kvm_proc.c revision 172207
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if 0
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37#endif /* LIBC_SCCS and not lint */
38#endif
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 172207 2007-09-17 05:31:39Z jeff $");
42
43/*
44 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50#include <sys/param.h>
51#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52#include <sys/ucred.h>
53#include <sys/queue.h>
54#include <sys/_lock.h>
55#include <sys/_mutex.h>
56#include <sys/_task.h>
57#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
58#include <sys/jail.h>
59#include <sys/user.h>
60#include <sys/proc.h>
61#include <sys/exec.h>
62#include <sys/stat.h>
63#include <sys/sysent.h>
64#include <sys/ioctl.h>
65#include <sys/tty.h>
66#include <sys/file.h>
67#include <sys/conf.h>
68#include <stdio.h>
69#include <stdlib.h>
70#include <unistd.h>
71#include <nlist.h>
72#include <kvm.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76
77#include <sys/sysctl.h>
78
79#include <limits.h>
80#include <memory.h>
81#include <paths.h>
82
83#include "kvm_private.h"
84
85#define KREAD(kd, addr, obj) \
86	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
87
88/*
89 * Read proc's from memory file into buffer bp, which has space to hold
90 * at most maxcnt procs.
91 */
92static int
93kvm_proclist(kd, what, arg, p, bp, maxcnt)
94	kvm_t *kd;
95	int what, arg;
96	struct proc *p;
97	struct kinfo_proc *bp;
98	int maxcnt;
99{
100	int cnt = 0;
101	struct kinfo_proc kinfo_proc, *kp;
102	struct pgrp pgrp;
103	struct session sess;
104	struct cdev t_cdev;
105	struct tty tty;
106	struct vmspace vmspace;
107	struct sigacts sigacts;
108	struct pstats pstats;
109	struct ucred ucred;
110	struct prison pr;
111	struct thread mtd;
112	struct proc proc;
113	struct proc pproc;
114	struct timeval tv;
115	struct sysentvec sysent;
116	char svname[KI_EMULNAMELEN];
117
118	kp = &kinfo_proc;
119	kp->ki_structsize = sizeof(kinfo_proc);
120	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
121		memset(kp, 0, sizeof *kp);
122		if (KREAD(kd, (u_long)p, &proc)) {
123			_kvm_err(kd, kd->program, "can't read proc at %x", p);
124			return (-1);
125		}
126		if (proc.p_state != PRS_ZOMBIE) {
127			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
128			    &mtd)) {
129				_kvm_err(kd, kd->program,
130				    "can't read thread at %x",
131				    TAILQ_FIRST(&proc.p_threads));
132				return (-1);
133			}
134		}
135		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
136			kp->ki_ruid = ucred.cr_ruid;
137			kp->ki_svuid = ucred.cr_svuid;
138			kp->ki_rgid = ucred.cr_rgid;
139			kp->ki_svgid = ucred.cr_svgid;
140			kp->ki_ngroups = ucred.cr_ngroups;
141			bcopy(ucred.cr_groups, kp->ki_groups,
142			    NGROUPS * sizeof(gid_t));
143			kp->ki_uid = ucred.cr_uid;
144			if (ucred.cr_prison != NULL) {
145				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
146					_kvm_err(kd, kd->program,
147					    "can't read prison at %x",
148					    ucred.cr_prison);
149					return (-1);
150				}
151				kp->ki_jid = pr.pr_id;
152			}
153		}
154
155		switch(what & ~KERN_PROC_INC_THREAD) {
156
157		case KERN_PROC_GID:
158			if (kp->ki_groups[0] != (gid_t)arg)
159				continue;
160			break;
161
162		case KERN_PROC_PID:
163			if (proc.p_pid != (pid_t)arg)
164				continue;
165			break;
166
167		case KERN_PROC_RGID:
168			if (kp->ki_rgid != (gid_t)arg)
169				continue;
170			break;
171
172		case KERN_PROC_UID:
173			if (kp->ki_uid != (uid_t)arg)
174				continue;
175			break;
176
177		case KERN_PROC_RUID:
178			if (kp->ki_ruid != (uid_t)arg)
179				continue;
180			break;
181		}
182		/*
183		 * We're going to add another proc to the set.  If this
184		 * will overflow the buffer, assume the reason is because
185		 * nprocs (or the proc list) is corrupt and declare an error.
186		 */
187		if (cnt >= maxcnt) {
188			_kvm_err(kd, kd->program, "nprocs corrupt");
189			return (-1);
190		}
191		/*
192		 * gather kinfo_proc
193		 */
194		kp->ki_paddr = p;
195		kp->ki_addr = 0;	/* XXX uarea */
196		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
197		kp->ki_args = proc.p_args;
198		kp->ki_tracep = proc.p_tracevp;
199		kp->ki_textvp = proc.p_textvp;
200		kp->ki_fd = proc.p_fd;
201		kp->ki_vmspace = proc.p_vmspace;
202		if (proc.p_sigacts != NULL) {
203			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
204				_kvm_err(kd, kd->program,
205				    "can't read sigacts at %x", proc.p_sigacts);
206				return (-1);
207			}
208			kp->ki_sigignore = sigacts.ps_sigignore;
209			kp->ki_sigcatch = sigacts.ps_sigcatch;
210		}
211#if 0
212		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
213			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
214				_kvm_err(kd, kd->program,
215				    "can't read stats at %x", proc.p_stats);
216				return (-1);
217			}
218			kp->ki_start = pstats.p_start;
219
220			/*
221			 * XXX: The times here are probably zero and need
222			 * to be calculated from the raw data in p_rux and
223			 * p_crux.
224			 */
225			kp->ki_rusage = pstats.p_ru;
226			kp->ki_childstime = pstats.p_cru.ru_stime;
227			kp->ki_childutime = pstats.p_cru.ru_utime;
228			/* Some callers want child-times in a single value */
229			timeradd(&kp->ki_childstime, &kp->ki_childutime,
230			    &kp->ki_childtime);
231		}
232#endif
233		if (proc.p_oppid)
234			kp->ki_ppid = proc.p_oppid;
235		else if (proc.p_pptr) {
236			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
237				_kvm_err(kd, kd->program,
238				    "can't read pproc at %x", proc.p_pptr);
239				return (-1);
240			}
241			kp->ki_ppid = pproc.p_pid;
242		} else
243			kp->ki_ppid = 0;
244		if (proc.p_pgrp == NULL)
245			goto nopgrp;
246		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
247			_kvm_err(kd, kd->program, "can't read pgrp at %x",
248				 proc.p_pgrp);
249			return (-1);
250		}
251		kp->ki_pgid = pgrp.pg_id;
252		kp->ki_jobc = pgrp.pg_jobc;
253		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
254			_kvm_err(kd, kd->program, "can't read session at %x",
255				pgrp.pg_session);
256			return (-1);
257		}
258		kp->ki_sid = sess.s_sid;
259		(void)memcpy(kp->ki_login, sess.s_login,
260						sizeof(kp->ki_login));
261		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
262		if (sess.s_leader == p)
263			kp->ki_kiflag |= KI_SLEADER;
264		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
265			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
266				_kvm_err(kd, kd->program,
267					 "can't read tty at %x", sess.s_ttyp);
268				return (-1);
269			}
270			if (tty.t_dev != NULL) {
271				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
272					_kvm_err(kd, kd->program,
273						 "can't read cdev at %x",
274						tty.t_dev);
275					return (-1);
276				}
277#if 0
278				kp->ki_tdev = t_cdev.si_udev;
279#else
280				kp->ki_tdev = NODEV;
281#endif
282			}
283			if (tty.t_pgrp != NULL) {
284				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
285					_kvm_err(kd, kd->program,
286						 "can't read tpgrp at %x",
287						tty.t_pgrp);
288					return (-1);
289				}
290				kp->ki_tpgid = pgrp.pg_id;
291			} else
292				kp->ki_tpgid = -1;
293			if (tty.t_session != NULL) {
294				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
295					_kvm_err(kd, kd->program,
296					    "can't read session at %x",
297					    tty.t_session);
298					return (-1);
299				}
300				kp->ki_tsid = sess.s_sid;
301			}
302		} else {
303nopgrp:
304			kp->ki_tdev = NODEV;
305		}
306		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
307			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
308			    kp->ki_wmesg, WMESGLEN);
309
310		(void)kvm_read(kd, (u_long)proc.p_vmspace,
311		    (char *)&vmspace, sizeof(vmspace));
312		kp->ki_size = vmspace.vm_map.size;
313		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
314		kp->ki_swrss = vmspace.vm_swrss;
315		kp->ki_tsize = vmspace.vm_tsize;
316		kp->ki_dsize = vmspace.vm_dsize;
317		kp->ki_ssize = vmspace.vm_ssize;
318
319		switch (what & ~KERN_PROC_INC_THREAD) {
320
321		case KERN_PROC_PGRP:
322			if (kp->ki_pgid != (pid_t)arg)
323				continue;
324			break;
325
326		case KERN_PROC_SESSION:
327			if (kp->ki_sid != (pid_t)arg)
328				continue;
329			break;
330
331		case KERN_PROC_TTY:
332			if ((proc.p_flag & P_CONTROLT) == 0 ||
333			     kp->ki_tdev != (dev_t)arg)
334				continue;
335			break;
336		}
337		if (proc.p_comm[0] != 0)
338			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
339		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
340		    sizeof(sysent));
341		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
342		    sizeof(svname));
343		if (svname[0] != 0)
344			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
345		if ((proc.p_state != PRS_ZOMBIE) &&
346		    (mtd.td_blocked != 0)) {
347			kp->ki_kiflag |= KI_LOCKBLOCK;
348			if (mtd.td_lockname)
349				(void)kvm_read(kd,
350				    (u_long)mtd.td_lockname,
351				    kp->ki_lockname, LOCKNAMELEN);
352			kp->ki_lockname[LOCKNAMELEN] = 0;
353		}
354		/*
355		 * XXX: This is plain wrong, rux_runtime has nothing
356		 * to do with struct bintime, rux_runtime is just a 64-bit
357		 * integer counter of cputicks.  What we need here is a way
358		 * to convert cputicks to usecs.  The kernel does it in
359		 * kern/kern_tc.c, but the function can't be just copied.
360		 */
361		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
362		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
363		kp->ki_pid = proc.p_pid;
364		kp->ki_siglist = proc.p_siglist;
365		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
366		kp->ki_sigmask = mtd.td_sigmask;
367		kp->ki_xstat = proc.p_xstat;
368		kp->ki_acflag = proc.p_acflag;
369		kp->ki_lock = proc.p_lock;
370		if (proc.p_state != PRS_ZOMBIE) {
371			kp->ki_swtime = proc.p_swtime;
372			kp->ki_flag = proc.p_flag;
373			kp->ki_sflag = 0;
374			kp->ki_nice = proc.p_nice;
375			kp->ki_traceflag = proc.p_traceflag;
376			if (proc.p_state == PRS_NORMAL) {
377				if (TD_ON_RUNQ(&mtd) ||
378				    TD_CAN_RUN(&mtd) ||
379				    TD_IS_RUNNING(&mtd)) {
380					kp->ki_stat = SRUN;
381				} else if (mtd.td_state ==
382				    TDS_INHIBITED) {
383					if (P_SHOULDSTOP(&proc)) {
384						kp->ki_stat = SSTOP;
385					} else if (
386					    TD_IS_SLEEPING(&mtd)) {
387						kp->ki_stat = SSLEEP;
388					} else if (TD_ON_LOCK(&mtd)) {
389						kp->ki_stat = SLOCK;
390					} else {
391						kp->ki_stat = SWAIT;
392					}
393				}
394			} else {
395				kp->ki_stat = SIDL;
396			}
397			/* Stuff from the thread */
398			kp->ki_pri.pri_level = mtd.td_priority;
399			kp->ki_pri.pri_native = mtd.td_base_pri;
400			kp->ki_lastcpu = mtd.td_lastcpu;
401			kp->ki_wchan = mtd.td_wchan;
402			kp->ki_oncpu = mtd.td_oncpu;
403
404			if (!(proc.p_flag & P_SA)) {
405				kp->ki_pctcpu = 0;
406				kp->ki_rqindex = 0;
407			} else {
408				kp->ki_tdflags = -1;
409				/* All the rest are 0 for now */
410			}
411		} else {
412			kp->ki_stat = SZOMB;
413		}
414		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
415		++bp;
416		++cnt;
417	}
418	return (cnt);
419}
420
421/*
422 * Build proc info array by reading in proc list from a crash dump.
423 * Return number of procs read.  maxcnt is the max we will read.
424 */
425static int
426kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
427	kvm_t *kd;
428	int what, arg;
429	u_long a_allproc;
430	u_long a_zombproc;
431	int maxcnt;
432{
433	struct kinfo_proc *bp = kd->procbase;
434	int acnt, zcnt;
435	struct proc *p;
436
437	if (KREAD(kd, a_allproc, &p)) {
438		_kvm_err(kd, kd->program, "cannot read allproc");
439		return (-1);
440	}
441	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
442	if (acnt < 0)
443		return (acnt);
444
445	if (KREAD(kd, a_zombproc, &p)) {
446		_kvm_err(kd, kd->program, "cannot read zombproc");
447		return (-1);
448	}
449	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
450	if (zcnt < 0)
451		zcnt = 0;
452
453	return (acnt + zcnt);
454}
455
456struct kinfo_proc *
457kvm_getprocs(kd, op, arg, cnt)
458	kvm_t *kd;
459	int op, arg;
460	int *cnt;
461{
462	int mib[4], st, nprocs;
463	size_t size;
464	int temp_op;
465
466	if (kd->procbase != 0) {
467		free((void *)kd->procbase);
468		/*
469		 * Clear this pointer in case this call fails.  Otherwise,
470		 * kvm_close() will free it again.
471		 */
472		kd->procbase = 0;
473	}
474	if (ISALIVE(kd)) {
475		size = 0;
476		mib[0] = CTL_KERN;
477		mib[1] = KERN_PROC;
478		mib[2] = op;
479		mib[3] = arg;
480		temp_op = op & ~KERN_PROC_INC_THREAD;
481		st = sysctl(mib,
482		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
483		    3 : 4, NULL, &size, NULL, 0);
484		if (st == -1) {
485			_kvm_syserr(kd, kd->program, "kvm_getprocs");
486			return (0);
487		}
488		/*
489		 * We can't continue with a size of 0 because we pass
490		 * it to realloc() (via _kvm_realloc()), and passing 0
491		 * to realloc() results in undefined behavior.
492		 */
493		if (size == 0) {
494			/*
495			 * XXX: We should probably return an invalid,
496			 * but non-NULL, pointer here so any client
497			 * program trying to dereference it will
498			 * crash.  However, _kvm_freeprocs() calls
499			 * free() on kd->procbase if it isn't NULL,
500			 * and free()'ing a junk pointer isn't good.
501			 * Then again, _kvm_freeprocs() isn't used
502			 * anywhere . . .
503			 */
504			kd->procbase = _kvm_malloc(kd, 1);
505			goto liveout;
506		}
507		do {
508			size += size / 10;
509			kd->procbase = (struct kinfo_proc *)
510			    _kvm_realloc(kd, kd->procbase, size);
511			if (kd->procbase == 0)
512				return (0);
513			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
514			    temp_op == KERN_PROC_PROC ? 3 : 4,
515			    kd->procbase, &size, NULL, 0);
516		} while (st == -1 && errno == ENOMEM);
517		if (st == -1) {
518			_kvm_syserr(kd, kd->program, "kvm_getprocs");
519			return (0);
520		}
521		/*
522		 * We have to check the size again because sysctl()
523		 * may "round up" oldlenp if oldp is NULL; hence it
524		 * might've told us that there was data to get when
525		 * there really isn't any.
526		 */
527		if (size > 0 &&
528		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
529			_kvm_err(kd, kd->program,
530			    "kinfo_proc size mismatch (expected %d, got %d)",
531			    sizeof(struct kinfo_proc),
532			    kd->procbase->ki_structsize);
533			return (0);
534		}
535liveout:
536		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
537	} else {
538		struct nlist nl[4], *p;
539
540		nl[0].n_name = "_nprocs";
541		nl[1].n_name = "_allproc";
542		nl[2].n_name = "_zombproc";
543		nl[3].n_name = 0;
544
545		if (kvm_nlist(kd, nl) != 0) {
546			for (p = nl; p->n_type != 0; ++p)
547				;
548			_kvm_err(kd, kd->program,
549				 "%s: no such symbol", p->n_name);
550			return (0);
551		}
552		if (KREAD(kd, nl[0].n_value, &nprocs)) {
553			_kvm_err(kd, kd->program, "can't read nprocs");
554			return (0);
555		}
556		size = nprocs * sizeof(struct kinfo_proc);
557		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
558		if (kd->procbase == 0)
559			return (0);
560
561		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
562				      nl[2].n_value, nprocs);
563#ifdef notdef
564		size = nprocs * sizeof(struct kinfo_proc);
565		(void)realloc(kd->procbase, size);
566#endif
567	}
568	*cnt = nprocs;
569	return (kd->procbase);
570}
571
572void
573_kvm_freeprocs(kd)
574	kvm_t *kd;
575{
576	if (kd->procbase) {
577		free(kd->procbase);
578		kd->procbase = 0;
579	}
580}
581
582void *
583_kvm_realloc(kd, p, n)
584	kvm_t *kd;
585	void *p;
586	size_t n;
587{
588	void *np = (void *)realloc(p, n);
589
590	if (np == 0) {
591		free(p);
592		_kvm_err(kd, kd->program, "out of memory");
593	}
594	return (np);
595}
596
597#ifndef MAX
598#define MAX(a, b) ((a) > (b) ? (a) : (b))
599#endif
600
601/*
602 * Read in an argument vector from the user address space of process kp.
603 * addr if the user-space base address of narg null-terminated contiguous
604 * strings.  This is used to read in both the command arguments and
605 * environment strings.  Read at most maxcnt characters of strings.
606 */
607static char **
608kvm_argv(kd, kp, addr, narg, maxcnt)
609	kvm_t *kd;
610	struct kinfo_proc *kp;
611	u_long addr;
612	int narg;
613	int maxcnt;
614{
615	char *np, *cp, *ep, *ap;
616	u_long oaddr = -1;
617	int len, cc;
618	char **argv;
619
620	/*
621	 * Check that there aren't an unreasonable number of agruments,
622	 * and that the address is in user space.
623	 */
624	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
625		return (0);
626
627	/*
628	 * kd->argv : work space for fetching the strings from the target
629	 *            process's space, and is converted for returning to caller
630	 */
631	if (kd->argv == 0) {
632		/*
633		 * Try to avoid reallocs.
634		 */
635		kd->argc = MAX(narg + 1, 32);
636		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
637						sizeof(*kd->argv));
638		if (kd->argv == 0)
639			return (0);
640	} else if (narg + 1 > kd->argc) {
641		kd->argc = MAX(2 * kd->argc, narg + 1);
642		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
643						sizeof(*kd->argv));
644		if (kd->argv == 0)
645			return (0);
646	}
647	/*
648	 * kd->argspc : returned to user, this is where the kd->argv
649	 *              arrays are left pointing to the collected strings.
650	 */
651	if (kd->argspc == 0) {
652		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
653		if (kd->argspc == 0)
654			return (0);
655		kd->arglen = PAGE_SIZE;
656	}
657	/*
658	 * kd->argbuf : used to pull in pages from the target process.
659	 *              the strings are copied out of here.
660	 */
661	if (kd->argbuf == 0) {
662		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
663		if (kd->argbuf == 0)
664			return (0);
665	}
666
667	/* Pull in the target process'es argv vector */
668	cc = sizeof(char *) * narg;
669	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
670		return (0);
671	/*
672	 * ap : saved start address of string we're working on in kd->argspc
673	 * np : pointer to next place to write in kd->argspc
674	 * len: length of data in kd->argspc
675	 * argv: pointer to the argv vector that we are hunting around the
676	 *       target process space for, and converting to addresses in
677	 *       our address space (kd->argspc).
678	 */
679	ap = np = kd->argspc;
680	argv = kd->argv;
681	len = 0;
682	/*
683	 * Loop over pages, filling in the argument vector.
684	 * Note that the argv strings could be pointing *anywhere* in
685	 * the user address space and are no longer contiguous.
686	 * Note that *argv is modified when we are going to fetch a string
687	 * that crosses a page boundary.  We copy the next part of the string
688	 * into to "np" and eventually convert the pointer.
689	 */
690	while (argv < kd->argv + narg && *argv != 0) {
691
692		/* get the address that the current argv string is on */
693		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
694
695		/* is it the same page as the last one? */
696		if (addr != oaddr) {
697			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
698			    PAGE_SIZE)
699				return (0);
700			oaddr = addr;
701		}
702
703		/* offset within the page... kd->argbuf */
704		addr = (u_long)*argv & (PAGE_SIZE - 1);
705
706		/* cp = start of string, cc = count of chars in this chunk */
707		cp = kd->argbuf + addr;
708		cc = PAGE_SIZE - addr;
709
710		/* dont get more than asked for by user process */
711		if (maxcnt > 0 && cc > maxcnt - len)
712			cc = maxcnt - len;
713
714		/* pointer to end of string if we found it in this page */
715		ep = memchr(cp, '\0', cc);
716		if (ep != 0)
717			cc = ep - cp + 1;
718		/*
719		 * at this point, cc is the count of the chars that we are
720		 * going to retrieve this time. we may or may not have found
721		 * the end of it.  (ep points to the null if the end is known)
722		 */
723
724		/* will we exceed the malloc/realloced buffer? */
725		if (len + cc > kd->arglen) {
726			int off;
727			char **pp;
728			char *op = kd->argspc;
729
730			kd->arglen *= 2;
731			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
732							  kd->arglen);
733			if (kd->argspc == 0)
734				return (0);
735			/*
736			 * Adjust argv pointers in case realloc moved
737			 * the string space.
738			 */
739			off = kd->argspc - op;
740			for (pp = kd->argv; pp < argv; pp++)
741				*pp += off;
742			ap += off;
743			np += off;
744		}
745		/* np = where to put the next part of the string in kd->argspc*/
746		/* np is kinda redundant.. could use "kd->argspc + len" */
747		memcpy(np, cp, cc);
748		np += cc;	/* inc counters */
749		len += cc;
750
751		/*
752		 * if end of string found, set the *argv pointer to the
753		 * saved beginning of string, and advance. argv points to
754		 * somewhere in kd->argv..  This is initially relative
755		 * to the target process, but when we close it off, we set
756		 * it to point in our address space.
757		 */
758		if (ep != 0) {
759			*argv++ = ap;
760			ap = np;
761		} else {
762			/* update the address relative to the target process */
763			*argv += cc;
764		}
765
766		if (maxcnt > 0 && len >= maxcnt) {
767			/*
768			 * We're stopping prematurely.  Terminate the
769			 * current string.
770			 */
771			if (ep == 0) {
772				*np = '\0';
773				*argv++ = ap;
774			}
775			break;
776		}
777	}
778	/* Make sure argv is terminated. */
779	*argv = 0;
780	return (kd->argv);
781}
782
783static void
784ps_str_a(p, addr, n)
785	struct ps_strings *p;
786	u_long *addr;
787	int *n;
788{
789	*addr = (u_long)p->ps_argvstr;
790	*n = p->ps_nargvstr;
791}
792
793static void
794ps_str_e(p, addr, n)
795	struct ps_strings *p;
796	u_long *addr;
797	int *n;
798{
799	*addr = (u_long)p->ps_envstr;
800	*n = p->ps_nenvstr;
801}
802
803/*
804 * Determine if the proc indicated by p is still active.
805 * This test is not 100% foolproof in theory, but chances of
806 * being wrong are very low.
807 */
808static int
809proc_verify(curkp)
810	struct kinfo_proc *curkp;
811{
812	struct kinfo_proc newkp;
813	int mib[4];
814	size_t len;
815
816	mib[0] = CTL_KERN;
817	mib[1] = KERN_PROC;
818	mib[2] = KERN_PROC_PID;
819	mib[3] = curkp->ki_pid;
820	len = sizeof(newkp);
821	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
822		return (0);
823	return (curkp->ki_pid == newkp.ki_pid &&
824	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
825}
826
827static char **
828kvm_doargv(kd, kp, nchr, info)
829	kvm_t *kd;
830	struct kinfo_proc *kp;
831	int nchr;
832	void (*info)(struct ps_strings *, u_long *, int *);
833{
834	char **ap;
835	u_long addr;
836	int cnt;
837	static struct ps_strings arginfo;
838	static u_long ps_strings;
839	size_t len;
840
841	if (ps_strings == 0) {
842		len = sizeof(ps_strings);
843		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
844		    0) == -1)
845			ps_strings = PS_STRINGS;
846	}
847
848	/*
849	 * Pointers are stored at the top of the user stack.
850	 */
851	if (kp->ki_stat == SZOMB ||
852	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
853		      sizeof(arginfo)) != sizeof(arginfo))
854		return (0);
855
856	(*info)(&arginfo, &addr, &cnt);
857	if (cnt == 0)
858		return (0);
859	ap = kvm_argv(kd, kp, addr, cnt, nchr);
860	/*
861	 * For live kernels, make sure this process didn't go away.
862	 */
863	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
864		ap = 0;
865	return (ap);
866}
867
868/*
869 * Get the command args.  This code is now machine independent.
870 */
871char **
872kvm_getargv(kd, kp, nchr)
873	kvm_t *kd;
874	const struct kinfo_proc *kp;
875	int nchr;
876{
877	int oid[4];
878	int i;
879	size_t bufsz;
880	static unsigned long buflen;
881	static char *buf, *p;
882	static char **bufp;
883	static int argc;
884
885	if (!ISALIVE(kd)) {
886		_kvm_err(kd, kd->program,
887		    "cannot read user space from dead kernel");
888		return (0);
889	}
890
891	if (!buflen) {
892		bufsz = sizeof(buflen);
893		i = sysctlbyname("kern.ps_arg_cache_limit",
894		    &buflen, &bufsz, NULL, 0);
895		if (i == -1) {
896			buflen = 0;
897		} else {
898			buf = malloc(buflen);
899			if (buf == NULL)
900				buflen = 0;
901			argc = 32;
902			bufp = malloc(sizeof(char *) * argc);
903		}
904	}
905	if (buf != NULL) {
906		oid[0] = CTL_KERN;
907		oid[1] = KERN_PROC;
908		oid[2] = KERN_PROC_ARGS;
909		oid[3] = kp->ki_pid;
910		bufsz = buflen;
911		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
912		if (i == 0 && bufsz > 0) {
913			i = 0;
914			p = buf;
915			do {
916				bufp[i++] = p;
917				p += strlen(p) + 1;
918				if (i >= argc) {
919					argc += argc;
920					bufp = realloc(bufp,
921					    sizeof(char *) * argc);
922				}
923			} while (p < buf + bufsz);
924			bufp[i++] = 0;
925			return (bufp);
926		}
927	}
928	if (kp->ki_flag & P_SYSTEM)
929		return (NULL);
930	return (kvm_doargv(kd, kp, nchr, ps_str_a));
931}
932
933char **
934kvm_getenvv(kd, kp, nchr)
935	kvm_t *kd;
936	const struct kinfo_proc *kp;
937	int nchr;
938{
939	return (kvm_doargv(kd, kp, nchr, ps_str_e));
940}
941
942/*
943 * Read from user space.  The user context is given by p.
944 */
945ssize_t
946kvm_uread(kd, kp, uva, buf, len)
947	kvm_t *kd;
948	struct kinfo_proc *kp;
949	u_long uva;
950	char *buf;
951	size_t len;
952{
953	char *cp;
954	char procfile[MAXPATHLEN];
955	ssize_t amount;
956	int fd;
957
958	if (!ISALIVE(kd)) {
959		_kvm_err(kd, kd->program,
960		    "cannot read user space from dead kernel");
961		return (0);
962	}
963
964	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
965	fd = open(procfile, O_RDONLY, 0);
966	if (fd < 0) {
967		_kvm_err(kd, kd->program, "cannot open %s", procfile);
968		return (0);
969	}
970
971	cp = buf;
972	while (len > 0) {
973		errno = 0;
974		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
975			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
976			    uva, procfile);
977			break;
978		}
979		amount = read(fd, cp, len);
980		if (amount < 0) {
981			_kvm_syserr(kd, kd->program, "error reading %s",
982			    procfile);
983			break;
984		}
985		if (amount == 0) {
986			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
987			break;
988		}
989		cp += amount;
990		uva += amount;
991		len -= amount;
992	}
993
994	close(fd);
995	return ((ssize_t)(cp - buf));
996}
997