kvm_proc.c revision 194498
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if 0
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37#endif /* LIBC_SCCS and not lint */
38#endif
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 194498 2009-06-19 17:10:35Z brooks $");
42
43/*
44 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50#include <sys/param.h>
51#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52#include <sys/ucred.h>
53#include <sys/queue.h>
54#include <sys/_lock.h>
55#include <sys/_mutex.h>
56#include <sys/_task.h>
57#include <sys/cpuset.h>
58#include <sys/user.h>
59#include <sys/proc.h>
60#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
61#include <sys/jail.h>
62#include <sys/exec.h>
63#include <sys/stat.h>
64#include <sys/sysent.h>
65#include <sys/ioctl.h>
66#include <sys/tty.h>
67#include <sys/file.h>
68#include <sys/conf.h>
69#include <stdio.h>
70#include <stdlib.h>
71#include <unistd.h>
72#include <nlist.h>
73#include <kvm.h>
74
75#include <vm/vm.h>
76#include <vm/vm_param.h>
77
78#include <sys/sysctl.h>
79
80#include <limits.h>
81#include <memory.h>
82#include <paths.h>
83
84#include "kvm_private.h"
85
86#define KREAD(kd, addr, obj) \
87	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88
89static int ticks;
90static int hz;
91
92/*
93 * Read proc's from memory file into buffer bp, which has space to hold
94 * at most maxcnt procs.
95 */
96static int
97kvm_proclist(kd, what, arg, p, bp, maxcnt)
98	kvm_t *kd;
99	int what, arg;
100	struct proc *p;
101	struct kinfo_proc *bp;
102	int maxcnt;
103{
104	int cnt = 0;
105	struct kinfo_proc kinfo_proc, *kp;
106	struct pgrp pgrp;
107	struct session sess;
108	struct cdev t_cdev;
109	struct tty tty;
110	struct vmspace vmspace;
111	struct sigacts sigacts;
112	struct pstats pstats;
113	struct ucred ucred;
114	struct prison pr;
115	struct thread mtd;
116	struct proc proc;
117	struct proc pproc;
118	struct timeval tv;
119	struct sysentvec sysent;
120	char svname[KI_EMULNAMELEN];
121
122	kp = &kinfo_proc;
123	kp->ki_structsize = sizeof(kinfo_proc);
124	/*
125	 * Loop on the processes. this is completely broken because we need to be
126	 * able to loop on the threads and merge the ones that are the same process some how.
127	 */
128	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
129		memset(kp, 0, sizeof *kp);
130		if (KREAD(kd, (u_long)p, &proc)) {
131			_kvm_err(kd, kd->program, "can't read proc at %x", p);
132			return (-1);
133		}
134		if (proc.p_state != PRS_ZOMBIE) {
135			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
136			    &mtd)) {
137				_kvm_err(kd, kd->program,
138				    "can't read thread at %x",
139				    TAILQ_FIRST(&proc.p_threads));
140				return (-1);
141			}
142		}
143		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
144			kp->ki_ruid = ucred.cr_ruid;
145			kp->ki_svuid = ucred.cr_svuid;
146			kp->ki_rgid = ucred.cr_rgid;
147			kp->ki_svgid = ucred.cr_svgid;
148			kp->ki_ngroups = ucred.cr_ngroups;
149			kp->ki_groups = ucred.cr_groups;
150			kp->ki_uid = ucred.cr_uid;
151			if (ucred.cr_prison != NULL) {
152				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
153					_kvm_err(kd, kd->program,
154					    "can't read prison at %x",
155					    ucred.cr_prison);
156					return (-1);
157				}
158				kp->ki_jid = pr.pr_id;
159			}
160		}
161
162		switch(what & ~KERN_PROC_INC_THREAD) {
163
164		case KERN_PROC_GID:
165			if (kp->ki_groups[0] != (gid_t)arg)
166				continue;
167			break;
168
169		case KERN_PROC_PID:
170			if (proc.p_pid != (pid_t)arg)
171				continue;
172			break;
173
174		case KERN_PROC_RGID:
175			if (kp->ki_rgid != (gid_t)arg)
176				continue;
177			break;
178
179		case KERN_PROC_UID:
180			if (kp->ki_uid != (uid_t)arg)
181				continue;
182			break;
183
184		case KERN_PROC_RUID:
185			if (kp->ki_ruid != (uid_t)arg)
186				continue;
187			break;
188		}
189		/*
190		 * We're going to add another proc to the set.  If this
191		 * will overflow the buffer, assume the reason is because
192		 * nprocs (or the proc list) is corrupt and declare an error.
193		 */
194		if (cnt >= maxcnt) {
195			_kvm_err(kd, kd->program, "nprocs corrupt");
196			return (-1);
197		}
198		/*
199		 * gather kinfo_proc
200		 */
201		kp->ki_paddr = p;
202		kp->ki_addr = 0;	/* XXX uarea */
203		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204		kp->ki_args = proc.p_args;
205		kp->ki_tracep = proc.p_tracevp;
206		kp->ki_textvp = proc.p_textvp;
207		kp->ki_fd = proc.p_fd;
208		kp->ki_vmspace = proc.p_vmspace;
209		if (proc.p_sigacts != NULL) {
210			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211				_kvm_err(kd, kd->program,
212				    "can't read sigacts at %x", proc.p_sigacts);
213				return (-1);
214			}
215			kp->ki_sigignore = sigacts.ps_sigignore;
216			kp->ki_sigcatch = sigacts.ps_sigcatch;
217		}
218#if 0
219		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
220			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
221				_kvm_err(kd, kd->program,
222				    "can't read stats at %x", proc.p_stats);
223				return (-1);
224			}
225			kp->ki_start = pstats.p_start;
226
227			/*
228			 * XXX: The times here are probably zero and need
229			 * to be calculated from the raw data in p_rux and
230			 * p_crux.
231			 */
232			kp->ki_rusage = pstats.p_ru;
233			kp->ki_childstime = pstats.p_cru.ru_stime;
234			kp->ki_childutime = pstats.p_cru.ru_utime;
235			/* Some callers want child-times in a single value */
236			timeradd(&kp->ki_childstime, &kp->ki_childutime,
237			    &kp->ki_childtime);
238		}
239#endif
240		if (proc.p_oppid)
241			kp->ki_ppid = proc.p_oppid;
242		else if (proc.p_pptr) {
243			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
244				_kvm_err(kd, kd->program,
245				    "can't read pproc at %x", proc.p_pptr);
246				return (-1);
247			}
248			kp->ki_ppid = pproc.p_pid;
249		} else
250			kp->ki_ppid = 0;
251		if (proc.p_pgrp == NULL)
252			goto nopgrp;
253		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
254			_kvm_err(kd, kd->program, "can't read pgrp at %x",
255				 proc.p_pgrp);
256			return (-1);
257		}
258		kp->ki_pgid = pgrp.pg_id;
259		kp->ki_jobc = pgrp.pg_jobc;
260		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
261			_kvm_err(kd, kd->program, "can't read session at %x",
262				pgrp.pg_session);
263			return (-1);
264		}
265		kp->ki_sid = sess.s_sid;
266		(void)memcpy(kp->ki_login, sess.s_login,
267						sizeof(kp->ki_login));
268		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
269		if (sess.s_leader == p)
270			kp->ki_kiflag |= KI_SLEADER;
271		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
272			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
273				_kvm_err(kd, kd->program,
274					 "can't read tty at %x", sess.s_ttyp);
275				return (-1);
276			}
277			if (tty.t_dev != NULL) {
278				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
279					_kvm_err(kd, kd->program,
280						 "can't read cdev at %x",
281						tty.t_dev);
282					return (-1);
283				}
284#if 0
285				kp->ki_tdev = t_cdev.si_udev;
286#else
287				kp->ki_tdev = NODEV;
288#endif
289			}
290			if (tty.t_pgrp != NULL) {
291				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
292					_kvm_err(kd, kd->program,
293						 "can't read tpgrp at %x",
294						tty.t_pgrp);
295					return (-1);
296				}
297				kp->ki_tpgid = pgrp.pg_id;
298			} else
299				kp->ki_tpgid = -1;
300			if (tty.t_session != NULL) {
301				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
302					_kvm_err(kd, kd->program,
303					    "can't read session at %x",
304					    tty.t_session);
305					return (-1);
306				}
307				kp->ki_tsid = sess.s_sid;
308			}
309		} else {
310nopgrp:
311			kp->ki_tdev = NODEV;
312		}
313		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
314			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
315			    kp->ki_wmesg, WMESGLEN);
316
317		(void)kvm_read(kd, (u_long)proc.p_vmspace,
318		    (char *)&vmspace, sizeof(vmspace));
319		kp->ki_size = vmspace.vm_map.size;
320		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
321		kp->ki_swrss = vmspace.vm_swrss;
322		kp->ki_tsize = vmspace.vm_tsize;
323		kp->ki_dsize = vmspace.vm_dsize;
324		kp->ki_ssize = vmspace.vm_ssize;
325
326		switch (what & ~KERN_PROC_INC_THREAD) {
327
328		case KERN_PROC_PGRP:
329			if (kp->ki_pgid != (pid_t)arg)
330				continue;
331			break;
332
333		case KERN_PROC_SESSION:
334			if (kp->ki_sid != (pid_t)arg)
335				continue;
336			break;
337
338		case KERN_PROC_TTY:
339			if ((proc.p_flag & P_CONTROLT) == 0 ||
340			     kp->ki_tdev != (dev_t)arg)
341				continue;
342			break;
343		}
344		if (proc.p_comm[0] != 0)
345			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
346		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
347		    sizeof(sysent));
348		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
349		    sizeof(svname));
350		if (svname[0] != 0)
351			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
352		if ((proc.p_state != PRS_ZOMBIE) &&
353		    (mtd.td_blocked != 0)) {
354			kp->ki_kiflag |= KI_LOCKBLOCK;
355			if (mtd.td_lockname)
356				(void)kvm_read(kd,
357				    (u_long)mtd.td_lockname,
358				    kp->ki_lockname, LOCKNAMELEN);
359			kp->ki_lockname[LOCKNAMELEN] = 0;
360		}
361		/*
362		 * XXX: This is plain wrong, rux_runtime has nothing
363		 * to do with struct bintime, rux_runtime is just a 64-bit
364		 * integer counter of cputicks.  What we need here is a way
365		 * to convert cputicks to usecs.  The kernel does it in
366		 * kern/kern_tc.c, but the function can't be just copied.
367		 */
368		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
369		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
370		kp->ki_pid = proc.p_pid;
371		kp->ki_siglist = proc.p_siglist;
372		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
373		kp->ki_sigmask = mtd.td_sigmask;
374		kp->ki_xstat = proc.p_xstat;
375		kp->ki_acflag = proc.p_acflag;
376		kp->ki_lock = proc.p_lock;
377		if (proc.p_state != PRS_ZOMBIE) {
378			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
379			kp->ki_flag = proc.p_flag;
380			kp->ki_sflag = 0;
381			kp->ki_nice = proc.p_nice;
382			kp->ki_traceflag = proc.p_traceflag;
383			if (proc.p_state == PRS_NORMAL) {
384				if (TD_ON_RUNQ(&mtd) ||
385				    TD_CAN_RUN(&mtd) ||
386				    TD_IS_RUNNING(&mtd)) {
387					kp->ki_stat = SRUN;
388				} else if (mtd.td_state ==
389				    TDS_INHIBITED) {
390					if (P_SHOULDSTOP(&proc)) {
391						kp->ki_stat = SSTOP;
392					} else if (
393					    TD_IS_SLEEPING(&mtd)) {
394						kp->ki_stat = SSLEEP;
395					} else if (TD_ON_LOCK(&mtd)) {
396						kp->ki_stat = SLOCK;
397					} else {
398						kp->ki_stat = SWAIT;
399					}
400				}
401			} else {
402				kp->ki_stat = SIDL;
403			}
404			/* Stuff from the thread */
405			kp->ki_pri.pri_level = mtd.td_priority;
406			kp->ki_pri.pri_native = mtd.td_base_pri;
407			kp->ki_lastcpu = mtd.td_lastcpu;
408			kp->ki_wchan = mtd.td_wchan;
409			if (mtd.td_name[0] != 0)
410				strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
411			kp->ki_oncpu = mtd.td_oncpu;
412			if (mtd.td_name[0] != '\0')
413				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
414			kp->ki_pctcpu = 0;
415			kp->ki_rqindex = 0;
416		} else {
417			kp->ki_stat = SZOMB;
418		}
419		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
420		++bp;
421		++cnt;
422	}
423	return (cnt);
424}
425
426/*
427 * Build proc info array by reading in proc list from a crash dump.
428 * Return number of procs read.  maxcnt is the max we will read.
429 */
430static int
431kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
432	kvm_t *kd;
433	int what, arg;
434	u_long a_allproc;
435	u_long a_zombproc;
436	int maxcnt;
437{
438	struct kinfo_proc *bp = kd->procbase;
439	int acnt, zcnt;
440	struct proc *p;
441
442	if (KREAD(kd, a_allproc, &p)) {
443		_kvm_err(kd, kd->program, "cannot read allproc");
444		return (-1);
445	}
446	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
447	if (acnt < 0)
448		return (acnt);
449
450	if (KREAD(kd, a_zombproc, &p)) {
451		_kvm_err(kd, kd->program, "cannot read zombproc");
452		return (-1);
453	}
454	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
455	if (zcnt < 0)
456		zcnt = 0;
457
458	return (acnt + zcnt);
459}
460
461struct kinfo_proc *
462kvm_getprocs(kd, op, arg, cnt)
463	kvm_t *kd;
464	int op, arg;
465	int *cnt;
466{
467	int mib[4], st, nprocs;
468	size_t size;
469	int temp_op;
470
471	if (kd->procbase != 0) {
472		free((void *)kd->procbase);
473		/*
474		 * Clear this pointer in case this call fails.  Otherwise,
475		 * kvm_close() will free it again.
476		 */
477		kd->procbase = 0;
478	}
479	if (ISALIVE(kd)) {
480		size = 0;
481		mib[0] = CTL_KERN;
482		mib[1] = KERN_PROC;
483		mib[2] = op;
484		mib[3] = arg;
485		temp_op = op & ~KERN_PROC_INC_THREAD;
486		st = sysctl(mib,
487		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
488		    3 : 4, NULL, &size, NULL, 0);
489		if (st == -1) {
490			_kvm_syserr(kd, kd->program, "kvm_getprocs");
491			return (0);
492		}
493		/*
494		 * We can't continue with a size of 0 because we pass
495		 * it to realloc() (via _kvm_realloc()), and passing 0
496		 * to realloc() results in undefined behavior.
497		 */
498		if (size == 0) {
499			/*
500			 * XXX: We should probably return an invalid,
501			 * but non-NULL, pointer here so any client
502			 * program trying to dereference it will
503			 * crash.  However, _kvm_freeprocs() calls
504			 * free() on kd->procbase if it isn't NULL,
505			 * and free()'ing a junk pointer isn't good.
506			 * Then again, _kvm_freeprocs() isn't used
507			 * anywhere . . .
508			 */
509			kd->procbase = _kvm_malloc(kd, 1);
510			goto liveout;
511		}
512		do {
513			size += size / 10;
514			kd->procbase = (struct kinfo_proc *)
515			    _kvm_realloc(kd, kd->procbase, size);
516			if (kd->procbase == 0)
517				return (0);
518			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
519			    temp_op == KERN_PROC_PROC ? 3 : 4,
520			    kd->procbase, &size, NULL, 0);
521		} while (st == -1 && errno == ENOMEM);
522		if (st == -1) {
523			_kvm_syserr(kd, kd->program, "kvm_getprocs");
524			return (0);
525		}
526		/*
527		 * We have to check the size again because sysctl()
528		 * may "round up" oldlenp if oldp is NULL; hence it
529		 * might've told us that there was data to get when
530		 * there really isn't any.
531		 */
532		if (size > 0 &&
533		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
534			_kvm_err(kd, kd->program,
535			    "kinfo_proc size mismatch (expected %d, got %d)",
536			    sizeof(struct kinfo_proc),
537			    kd->procbase->ki_structsize);
538			return (0);
539		}
540liveout:
541		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
542	} else {
543		struct nlist nl[6], *p;
544
545		nl[0].n_name = "_nprocs";
546		nl[1].n_name = "_allproc";
547		nl[2].n_name = "_zombproc";
548		nl[3].n_name = "_ticks";
549		nl[4].n_name = "_hz";
550		nl[5].n_name = 0;
551
552		if (kvm_nlist(kd, nl) != 0) {
553			for (p = nl; p->n_type != 0; ++p)
554				;
555			_kvm_err(kd, kd->program,
556				 "%s: no such symbol", p->n_name);
557			return (0);
558		}
559		if (KREAD(kd, nl[0].n_value, &nprocs)) {
560			_kvm_err(kd, kd->program, "can't read nprocs");
561			return (0);
562		}
563		if (KREAD(kd, nl[3].n_value, &ticks)) {
564			_kvm_err(kd, kd->program, "can't read ticks");
565			return (0);
566		}
567		if (KREAD(kd, nl[4].n_value, &hz)) {
568			_kvm_err(kd, kd->program, "can't read hz");
569			return (0);
570		}
571		size = nprocs * sizeof(struct kinfo_proc);
572		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
573		if (kd->procbase == 0)
574			return (0);
575
576		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
577				      nl[2].n_value, nprocs);
578#ifdef notdef
579		size = nprocs * sizeof(struct kinfo_proc);
580		(void)realloc(kd->procbase, size);
581#endif
582	}
583	*cnt = nprocs;
584	return (kd->procbase);
585}
586
587void
588_kvm_freeprocs(kd)
589	kvm_t *kd;
590{
591	if (kd->procbase) {
592		free(kd->procbase);
593		kd->procbase = 0;
594	}
595}
596
597void *
598_kvm_realloc(kd, p, n)
599	kvm_t *kd;
600	void *p;
601	size_t n;
602{
603	void *np = (void *)realloc(p, n);
604
605	if (np == 0) {
606		free(p);
607		_kvm_err(kd, kd->program, "out of memory");
608	}
609	return (np);
610}
611
612#ifndef MAX
613#define MAX(a, b) ((a) > (b) ? (a) : (b))
614#endif
615
616/*
617 * Read in an argument vector from the user address space of process kp.
618 * addr if the user-space base address of narg null-terminated contiguous
619 * strings.  This is used to read in both the command arguments and
620 * environment strings.  Read at most maxcnt characters of strings.
621 */
622static char **
623kvm_argv(kd, kp, addr, narg, maxcnt)
624	kvm_t *kd;
625	struct kinfo_proc *kp;
626	u_long addr;
627	int narg;
628	int maxcnt;
629{
630	char *np, *cp, *ep, *ap;
631	u_long oaddr = -1;
632	int len, cc;
633	char **argv;
634
635	/*
636	 * Check that there aren't an unreasonable number of agruments,
637	 * and that the address is in user space.
638	 */
639	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
640		return (0);
641
642	/*
643	 * kd->argv : work space for fetching the strings from the target
644	 *            process's space, and is converted for returning to caller
645	 */
646	if (kd->argv == 0) {
647		/*
648		 * Try to avoid reallocs.
649		 */
650		kd->argc = MAX(narg + 1, 32);
651		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
652						sizeof(*kd->argv));
653		if (kd->argv == 0)
654			return (0);
655	} else if (narg + 1 > kd->argc) {
656		kd->argc = MAX(2 * kd->argc, narg + 1);
657		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
658						sizeof(*kd->argv));
659		if (kd->argv == 0)
660			return (0);
661	}
662	/*
663	 * kd->argspc : returned to user, this is where the kd->argv
664	 *              arrays are left pointing to the collected strings.
665	 */
666	if (kd->argspc == 0) {
667		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
668		if (kd->argspc == 0)
669			return (0);
670		kd->arglen = PAGE_SIZE;
671	}
672	/*
673	 * kd->argbuf : used to pull in pages from the target process.
674	 *              the strings are copied out of here.
675	 */
676	if (kd->argbuf == 0) {
677		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
678		if (kd->argbuf == 0)
679			return (0);
680	}
681
682	/* Pull in the target process'es argv vector */
683	cc = sizeof(char *) * narg;
684	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
685		return (0);
686	/*
687	 * ap : saved start address of string we're working on in kd->argspc
688	 * np : pointer to next place to write in kd->argspc
689	 * len: length of data in kd->argspc
690	 * argv: pointer to the argv vector that we are hunting around the
691	 *       target process space for, and converting to addresses in
692	 *       our address space (kd->argspc).
693	 */
694	ap = np = kd->argspc;
695	argv = kd->argv;
696	len = 0;
697	/*
698	 * Loop over pages, filling in the argument vector.
699	 * Note that the argv strings could be pointing *anywhere* in
700	 * the user address space and are no longer contiguous.
701	 * Note that *argv is modified when we are going to fetch a string
702	 * that crosses a page boundary.  We copy the next part of the string
703	 * into to "np" and eventually convert the pointer.
704	 */
705	while (argv < kd->argv + narg && *argv != 0) {
706
707		/* get the address that the current argv string is on */
708		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
709
710		/* is it the same page as the last one? */
711		if (addr != oaddr) {
712			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
713			    PAGE_SIZE)
714				return (0);
715			oaddr = addr;
716		}
717
718		/* offset within the page... kd->argbuf */
719		addr = (u_long)*argv & (PAGE_SIZE - 1);
720
721		/* cp = start of string, cc = count of chars in this chunk */
722		cp = kd->argbuf + addr;
723		cc = PAGE_SIZE - addr;
724
725		/* dont get more than asked for by user process */
726		if (maxcnt > 0 && cc > maxcnt - len)
727			cc = maxcnt - len;
728
729		/* pointer to end of string if we found it in this page */
730		ep = memchr(cp, '\0', cc);
731		if (ep != 0)
732			cc = ep - cp + 1;
733		/*
734		 * at this point, cc is the count of the chars that we are
735		 * going to retrieve this time. we may or may not have found
736		 * the end of it.  (ep points to the null if the end is known)
737		 */
738
739		/* will we exceed the malloc/realloced buffer? */
740		if (len + cc > kd->arglen) {
741			int off;
742			char **pp;
743			char *op = kd->argspc;
744
745			kd->arglen *= 2;
746			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
747							  kd->arglen);
748			if (kd->argspc == 0)
749				return (0);
750			/*
751			 * Adjust argv pointers in case realloc moved
752			 * the string space.
753			 */
754			off = kd->argspc - op;
755			for (pp = kd->argv; pp < argv; pp++)
756				*pp += off;
757			ap += off;
758			np += off;
759		}
760		/* np = where to put the next part of the string in kd->argspc*/
761		/* np is kinda redundant.. could use "kd->argspc + len" */
762		memcpy(np, cp, cc);
763		np += cc;	/* inc counters */
764		len += cc;
765
766		/*
767		 * if end of string found, set the *argv pointer to the
768		 * saved beginning of string, and advance. argv points to
769		 * somewhere in kd->argv..  This is initially relative
770		 * to the target process, but when we close it off, we set
771		 * it to point in our address space.
772		 */
773		if (ep != 0) {
774			*argv++ = ap;
775			ap = np;
776		} else {
777			/* update the address relative to the target process */
778			*argv += cc;
779		}
780
781		if (maxcnt > 0 && len >= maxcnt) {
782			/*
783			 * We're stopping prematurely.  Terminate the
784			 * current string.
785			 */
786			if (ep == 0) {
787				*np = '\0';
788				*argv++ = ap;
789			}
790			break;
791		}
792	}
793	/* Make sure argv is terminated. */
794	*argv = 0;
795	return (kd->argv);
796}
797
798static void
799ps_str_a(p, addr, n)
800	struct ps_strings *p;
801	u_long *addr;
802	int *n;
803{
804	*addr = (u_long)p->ps_argvstr;
805	*n = p->ps_nargvstr;
806}
807
808static void
809ps_str_e(p, addr, n)
810	struct ps_strings *p;
811	u_long *addr;
812	int *n;
813{
814	*addr = (u_long)p->ps_envstr;
815	*n = p->ps_nenvstr;
816}
817
818/*
819 * Determine if the proc indicated by p is still active.
820 * This test is not 100% foolproof in theory, but chances of
821 * being wrong are very low.
822 */
823static int
824proc_verify(curkp)
825	struct kinfo_proc *curkp;
826{
827	struct kinfo_proc newkp;
828	int mib[4];
829	size_t len;
830
831	mib[0] = CTL_KERN;
832	mib[1] = KERN_PROC;
833	mib[2] = KERN_PROC_PID;
834	mib[3] = curkp->ki_pid;
835	len = sizeof(newkp);
836	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
837		return (0);
838	return (curkp->ki_pid == newkp.ki_pid &&
839	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
840}
841
842static char **
843kvm_doargv(kd, kp, nchr, info)
844	kvm_t *kd;
845	struct kinfo_proc *kp;
846	int nchr;
847	void (*info)(struct ps_strings *, u_long *, int *);
848{
849	char **ap;
850	u_long addr;
851	int cnt;
852	static struct ps_strings arginfo;
853	static u_long ps_strings;
854	size_t len;
855
856	if (ps_strings == 0) {
857		len = sizeof(ps_strings);
858		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
859		    0) == -1)
860			ps_strings = PS_STRINGS;
861	}
862
863	/*
864	 * Pointers are stored at the top of the user stack.
865	 */
866	if (kp->ki_stat == SZOMB ||
867	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
868		      sizeof(arginfo)) != sizeof(arginfo))
869		return (0);
870
871	(*info)(&arginfo, &addr, &cnt);
872	if (cnt == 0)
873		return (0);
874	ap = kvm_argv(kd, kp, addr, cnt, nchr);
875	/*
876	 * For live kernels, make sure this process didn't go away.
877	 */
878	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
879		ap = 0;
880	return (ap);
881}
882
883/*
884 * Get the command args.  This code is now machine independent.
885 */
886char **
887kvm_getargv(kd, kp, nchr)
888	kvm_t *kd;
889	const struct kinfo_proc *kp;
890	int nchr;
891{
892	int oid[4];
893	int i;
894	size_t bufsz;
895	static unsigned long buflen;
896	static char *buf, *p;
897	static char **bufp;
898	static int argc;
899
900	if (!ISALIVE(kd)) {
901		_kvm_err(kd, kd->program,
902		    "cannot read user space from dead kernel");
903		return (0);
904	}
905
906	if (!buflen) {
907		bufsz = sizeof(buflen);
908		i = sysctlbyname("kern.ps_arg_cache_limit",
909		    &buflen, &bufsz, NULL, 0);
910		if (i == -1) {
911			buflen = 0;
912		} else {
913			buf = malloc(buflen);
914			if (buf == NULL)
915				buflen = 0;
916			argc = 32;
917			bufp = malloc(sizeof(char *) * argc);
918		}
919	}
920	if (buf != NULL) {
921		oid[0] = CTL_KERN;
922		oid[1] = KERN_PROC;
923		oid[2] = KERN_PROC_ARGS;
924		oid[3] = kp->ki_pid;
925		bufsz = buflen;
926		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
927		if (i == 0 && bufsz > 0) {
928			i = 0;
929			p = buf;
930			do {
931				bufp[i++] = p;
932				p += strlen(p) + 1;
933				if (i >= argc) {
934					argc += argc;
935					bufp = realloc(bufp,
936					    sizeof(char *) * argc);
937				}
938			} while (p < buf + bufsz);
939			bufp[i++] = 0;
940			return (bufp);
941		}
942	}
943	if (kp->ki_flag & P_SYSTEM)
944		return (NULL);
945	return (kvm_doargv(kd, kp, nchr, ps_str_a));
946}
947
948char **
949kvm_getenvv(kd, kp, nchr)
950	kvm_t *kd;
951	const struct kinfo_proc *kp;
952	int nchr;
953{
954	return (kvm_doargv(kd, kp, nchr, ps_str_e));
955}
956
957/*
958 * Read from user space.  The user context is given by p.
959 */
960ssize_t
961kvm_uread(kd, kp, uva, buf, len)
962	kvm_t *kd;
963	struct kinfo_proc *kp;
964	u_long uva;
965	char *buf;
966	size_t len;
967{
968	char *cp;
969	char procfile[MAXPATHLEN];
970	ssize_t amount;
971	int fd;
972
973	if (!ISALIVE(kd)) {
974		_kvm_err(kd, kd->program,
975		    "cannot read user space from dead kernel");
976		return (0);
977	}
978
979	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
980	fd = open(procfile, O_RDONLY, 0);
981	if (fd < 0) {
982		_kvm_err(kd, kd->program, "cannot open %s", procfile);
983		return (0);
984	}
985
986	cp = buf;
987	while (len > 0) {
988		errno = 0;
989		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
990			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
991			    uva, procfile);
992			break;
993		}
994		amount = read(fd, cp, len);
995		if (amount < 0) {
996			_kvm_syserr(kd, kd->program, "error reading %s",
997			    procfile);
998			break;
999		}
1000		if (amount == 0) {
1001			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1002			break;
1003		}
1004		cp += amount;
1005		uva += amount;
1006		len -= amount;
1007	}
1008
1009	close(fd);
1010	return ((ssize_t)(cp - buf));
1011}
1012