kvm_proc.c revision 38534
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if defined(LIBC_SCCS) && !defined(lint)
39static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40#endif /* LIBC_SCCS and not lint */
41
42/*
43 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44 * users of this code, so we've factored it out into a separate module.
45 * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 * most other applications are interested only in open/close/read/nlist).
47 */
48
49#include <sys/param.h>
50#include <sys/user.h>
51#include <sys/proc.h>
52#include <sys/exec.h>
53#include <sys/stat.h>
54#include <sys/ioctl.h>
55#include <sys/tty.h>
56#include <sys/file.h>
57#include <stdio.h>
58#include <stdlib.h>
59#include <unistd.h>
60#include <nlist.h>
61#include <kvm.h>
62
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/swap_pager.h>
66
67#include <sys/sysctl.h>
68
69#include <limits.h>
70#include <memory.h>
71#include <db.h>
72#include <paths.h>
73
74#include "kvm_private.h"
75
76#if used
77static char *
78kvm_readswap(kd, p, va, cnt)
79	kvm_t *kd;
80	const struct proc *p;
81	u_long va;
82	u_long *cnt;
83{
84#ifdef __FreeBSD__
85	/* XXX Stubbed out, our vm system is differnet */
86	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
87	return(0);
88#endif	/* __FreeBSD__ */
89}
90#endif
91
92#define KREAD(kd, addr, obj) \
93	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
94
95/*
96 * Read proc's from memory file into buffer bp, which has space to hold
97 * at most maxcnt procs.
98 */
99static int
100kvm_proclist(kd, what, arg, p, bp, maxcnt)
101	kvm_t *kd;
102	int what, arg;
103	struct proc *p;
104	struct kinfo_proc *bp;
105	int maxcnt;
106{
107	register int cnt = 0;
108	struct eproc eproc;
109	struct pgrp pgrp;
110	struct session sess;
111	struct tty tty;
112	struct proc proc;
113	struct proc pproc;
114
115	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
116		if (KREAD(kd, (u_long)p, &proc)) {
117			_kvm_err(kd, kd->program, "can't read proc at %x", p);
118			return (-1);
119		}
120		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
121			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
122			             &eproc.e_ucred));
123
124		switch(what) {
125
126		case KERN_PROC_PID:
127			if (proc.p_pid != (pid_t)arg)
128				continue;
129			break;
130
131		case KERN_PROC_UID:
132			if (eproc.e_ucred.cr_uid != (uid_t)arg)
133				continue;
134			break;
135
136		case KERN_PROC_RUID:
137			if (eproc.e_pcred.p_ruid != (uid_t)arg)
138				continue;
139			break;
140		}
141		/*
142		 * We're going to add another proc to the set.  If this
143		 * will overflow the buffer, assume the reason is because
144		 * nprocs (or the proc list) is corrupt and declare an error.
145		 */
146		if (cnt >= maxcnt) {
147			_kvm_err(kd, kd->program, "nprocs corrupt");
148			return (-1);
149		}
150		/*
151		 * gather eproc
152		 */
153		eproc.e_paddr = p;
154		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
155			_kvm_err(kd, kd->program, "can't read pgrp at %x",
156				 proc.p_pgrp);
157			return (-1);
158		}
159		if (proc.p_oppid)
160		  eproc.e_ppid = proc.p_oppid;
161		else if (proc.p_pptr) {
162		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
163			_kvm_err(kd, kd->program, "can't read pproc at %x",
164				 proc.p_pptr);
165			return (-1);
166		  }
167		  eproc.e_ppid = pproc.p_pid;
168		} else
169		  eproc.e_ppid = 0;
170		eproc.e_sess = pgrp.pg_session;
171		eproc.e_pgid = pgrp.pg_id;
172		eproc.e_jobc = pgrp.pg_jobc;
173		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
174			_kvm_err(kd, kd->program, "can't read session at %x",
175				pgrp.pg_session);
176			return (-1);
177		}
178		(void)memcpy(eproc.e_login, sess.s_login,
179						sizeof(eproc.e_login));
180		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
181			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
182				_kvm_err(kd, kd->program,
183					 "can't read tty at %x", sess.s_ttyp);
184				return (-1);
185			}
186			eproc.e_tdev = tty.t_dev;
187			eproc.e_tsess = tty.t_session;
188			if (tty.t_pgrp != NULL) {
189				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
190					_kvm_err(kd, kd->program,
191						 "can't read tpgrp at &x",
192						tty.t_pgrp);
193					return (-1);
194				}
195				eproc.e_tpgid = pgrp.pg_id;
196			} else
197				eproc.e_tpgid = -1;
198		} else
199			eproc.e_tdev = NODEV;
200		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
201		if (sess.s_leader == p)
202			eproc.e_flag |= EPROC_SLEADER;
203		if (proc.p_wmesg)
204			(void)kvm_read(kd, (u_long)proc.p_wmesg,
205			    eproc.e_wmesg, WMESGLEN);
206
207#ifdef sparc
208		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
209		    (char *)&eproc.e_vm.vm_rssize,
210		    sizeof(eproc.e_vm.vm_rssize));
211		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
212		    (char *)&eproc.e_vm.vm_tsize,
213		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
214#else
215		(void)kvm_read(kd, (u_long)proc.p_vmspace,
216		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
217#endif
218		eproc.e_xsize = eproc.e_xrssize = 0;
219		eproc.e_xccount = eproc.e_xswrss = 0;
220
221		switch (what) {
222
223		case KERN_PROC_PGRP:
224			if (eproc.e_pgid != (pid_t)arg)
225				continue;
226			break;
227
228		case KERN_PROC_TTY:
229			if ((proc.p_flag & P_CONTROLT) == 0 ||
230			     eproc.e_tdev != (dev_t)arg)
231				continue;
232			break;
233		}
234		bcopy(&proc, &bp->kp_proc, sizeof(proc));
235		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
236		++bp;
237		++cnt;
238	}
239	return (cnt);
240}
241
242/*
243 * Build proc info array by reading in proc list from a crash dump.
244 * Return number of procs read.  maxcnt is the max we will read.
245 */
246static int
247kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
248	kvm_t *kd;
249	int what, arg;
250	u_long a_allproc;
251	u_long a_zombproc;
252	int maxcnt;
253{
254	register struct kinfo_proc *bp = kd->procbase;
255	register int acnt, zcnt;
256	struct proc *p;
257
258	if (KREAD(kd, a_allproc, &p)) {
259		_kvm_err(kd, kd->program, "cannot read allproc");
260		return (-1);
261	}
262	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
263	if (acnt < 0)
264		return (acnt);
265
266	if (KREAD(kd, a_zombproc, &p)) {
267		_kvm_err(kd, kd->program, "cannot read zombproc");
268		return (-1);
269	}
270	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
271	if (zcnt < 0)
272		zcnt = 0;
273
274	return (acnt + zcnt);
275}
276
277struct kinfo_proc *
278kvm_getprocs(kd, op, arg, cnt)
279	kvm_t *kd;
280	int op, arg;
281	int *cnt;
282{
283	int mib[4], st, nprocs;
284	size_t size;
285
286	if (kd->procbase != 0) {
287		free((void *)kd->procbase);
288		/*
289		 * Clear this pointer in case this call fails.  Otherwise,
290		 * kvm_close() will free it again.
291		 */
292		kd->procbase = 0;
293	}
294	if (ISALIVE(kd)) {
295		size = 0;
296		mib[0] = CTL_KERN;
297		mib[1] = KERN_PROC;
298		mib[2] = op;
299		mib[3] = arg;
300		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
301		if (st == -1) {
302			_kvm_syserr(kd, kd->program, "kvm_getprocs");
303			return (0);
304		}
305		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
306		if (kd->procbase == 0)
307			return (0);
308		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0);
309		if (st == -1) {
310			_kvm_syserr(kd, kd->program, "kvm_getprocs");
311			return (0);
312		}
313		if (size % sizeof(struct kinfo_proc) != 0) {
314			_kvm_err(kd, kd->program,
315				"proc size mismatch (%d total, %d chunks)",
316				size, sizeof(struct kinfo_proc));
317			return (0);
318		}
319		nprocs = size / sizeof(struct kinfo_proc);
320	} else {
321		struct nlist nl[4], *p;
322
323		nl[0].n_name = "_nprocs";
324		nl[1].n_name = "_allproc";
325		nl[2].n_name = "_zombproc";
326		nl[3].n_name = 0;
327
328		if (kvm_nlist(kd, nl) != 0) {
329			for (p = nl; p->n_type != 0; ++p)
330				;
331			_kvm_err(kd, kd->program,
332				 "%s: no such symbol", p->n_name);
333			return (0);
334		}
335		if (KREAD(kd, nl[0].n_value, &nprocs)) {
336			_kvm_err(kd, kd->program, "can't read nprocs");
337			return (0);
338		}
339		size = nprocs * sizeof(struct kinfo_proc);
340		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
341		if (kd->procbase == 0)
342			return (0);
343
344		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
345				      nl[2].n_value, nprocs);
346#ifdef notdef
347		size = nprocs * sizeof(struct kinfo_proc);
348		(void)realloc(kd->procbase, size);
349#endif
350	}
351	*cnt = nprocs;
352	return (kd->procbase);
353}
354
355void
356_kvm_freeprocs(kd)
357	kvm_t *kd;
358{
359	if (kd->procbase) {
360		free(kd->procbase);
361		kd->procbase = 0;
362	}
363}
364
365void *
366_kvm_realloc(kd, p, n)
367	kvm_t *kd;
368	void *p;
369	size_t n;
370{
371	void *np = (void *)realloc(p, n);
372
373	if (np == 0)
374		_kvm_err(kd, kd->program, "out of memory");
375	return (np);
376}
377
378#ifndef MAX
379#define MAX(a, b) ((a) > (b) ? (a) : (b))
380#endif
381
382/*
383 * Read in an argument vector from the user address space of process p.
384 * addr if the user-space base address of narg null-terminated contiguous
385 * strings.  This is used to read in both the command arguments and
386 * environment strings.  Read at most maxcnt characters of strings.
387 */
388static char **
389kvm_argv(kd, p, addr, narg, maxcnt)
390	kvm_t *kd;
391	const struct proc *p;
392	register u_long addr;
393	register int narg;
394	register int maxcnt;
395{
396	register char *np, *cp, *ep, *ap;
397	register u_long oaddr = -1;
398	register int len, cc;
399	register char **argv;
400
401	/*
402	 * Check that there aren't an unreasonable number of agruments,
403	 * and that the address is in user space.
404	 */
405	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
406		return (0);
407
408	/*
409	 * kd->argv : work space for fetching the strings from the target
410	 *            process's space, and is converted for returning to caller
411	 */
412	if (kd->argv == 0) {
413		/*
414		 * Try to avoid reallocs.
415		 */
416		kd->argc = MAX(narg + 1, 32);
417		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
418						sizeof(*kd->argv));
419		if (kd->argv == 0)
420			return (0);
421	} else if (narg + 1 > kd->argc) {
422		kd->argc = MAX(2 * kd->argc, narg + 1);
423		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
424						sizeof(*kd->argv));
425		if (kd->argv == 0)
426			return (0);
427	}
428	/*
429	 * kd->argspc : returned to user, this is where the kd->argv
430	 *              arrays are left pointing to the collected strings.
431	 */
432	if (kd->argspc == 0) {
433		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
434		if (kd->argspc == 0)
435			return (0);
436		kd->arglen = PAGE_SIZE;
437	}
438	/*
439	 * kd->argbuf : used to pull in pages from the target process.
440	 *              the strings are copied out of here.
441	 */
442	if (kd->argbuf == 0) {
443		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
444		if (kd->argbuf == 0)
445			return (0);
446	}
447
448	/* Pull in the target process'es argv vector */
449	cc = sizeof(char *) * narg;
450	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
451		return (0);
452	/*
453	 * ap : saved start address of string we're working on in kd->argspc
454	 * np : pointer to next place to write in kd->argspc
455	 * len: length of data in kd->argspc
456	 * argv: pointer to the argv vector that we are hunting around the
457	 *       target process space for, and converting to addresses in
458	 *       our address space (kd->argspc).
459	 */
460	ap = np = kd->argspc;
461	argv = kd->argv;
462	len = 0;
463	/*
464	 * Loop over pages, filling in the argument vector.
465	 * Note that the argv strings could be pointing *anywhere* in
466	 * the user address space and are no longer contiguous.
467	 * Note that *argv is modified when we are going to fetch a string
468	 * that crosses a page boundary.  We copy the next part of the string
469	 * into to "np" and eventually convert the pointer.
470	 */
471	while (argv < kd->argv + narg && *argv != 0) {
472
473		/* get the address that the current argv string is on */
474		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
475
476		/* is it the same page as the last one? */
477		if (addr != oaddr) {
478			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
479			    PAGE_SIZE)
480				return (0);
481			oaddr = addr;
482		}
483
484		/* offset within the page... kd->argbuf */
485		addr = (u_long)*argv & (PAGE_SIZE - 1);
486
487		/* cp = start of string, cc = count of chars in this chunk */
488		cp = kd->argbuf + addr;
489		cc = PAGE_SIZE - addr;
490
491		/* dont get more than asked for by user process */
492		if (maxcnt > 0 && cc > maxcnt - len)
493			cc = maxcnt - len;
494
495		/* pointer to end of string if we found it in this page */
496		ep = memchr(cp, '\0', cc);
497		if (ep != 0)
498			cc = ep - cp + 1;
499		/*
500		 * at this point, cc is the count of the chars that we are
501		 * going to retrieve this time. we may or may not have found
502		 * the end of it.  (ep points to the null if the end is known)
503		 */
504
505		/* will we exceed the malloc/realloced buffer? */
506		if (len + cc > kd->arglen) {
507			register int off;
508			register char **pp;
509			register char *op = kd->argspc;
510
511			kd->arglen *= 2;
512			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
513							  kd->arglen);
514			if (kd->argspc == 0)
515				return (0);
516			/*
517			 * Adjust argv pointers in case realloc moved
518			 * the string space.
519			 */
520			off = kd->argspc - op;
521			for (pp = kd->argv; pp < argv; pp++)
522				*pp += off;
523			ap += off;
524			np += off;
525		}
526		/* np = where to put the next part of the string in kd->argspc*/
527		/* np is kinda redundant.. could use "kd->argspc + len" */
528		memcpy(np, cp, cc);
529		np += cc;	/* inc counters */
530		len += cc;
531
532		/*
533		 * if end of string found, set the *argv pointer to the
534		 * saved beginning of string, and advance. argv points to
535		 * somewhere in kd->argv..  This is initially relative
536		 * to the target process, but when we close it off, we set
537		 * it to point in our address space.
538		 */
539		if (ep != 0) {
540			*argv++ = ap;
541			ap = np;
542		} else {
543			/* update the address relative to the target process */
544			*argv += cc;
545		}
546
547		if (maxcnt > 0 && len >= maxcnt) {
548			/*
549			 * We're stopping prematurely.  Terminate the
550			 * current string.
551			 */
552			if (ep == 0) {
553				*np = '\0';
554				*argv++ = ap;
555			}
556			break;
557		}
558	}
559	/* Make sure argv is terminated. */
560	*argv = 0;
561	return (kd->argv);
562}
563
564static void
565ps_str_a(p, addr, n)
566	struct ps_strings *p;
567	u_long *addr;
568	int *n;
569{
570	*addr = (u_long)p->ps_argvstr;
571	*n = p->ps_nargvstr;
572}
573
574static void
575ps_str_e(p, addr, n)
576	struct ps_strings *p;
577	u_long *addr;
578	int *n;
579{
580	*addr = (u_long)p->ps_envstr;
581	*n = p->ps_nenvstr;
582}
583
584/*
585 * Determine if the proc indicated by p is still active.
586 * This test is not 100% foolproof in theory, but chances of
587 * being wrong are very low.
588 */
589static int
590proc_verify(kd, kernp, p)
591	kvm_t *kd;
592	u_long kernp;
593	const struct proc *p;
594{
595	struct kinfo_proc kp;
596	int mib[4], st;
597	size_t len;
598
599	mib[0] = CTL_KERN;
600	mib[1] = KERN_PROC;
601	mib[2] = KERN_PROC_PID;
602	mib[3] = p->p_pid;
603
604	len = sizeof kp;
605
606	st = sysctl(mib, 4, &kp, &len, NULL, 0);
607	if (st < 0)
608		return(0);
609	return (p->p_pid == kp.kp_proc.p_pid &&
610		(kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB));
611}
612
613static char **
614kvm_doargv(kd, kp, nchr, info)
615	kvm_t *kd;
616	const struct kinfo_proc *kp;
617	int nchr;
618	void (*info)(struct ps_strings *, u_long *, int *);
619{
620	register const struct proc *p = &kp->kp_proc;
621	register char **ap;
622	u_long addr;
623	int cnt;
624	static struct ps_strings arginfo, *ps_strings;
625	size_t len;
626	int i;
627
628	if (ps_strings == NULL) {
629		len = sizeof ps_strings;
630		i = sysctlbyname("kern.ps_strings",
631		    &ps_strings, &len, 0, 0);
632		if (i < 0 || ps_strings == NULL)
633			ps_strings = PS_STRINGS;
634	}
635
636	/*
637	 * Pointers are stored at the top of the user stack.
638	 */
639	if (p->p_stat == SZOMB ||
640	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
641		      sizeof(arginfo)) != sizeof(arginfo))
642		return (0);
643
644	(*info)(&arginfo, &addr, &cnt);
645	if (cnt == 0)
646		return (0);
647	ap = kvm_argv(kd, p, addr, cnt, nchr);
648	/*
649	 * For live kernels, make sure this process didn't go away.
650	 */
651	if (ap != 0 && ISALIVE(kd) &&
652	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
653		ap = 0;
654	return (ap);
655}
656
657/*
658 * Get the command args.  This code is now machine independent.
659 */
660char **
661kvm_getargv(kd, kp, nchr)
662	kvm_t *kd;
663	const struct kinfo_proc *kp;
664	int nchr;
665{
666	return (kvm_doargv(kd, kp, nchr, ps_str_a));
667}
668
669char **
670kvm_getenvv(kd, kp, nchr)
671	kvm_t *kd;
672	const struct kinfo_proc *kp;
673	int nchr;
674{
675	return (kvm_doargv(kd, kp, nchr, ps_str_e));
676}
677
678/*
679 * Read from user space.  The user context is given by p.
680 */
681ssize_t
682kvm_uread(kd, p, uva, buf, len)
683	kvm_t *kd;
684	register const struct proc *p;
685	register u_long uva;
686	register char *buf;
687	register size_t len;
688{
689	register char *cp;
690	char procfile[MAXPATHLEN];
691	ssize_t amount;
692	int fd;
693
694	if (!ISALIVE(kd)) {
695		_kvm_err(kd, kd->program,
696		    "cannot read user space from dead kernel");
697		return (0);
698	}
699
700	sprintf(procfile, "/proc/%d/mem", p->p_pid);
701	fd = open(procfile, O_RDONLY, 0);
702	if (fd < 0) {
703		_kvm_err(kd, kd->program, "cannot open %s", procfile);
704		close(fd);
705		return (0);
706	}
707
708	cp = buf;
709	while (len > 0) {
710		errno = 0;
711		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
712			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
713			    uva, procfile);
714			break;
715		}
716		amount = read(fd, cp, len);
717		if (amount < 0) {
718			_kvm_syserr(kd, kd->program, "error reading %s",
719			    procfile);
720			break;
721		}
722		if (amount == 0) {
723			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
724			break;
725		}
726		cp += amount;
727		uva += amount;
728		len -= amount;
729	}
730
731	close(fd);
732	return ((ssize_t)(cp - buf));
733}
734