0)
506			cc = ep - cp + 1;
507		/*
508		 * at this point, cc is the count of the chars that we are
509		 * going to retrieve this time. we may or may not have found
510		 * the end of it.  (ep points to the null if the end is known)
511		 */
512
513		/* will we exceed the malloc/realloced buffer? */
514		if (len + cc > kd->arglen) {
515			register int off;
516			register char **pp;
517			register char *op = kd->argspc;
518
519			kd->arglen *= 2;
520			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
521							  kd->arglen);
522			if (kd->argspc == 0)
523				return (0);
524			/*
525			 * Adjust argv pointers in case realloc moved
526			 * the string space.
527			 */
528			off = kd->argspc - op;
529			for (pp = kd->argv; pp < argv; pp++)
530				*pp += off;
531			ap += off;
532			np += off;
533		}
534		/* np = where to put the next part of the string in kd->argspc*/
535		/* np is kinda redundant.. could use "kd->argspc + len" */
536		memcpy(np, cp, cc);
537		np += cc;	/* inc counters */
538		len += cc;
539
540		/*
541		 * if end of string found, set the *argv pointer to the
542		 * saved beginning of string, and advance. argv points to
543		 * somewhere in kd->argv..  This is initially relative
544		 * to the target process, but when we close it off, we set
545		 * it to point in our address space.
546		 */
547		if (ep != 0) {
548			*argv++ = ap;
549			ap = np;
550		} else {
551			/* update the address relative to the target process */
552			*argv += cc;
553		}
554
555		if (maxcnt > 0 && len >= maxcnt) {
556			/*
557			 * We're stopping prematurely.  Terminate the
558			 * current string.
559			 */
560			if (ep == 0) {
561				*np = '\0';
562				*argv++ = ap;
563			}
564			break;
565		}
566	}
567	/* Make sure argv is terminated. */
568	*argv = 0;
569	return (kd->argv);
570}
571
572static void
573ps_str_a(p, addr, n)
574	struct ps_strings *p;
575	u_long *addr;
576	int *n;
577{
578	*addr = (u_long)p->ps_argvstr;
579	*n = p->ps_nargvstr;
580}
581
582static void
583ps_str_e(p, addr, n)
584	struct ps_strings *p;
585	u_long *addr;
586	int *n;
587{
588	*addr = (u_long)p->ps_envstr;
589	*n = p->ps_nenvstr;
590}
591
592/*
593 * Determine if the proc indicated by p is still active.
594 * This test is not 100% foolproof in theory, but chances of
595 * being wrong are very low.
596 */
597static int
598proc_verify(kd, kernp, p)
599	kvm_t *kd;
600	u_long kernp;
601	const struct proc *p;
602{
603	struct kinfo_proc kp;
604	int mib[4];
605	size_t len;
606
607	mib[0] = CTL_KERN;
608	mib[1] = KERN_PROC;
609	mib[2] = KERN_PROC_PID;
610	mib[3] = p->p_pid;
611	len = sizeof(kp);
612	if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1)
613		return (0);
614	return (p->p_pid == kp.kp_proc.p_pid &&
615	    (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB));
616}
617
618static char **
619kvm_doargv(kd, kp, nchr, info)
620	kvm_t *kd;
621	const struct kinfo_proc *kp;
622	int nchr;
623	void (*info)(struct ps_strings *, u_long *, int *);
624{
625	register const struct proc *p = &kp->kp_proc;
626	register char **ap;
627	u_long addr;
628	int cnt;
629	static struct ps_strings arginfo;
630	static u_long ps_strings;
631	size_t len;
632
633	if (ps_strings == NULL) {
634		len = sizeof(ps_strings);
635		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
636		    0) == -1)
637			ps_strings = PS_STRINGS;
638	}
639
640	/*
641	 * Pointers are stored at the top of the user stack.
642	 */
643	if (p->p_stat == SZOMB ||
644	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
645		      sizeof(arginfo)) != sizeof(arginfo))
646		return (0);
647
648	(*info)(&arginfo, &addr, &cnt);
649	if (cnt == 0)
650		return (0);
651	ap = kvm_argv(kd, p, addr, cnt, nchr);
652	/*
653	 * For live kernels, make sure this process didn't go away.
654	 */
655	if (ap != 0 && ISALIVE(kd) &&
656	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
657		ap = 0;
658	return (ap);
659}
660
661/*
662 * Get the command args.  This code is now machine independent.
663 */
664char **
665kvm_getargv(kd, kp, nchr)
666	kvm_t *kd;
667	const struct kinfo_proc *kp;
668	int nchr;
669{
670	int oid[4];
671	int i, l;
672	static int buflen;
673	static char *buf, *p;
674	static char **bufp;
675	static int argc;
676
677	if (!ISALIVE(kd)) {
678		_kvm_err(kd, kd->program,
679		    "cannot read user space from dead kernel");
680		return (0);
681	}
682
683	if (!buflen) {
684		l = sizeof(buflen);
685		i = sysctlbyname("kern.ps_arg_cache_limit",
686		    &buflen, &l, NULL, 0);
687		if (i == -1) {
688			buflen == 0;
689		} else {
690			buf = malloc(buflen);
691			if (buf == NULL)
692				buflen = 0;
693			argc = 32;
694			bufp = malloc(sizeof(char *) * argc);
695		}
696	}
697	if (buf != NULL) {
698		oid[0] = CTL_KERN;
699		oid[1] = KERN_PROC;
700		oid[2] = KERN_PROC_ARGS;
701		oid[3] = kp->kp_proc.p_pid;
702		l = buflen;
703		i = sysctl(oid, 4, buf, &l, 0, 0);
704		if (i == 0 && l > 0) {
705			i = 0;
706			p = buf;
707			do {
708				bufp[i++] = p;
709				p += strlen(p) + 1;
710				if (i >= argc) {
711					argc += argc;
712					bufp = realloc(bufp,
713					    sizeof(char *) * argc);
714				}
715			} while (p < buf + l);
716			bufp[i++] = 0;
717			return (bufp);
718		}
719	}
720	if (kp->kp_proc.p_flag & P_SYSTEM)
721		return (NULL);
722	return (kvm_doargv(kd, kp, nchr, ps_str_a));
723}
724
725char **
726kvm_getenvv(kd, kp, nchr)
727	kvm_t *kd;
728	const struct kinfo_proc *kp;
729	int nchr;
730{
731	return (kvm_doargv(kd, kp, nchr, ps_str_e));
732}
733
734/*
735 * Read from user space.  The user context is given by p.
736 */
737ssize_t
738kvm_uread(kd, p, uva, buf, len)
739	kvm_t *kd;
740	register const struct proc *p;
741	register u_long uva;
742	register char *buf;
743	register size_t len;
744{
745	register char *cp;
746	char procfile[MAXPATHLEN];
747	ssize_t amount;
748	int fd;
749
750	if (!ISALIVE(kd)) {
751		_kvm_err(kd, kd->program,
752		    "cannot read user space from dead kernel");
753		return (0);
754	}
755
756	sprintf(procfile, "/proc/%d/mem", p->p_pid);
757	fd = open(procfile, O_RDONLY, 0);
758	if (fd < 0) {
759		_kvm_err(kd, kd->program, "cannot open %s", procfile);
760		close(fd);
761		return (0);
762	}
763
764	cp = buf;
765	while (len > 0) {
766		errno = 0;
767		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
768			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
769			    uva, procfile);
770			break;
771		}
772		amount = read(fd, cp, len);
773		if (amount < 0) {
774			_kvm_syserr(kd, kd->program, "error reading %s",
775			    procfile);
776			break;
777		}
778		if (amount == 0) {
779			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
780			break;
781		}
782		cp += amount;
783		uva += amount;
784		len -= amount;
785	}
786
787	close(fd);
788	return ((ssize_t)(cp - buf));
789}
790