kvm_proc.c revision 32568
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if defined(LIBC_SCCS) && !defined(lint)
39static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40#endif /* LIBC_SCCS and not lint */
41
42/*
43 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44 * users of this code, so we've factored it out into a separate module.
45 * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 * most other applications are interested only in open/close/read/nlist).
47 */
48
49#include <sys/param.h>
50#include <sys/user.h>
51#include <sys/proc.h>
52#include <sys/exec.h>
53#include <sys/stat.h>
54#include <sys/ioctl.h>
55#include <sys/tty.h>
56#include <sys/file.h>
57#include <stdio.h>
58#include <stdlib.h>
59#include <unistd.h>
60#include <nlist.h>
61#include <kvm.h>
62
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/swap_pager.h>
66
67#include <sys/sysctl.h>
68
69#include <limits.h>
70#include <memory.h>
71#include <db.h>
72#include <paths.h>
73
74#include "kvm_private.h"
75
76#if used
77static char *
78kvm_readswap(kd, p, va, cnt)
79	kvm_t *kd;
80	const struct proc *p;
81	u_long va;
82	u_long *cnt;
83{
84#ifdef __FreeBSD__
85	/* XXX Stubbed out, our vm system is differnet */
86	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
87	return(0);
88#endif	/* __FreeBSD__ */
89}
90#endif
91
92#define KREAD(kd, addr, obj) \
93	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
94
95/*
96 * Read proc's from memory file into buffer bp, which has space to hold
97 * at most maxcnt procs.
98 */
99static int
100kvm_proclist(kd, what, arg, p, bp, maxcnt)
101	kvm_t *kd;
102	int what, arg;
103	struct proc *p;
104	struct kinfo_proc *bp;
105	int maxcnt;
106{
107	register int cnt = 0;
108	struct eproc eproc;
109	struct pgrp pgrp;
110	struct session sess;
111	struct tty tty;
112	struct proc proc;
113	struct proc pproc;
114
115	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
116		if (KREAD(kd, (u_long)p, &proc)) {
117			_kvm_err(kd, kd->program, "can't read proc at %x", p);
118			return (-1);
119		}
120		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
121			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
122			             &eproc.e_ucred));
123
124		switch(what) {
125
126		case KERN_PROC_PID:
127			if (proc.p_pid != (pid_t)arg)
128				continue;
129			break;
130
131		case KERN_PROC_UID:
132			if (eproc.e_ucred.cr_uid != (uid_t)arg)
133				continue;
134			break;
135
136		case KERN_PROC_RUID:
137			if (eproc.e_pcred.p_ruid != (uid_t)arg)
138				continue;
139			break;
140		}
141		/*
142		 * We're going to add another proc to the set.  If this
143		 * will overflow the buffer, assume the reason is because
144		 * nprocs (or the proc list) is corrupt and declare an error.
145		 */
146		if (cnt >= maxcnt) {
147			_kvm_err(kd, kd->program, "nprocs corrupt");
148			return (-1);
149		}
150		/*
151		 * gather eproc
152		 */
153		eproc.e_paddr = p;
154		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
155			_kvm_err(kd, kd->program, "can't read pgrp at %x",
156				 proc.p_pgrp);
157			return (-1);
158		}
159		if (proc.p_oppid)
160		  eproc.e_ppid = proc.p_oppid;
161		else if (proc.p_pptr) {
162		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
163			_kvm_err(kd, kd->program, "can't read pproc at %x",
164				 proc.p_pptr);
165			return (-1);
166		  }
167		  eproc.e_ppid = pproc.p_pid;
168		} else
169		  eproc.e_ppid = 0;
170		eproc.e_sess = pgrp.pg_session;
171		eproc.e_pgid = pgrp.pg_id;
172		eproc.e_jobc = pgrp.pg_jobc;
173		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
174			_kvm_err(kd, kd->program, "can't read session at %x",
175				pgrp.pg_session);
176			return (-1);
177		}
178		(void)memcpy(eproc.e_login, sess.s_login,
179						sizeof(eproc.e_login));
180		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
181			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
182				_kvm_err(kd, kd->program,
183					 "can't read tty at %x", sess.s_ttyp);
184				return (-1);
185			}
186			eproc.e_tdev = tty.t_dev;
187			eproc.e_tsess = tty.t_session;
188			if (tty.t_pgrp != NULL) {
189				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
190					_kvm_err(kd, kd->program,
191						 "can't read tpgrp at &x",
192						tty.t_pgrp);
193					return (-1);
194				}
195				eproc.e_tpgid = pgrp.pg_id;
196			} else
197				eproc.e_tpgid = -1;
198		} else
199			eproc.e_tdev = NODEV;
200		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
201		if (sess.s_leader == p)
202			eproc.e_flag |= EPROC_SLEADER;
203		if (proc.p_wmesg)
204			(void)kvm_read(kd, (u_long)proc.p_wmesg,
205			    eproc.e_wmesg, WMESGLEN);
206
207#ifdef sparc
208		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
209		    (char *)&eproc.e_vm.vm_rssize,
210		    sizeof(eproc.e_vm.vm_rssize));
211		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
212		    (char *)&eproc.e_vm.vm_tsize,
213		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
214#else
215		(void)kvm_read(kd, (u_long)proc.p_vmspace,
216		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
217#endif
218		eproc.e_xsize = eproc.e_xrssize = 0;
219		eproc.e_xccount = eproc.e_xswrss = 0;
220
221		switch (what) {
222
223		case KERN_PROC_PGRP:
224			if (eproc.e_pgid != (pid_t)arg)
225				continue;
226			break;
227
228		case KERN_PROC_TTY:
229			if ((proc.p_flag & P_CONTROLT) == 0 ||
230			     eproc.e_tdev != (dev_t)arg)
231				continue;
232			break;
233		}
234		bcopy(&proc, &bp->kp_proc, sizeof(proc));
235		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
236		++bp;
237		++cnt;
238	}
239	return (cnt);
240}
241
242/*
243 * Build proc info array by reading in proc list from a crash dump.
244 * Return number of procs read.  maxcnt is the max we will read.
245 */
246static int
247kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
248	kvm_t *kd;
249	int what, arg;
250	u_long a_allproc;
251	u_long a_zombproc;
252	int maxcnt;
253{
254	register struct kinfo_proc *bp = kd->procbase;
255	register int acnt, zcnt;
256	struct proc *p;
257
258	if (KREAD(kd, a_allproc, &p)) {
259		_kvm_err(kd, kd->program, "cannot read allproc");
260		return (-1);
261	}
262	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
263	if (acnt < 0)
264		return (acnt);
265
266	if (KREAD(kd, a_zombproc, &p)) {
267		_kvm_err(kd, kd->program, "cannot read zombproc");
268		return (-1);
269	}
270	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
271	if (zcnt < 0)
272		zcnt = 0;
273
274	return (acnt + zcnt);
275}
276
277struct kinfo_proc *
278kvm_getprocs(kd, op, arg, cnt)
279	kvm_t *kd;
280	int op, arg;
281	int *cnt;
282{
283	int mib[4], size, st, nprocs;
284
285	if (kd->procbase != 0) {
286		free((void *)kd->procbase);
287		/*
288		 * Clear this pointer in case this call fails.  Otherwise,
289		 * kvm_close() will free it again.
290		 */
291		kd->procbase = 0;
292	}
293	if (ISALIVE(kd)) {
294		size = 0;
295		mib[0] = CTL_KERN;
296		mib[1] = KERN_PROC;
297		mib[2] = op;
298		mib[3] = arg;
299		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
300		if (st == -1) {
301			_kvm_syserr(kd, kd->program, "kvm_getprocs");
302			return (0);
303		}
304		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
305		if (kd->procbase == 0)
306			return (0);
307		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0);
308		if (st == -1) {
309			_kvm_syserr(kd, kd->program, "kvm_getprocs");
310			return (0);
311		}
312		if (size % sizeof(struct kinfo_proc) != 0) {
313			_kvm_err(kd, kd->program,
314				"proc size mismatch (%d total, %d chunks)",
315				size, sizeof(struct kinfo_proc));
316			return (0);
317		}
318		nprocs = size / sizeof(struct kinfo_proc);
319	} else {
320		struct nlist nl[4], *p;
321
322		nl[0].n_name = "_nprocs";
323		nl[1].n_name = "_allproc";
324		nl[2].n_name = "_zombproc";
325		nl[3].n_name = 0;
326
327		if (kvm_nlist(kd, nl) != 0) {
328			for (p = nl; p->n_type != 0; ++p)
329				;
330			_kvm_err(kd, kd->program,
331				 "%s: no such symbol", p->n_name);
332			return (0);
333		}
334		if (KREAD(kd, nl[0].n_value, &nprocs)) {
335			_kvm_err(kd, kd->program, "can't read nprocs");
336			return (0);
337		}
338		size = nprocs * sizeof(struct kinfo_proc);
339		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
340		if (kd->procbase == 0)
341			return (0);
342
343		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
344				      nl[2].n_value, nprocs);
345#ifdef notdef
346		size = nprocs * sizeof(struct kinfo_proc);
347		(void)realloc(kd->procbase, size);
348#endif
349	}
350	*cnt = nprocs;
351	return (kd->procbase);
352}
353
354void
355_kvm_freeprocs(kd)
356	kvm_t *kd;
357{
358	if (kd->procbase) {
359		free(kd->procbase);
360		kd->procbase = 0;
361	}
362}
363
364void *
365_kvm_realloc(kd, p, n)
366	kvm_t *kd;
367	void *p;
368	size_t n;
369{
370	void *np = (void *)realloc(p, n);
371
372	if (np == 0)
373		_kvm_err(kd, kd->program, "out of memory");
374	return (np);
375}
376
377#ifndef MAX
378#define MAX(a, b) ((a) > (b) ? (a) : (b))
379#endif
380
381/*
382 * Read in an argument vector from the user address space of process p.
383 * addr if the user-space base address of narg null-terminated contiguous
384 * strings.  This is used to read in both the command arguments and
385 * environment strings.  Read at most maxcnt characters of strings.
386 */
387static char **
388kvm_argv(kd, p, addr, narg, maxcnt)
389	kvm_t *kd;
390	const struct proc *p;
391	register u_long addr;
392	register int narg;
393	register int maxcnt;
394{
395	register char *np, *cp, *ep, *ap;
396	register u_long oaddr = -1;
397	register int len, cc;
398	register char **argv;
399
400	/*
401	 * Check that there aren't an unreasonable number of agruments,
402	 * and that the address is in user space.
403	 */
404	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
405		return (0);
406
407	/*
408	 * kd->argv : work space for fetching the strings from the target
409	 *            process's space, and is converted for returning to caller
410	 */
411	if (kd->argv == 0) {
412		/*
413		 * Try to avoid reallocs.
414		 */
415		kd->argc = MAX(narg + 1, 32);
416		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
417						sizeof(*kd->argv));
418		if (kd->argv == 0)
419			return (0);
420	} else if (narg + 1 > kd->argc) {
421		kd->argc = MAX(2 * kd->argc, narg + 1);
422		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
423						sizeof(*kd->argv));
424		if (kd->argv == 0)
425			return (0);
426	}
427	/*
428	 * kd->argspc : returned to user, this is where the kd->argv
429	 *              arrays are left pointing to the collected strings.
430	 */
431	if (kd->argspc == 0) {
432		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
433		if (kd->argspc == 0)
434			return (0);
435		kd->arglen = PAGE_SIZE;
436	}
437	/*
438	 * kd->argbuf : used to pull in pages from the target process.
439	 *              the strings are copied out of here.
440	 */
441	if (kd->argbuf == 0) {
442		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
443		if (kd->argbuf == 0)
444			return (0);
445	}
446
447	/* Pull in the target process'es argv vector */
448	cc = sizeof(char *) * narg;
449	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
450		return (0);
451	/*
452	 * ap : saved start address of string we're working on in kd->argspc
453	 * np : pointer to next place to write in kd->argspc
454	 * len: length of data in kd->argspc
455	 * argv: pointer to the argv vector that we are hunting around the
456	 *       target process space for, and converting to addresses in
457	 *       our address space (kd->argspc).
458	 */
459	ap = np = kd->argspc;
460	argv = kd->argv;
461	len = 0;
462	/*
463	 * Loop over pages, filling in the argument vector.
464	 * Note that the argv strings could be pointing *anywhere* in
465	 * the user address space and are no longer contiguous.
466	 * Note that *argv is modified when we are going to fetch a string
467	 * that crosses a page boundary.  We copy the next part of the string
468	 * into to "np" and eventually convert the pointer.
469	 */
470	while (argv < kd->argv + narg && *argv != 0) {
471
472		/* get the address that the current argv string is on */
473		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
474
475		/* is it the same page as the last one? */
476		if (addr != oaddr) {
477			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
478			    PAGE_SIZE)
479				return (0);
480			oaddr = addr;
481		}
482
483		/* offset within the page... kd->argbuf */
484		addr = (u_long)*argv & (PAGE_SIZE - 1);
485
486		/* cp = start of string, cc = count of chars in this chunk */
487		cp = kd->argbuf + addr;
488		cc = PAGE_SIZE - addr;
489
490		/* dont get more than asked for by user process */
491		if (maxcnt > 0 && cc > maxcnt - len)
492			cc = maxcnt - len;
493
494		/* pointer to end of string if we found it in this page */
495		ep = memchr(cp, '\0', cc);
496		if (ep != 0)
497			cc = ep - cp + 1;
498		/*
499		 * at this point, cc is the count of the chars that we are
500		 * going to retrieve this time. we may or may not have found
501		 * the end of it.  (ep points to the null if the end is known)
502		 */
503
504		/* will we exceed the malloc/realloced buffer? */
505		if (len + cc > kd->arglen) {
506			register int off;
507			register char **pp;
508			register char *op = kd->argspc;
509
510			kd->arglen *= 2;
511			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
512							  kd->arglen);
513			if (kd->argspc == 0)
514				return (0);
515			/*
516			 * Adjust argv pointers in case realloc moved
517			 * the string space.
518			 */
519			off = kd->argspc - op;
520			for (pp = kd->argv; pp < argv; pp++)
521				*pp += off;
522			ap += off;
523			np += off;
524		}
525		/* np = where to put the next part of the string in kd->argspc*/
526		/* np is kinda redundant.. could use "kd->argspc + len" */
527		memcpy(np, cp, cc);
528		np += cc;	/* inc counters */
529		len += cc;
530
531		/*
532		 * if end of string found, set the *argv pointer to the
533		 * saved beginning of string, and advance. argv points to
534		 * somewhere in kd->argv..  This is initially relative
535		 * to the target process, but when we close it off, we set
536		 * it to point in our address space.
537		 */
538		if (ep != 0) {
539			*argv++ = ap;
540			ap = np;
541		} else {
542			/* update the address relative to the target process */
543			*argv += cc;
544		}
545
546		if (maxcnt > 0 && len >= maxcnt) {
547			/*
548			 * We're stopping prematurely.  Terminate the
549			 * current string.
550			 */
551			if (ep == 0) {
552				*np = '\0';
553				*argv++ = ap;
554			}
555			break;
556		}
557	}
558	/* Make sure argv is terminated. */
559	*argv = 0;
560	return (kd->argv);
561}
562
563static void
564ps_str_a(p, addr, n)
565	struct ps_strings *p;
566	u_long *addr;
567	int *n;
568{
569	*addr = (u_long)p->ps_argvstr;
570	*n = p->ps_nargvstr;
571}
572
573static void
574ps_str_e(p, addr, n)
575	struct ps_strings *p;
576	u_long *addr;
577	int *n;
578{
579	*addr = (u_long)p->ps_envstr;
580	*n = p->ps_nenvstr;
581}
582
583/*
584 * Determine if the proc indicated by p is still active.
585 * This test is not 100% foolproof in theory, but chances of
586 * being wrong are very low.
587 */
588static int
589proc_verify(kd, kernp, p)
590	kvm_t *kd;
591	u_long kernp;
592	const struct proc *p;
593{
594	struct proc kernproc;
595
596	/*
597	 * Just read in the whole proc.  It's not that big relative
598	 * to the cost of the read system call.
599	 */
600	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
601	    sizeof(kernproc))
602		return (0);
603	return (p->p_pid == kernproc.p_pid &&
604		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
605}
606
607static char **
608kvm_doargv(kd, kp, nchr, info)
609	kvm_t *kd;
610	const struct kinfo_proc *kp;
611	int nchr;
612	void (*info)(struct ps_strings *, u_long *, int *);
613{
614	register const struct proc *p = &kp->kp_proc;
615	register char **ap;
616	u_long addr;
617	int cnt;
618	struct ps_strings arginfo, *ps_strings;
619	int mib[2];
620	size_t len;
621
622	ps_strings = NULL;
623	mib[0] = CTL_KERN;
624	mib[1] = KERN_PS_STRINGS;
625	len = sizeof(ps_strings);
626	if (sysctl(mib, 2, &ps_strings, &len, NULL, 0) < 0 ||
627	    ps_strings == NULL)
628		ps_strings = PS_STRINGS;
629
630	/*
631	 * Pointers are stored at the top of the user stack.
632	 */
633	if (p->p_stat == SZOMB ||
634	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
635		      sizeof(arginfo)) != sizeof(arginfo))
636		return (0);
637
638	(*info)(&arginfo, &addr, &cnt);
639	if (cnt == 0)
640		return (0);
641	ap = kvm_argv(kd, p, addr, cnt, nchr);
642	/*
643	 * For live kernels, make sure this process didn't go away.
644	 */
645	if (ap != 0 && ISALIVE(kd) &&
646	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
647		ap = 0;
648	return (ap);
649}
650
651/*
652 * Get the command args.  This code is now machine independent.
653 */
654char **
655kvm_getargv(kd, kp, nchr)
656	kvm_t *kd;
657	const struct kinfo_proc *kp;
658	int nchr;
659{
660	return (kvm_doargv(kd, kp, nchr, ps_str_a));
661}
662
663char **
664kvm_getenvv(kd, kp, nchr)
665	kvm_t *kd;
666	const struct kinfo_proc *kp;
667	int nchr;
668{
669	return (kvm_doargv(kd, kp, nchr, ps_str_e));
670}
671
672/*
673 * Read from user space.  The user context is given by p.
674 */
675ssize_t
676kvm_uread(kd, p, uva, buf, len)
677	kvm_t *kd;
678	register const struct proc *p;
679	register u_long uva;
680	register char *buf;
681	register size_t len;
682{
683	register char *cp;
684	char procfile[MAXPATHLEN];
685	ssize_t amount;
686	int fd;
687
688	if (!ISALIVE(kd)) {
689		_kvm_err(kd, kd->program,
690		    "cannot read user space from dead kernel");
691		return (0);
692	}
693
694	sprintf(procfile, "/proc/%d/mem", p->p_pid);
695	fd = open(procfile, O_RDONLY, 0);
696	if (fd < 0) {
697		_kvm_err(kd, kd->program, "cannot open %s", procfile);
698		close(fd);
699		return (0);
700	}
701
702	cp = buf;
703	while (len > 0) {
704		errno = 0;
705		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
706			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
707			    uva, procfile);
708			break;
709		}
710		amount = read(fd, cp, len);
711		if (amount < 0) {
712			_kvm_syserr(kd, kd->program, "error reading %s",
713			    procfile);
714			break;
715		}
716		if (amount == 0) {
717			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
718			break;
719		}
720		cp += amount;
721		uva += amount;
722		len -= amount;
723	}
724
725	close(fd);
726	return ((ssize_t)(cp - buf));
727}
728