kvm_proc.c revision 164938
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 164938 2006-12-06 06:44:20Z julian $");
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/queue.h>
58#include <sys/_lock.h>
59#include <sys/_mutex.h>
60#include <sys/_task.h>
61#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
62#include <sys/jail.h>
63#include <sys/user.h>
64#include <sys/proc.h>
65#include <sys/exec.h>
66#include <sys/stat.h>
67#include <sys/sysent.h>
68#include <sys/ioctl.h>
69#include <sys/tty.h>
70#include <sys/file.h>
71#include <sys/conf.h>
72#include <stdio.h>
73#include <stdlib.h>
74#include <unistd.h>
75#include <nlist.h>
76#include <kvm.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80
81#include <sys/sysctl.h>
82
83#include <limits.h>
84#include <memory.h>
85#include <paths.h>
86
87#include "kvm_private.h"
88
89#define KREAD(kd, addr, obj) \
90	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
91
92/*
93 * Read proc's from memory file into buffer bp, which has space to hold
94 * at most maxcnt procs.
95 */
96static int
97kvm_proclist(kd, what, arg, p, bp, maxcnt)
98	kvm_t *kd;
99	int what, arg;
100	struct proc *p;
101	struct kinfo_proc *bp;
102	int maxcnt;
103{
104	int cnt = 0;
105	struct kinfo_proc kinfo_proc, *kp;
106	struct pgrp pgrp;
107	struct session sess;
108	struct cdev t_cdev;
109	struct tty tty;
110	struct vmspace vmspace;
111	struct sigacts sigacts;
112	struct pstats pstats;
113	struct ucred ucred;
114	struct prison pr;
115	struct thread mtd;
116	struct proc proc;
117	struct proc pproc;
118	struct timeval tv;
119	struct sysentvec sysent;
120	char svname[KI_EMULNAMELEN];
121
122	kp = &kinfo_proc;
123	kp->ki_structsize = sizeof(kinfo_proc);
124	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
125		memset(kp, 0, sizeof *kp);
126		if (KREAD(kd, (u_long)p, &proc)) {
127			_kvm_err(kd, kd->program, "can't read proc at %x", p);
128			return (-1);
129		}
130		if (proc.p_state != PRS_ZOMBIE) {
131			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
132			    &mtd)) {
133				_kvm_err(kd, kd->program,
134				    "can't read thread at %x",
135				    TAILQ_FIRST(&proc.p_threads));
136				return (-1);
137			}
138		}
139		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
140			kp->ki_ruid = ucred.cr_ruid;
141			kp->ki_svuid = ucred.cr_svuid;
142			kp->ki_rgid = ucred.cr_rgid;
143			kp->ki_svgid = ucred.cr_svgid;
144			kp->ki_ngroups = ucred.cr_ngroups;
145			bcopy(ucred.cr_groups, kp->ki_groups,
146			    NGROUPS * sizeof(gid_t));
147			kp->ki_uid = ucred.cr_uid;
148			if (ucred.cr_prison != NULL) {
149				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
150					_kvm_err(kd, kd->program,
151					    "can't read prison at %x",
152					    ucred.cr_prison);
153					return (-1);
154				}
155				kp->ki_jid = pr.pr_id;
156			}
157		}
158
159		switch(what & ~KERN_PROC_INC_THREAD) {
160
161		case KERN_PROC_GID:
162			if (kp->ki_groups[0] != (gid_t)arg)
163				continue;
164			break;
165
166		case KERN_PROC_PID:
167			if (proc.p_pid != (pid_t)arg)
168				continue;
169			break;
170
171		case KERN_PROC_RGID:
172			if (kp->ki_rgid != (gid_t)arg)
173				continue;
174			break;
175
176		case KERN_PROC_UID:
177			if (kp->ki_uid != (uid_t)arg)
178				continue;
179			break;
180
181		case KERN_PROC_RUID:
182			if (kp->ki_ruid != (uid_t)arg)
183				continue;
184			break;
185		}
186		/*
187		 * We're going to add another proc to the set.  If this
188		 * will overflow the buffer, assume the reason is because
189		 * nprocs (or the proc list) is corrupt and declare an error.
190		 */
191		if (cnt >= maxcnt) {
192			_kvm_err(kd, kd->program, "nprocs corrupt");
193			return (-1);
194		}
195		/*
196		 * gather kinfo_proc
197		 */
198		kp->ki_paddr = p;
199		kp->ki_addr = 0;	/* XXX uarea */
200		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
201		kp->ki_args = proc.p_args;
202		kp->ki_tracep = proc.p_tracevp;
203		kp->ki_textvp = proc.p_textvp;
204		kp->ki_fd = proc.p_fd;
205		kp->ki_vmspace = proc.p_vmspace;
206		if (proc.p_sigacts != NULL) {
207			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
208				_kvm_err(kd, kd->program,
209				    "can't read sigacts at %x", proc.p_sigacts);
210				return (-1);
211			}
212			kp->ki_sigignore = sigacts.ps_sigignore;
213			kp->ki_sigcatch = sigacts.ps_sigcatch;
214		}
215		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
216			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
217				_kvm_err(kd, kd->program,
218				    "can't read stats at %x", proc.p_stats);
219				return (-1);
220			}
221			kp->ki_start = pstats.p_start;
222
223			/*
224			 * XXX: The times here are probably zero and need
225			 * to be calculated from the raw data in p_rux and
226			 * p_crux.
227			 */
228			kp->ki_rusage = pstats.p_ru;
229			kp->ki_childstime = pstats.p_cru.ru_stime;
230			kp->ki_childutime = pstats.p_cru.ru_utime;
231			/* Some callers want child-times in a single value */
232			timeradd(&kp->ki_childstime, &kp->ki_childutime,
233			    &kp->ki_childtime);
234		}
235		if (proc.p_oppid)
236			kp->ki_ppid = proc.p_oppid;
237		else if (proc.p_pptr) {
238			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
239				_kvm_err(kd, kd->program,
240				    "can't read pproc at %x", proc.p_pptr);
241				return (-1);
242			}
243			kp->ki_ppid = pproc.p_pid;
244		} else
245			kp->ki_ppid = 0;
246		if (proc.p_pgrp == NULL)
247			goto nopgrp;
248		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
249			_kvm_err(kd, kd->program, "can't read pgrp at %x",
250				 proc.p_pgrp);
251			return (-1);
252		}
253		kp->ki_pgid = pgrp.pg_id;
254		kp->ki_jobc = pgrp.pg_jobc;
255		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
256			_kvm_err(kd, kd->program, "can't read session at %x",
257				pgrp.pg_session);
258			return (-1);
259		}
260		kp->ki_sid = sess.s_sid;
261		(void)memcpy(kp->ki_login, sess.s_login,
262						sizeof(kp->ki_login));
263		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
264		if (sess.s_leader == p)
265			kp->ki_kiflag |= KI_SLEADER;
266		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
267			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
268				_kvm_err(kd, kd->program,
269					 "can't read tty at %x", sess.s_ttyp);
270				return (-1);
271			}
272			if (tty.t_dev != NULL) {
273				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
274					_kvm_err(kd, kd->program,
275						 "can't read cdev at %x",
276						tty.t_dev);
277					return (-1);
278				}
279#if 0
280				kp->ki_tdev = t_cdev.si_udev;
281#else
282				kp->ki_tdev = NODEV;
283#endif
284			}
285			if (tty.t_pgrp != NULL) {
286				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
287					_kvm_err(kd, kd->program,
288						 "can't read tpgrp at %x",
289						tty.t_pgrp);
290					return (-1);
291				}
292				kp->ki_tpgid = pgrp.pg_id;
293			} else
294				kp->ki_tpgid = -1;
295			if (tty.t_session != NULL) {
296				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
297					_kvm_err(kd, kd->program,
298					    "can't read session at %x",
299					    tty.t_session);
300					return (-1);
301				}
302				kp->ki_tsid = sess.s_sid;
303			}
304		} else {
305nopgrp:
306			kp->ki_tdev = NODEV;
307		}
308		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
309			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
310			    kp->ki_wmesg, WMESGLEN);
311
312		(void)kvm_read(kd, (u_long)proc.p_vmspace,
313		    (char *)&vmspace, sizeof(vmspace));
314		kp->ki_size = vmspace.vm_map.size;
315		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
316		kp->ki_swrss = vmspace.vm_swrss;
317		kp->ki_tsize = vmspace.vm_tsize;
318		kp->ki_dsize = vmspace.vm_dsize;
319		kp->ki_ssize = vmspace.vm_ssize;
320
321		switch (what & ~KERN_PROC_INC_THREAD) {
322
323		case KERN_PROC_PGRP:
324			if (kp->ki_pgid != (pid_t)arg)
325				continue;
326			break;
327
328		case KERN_PROC_SESSION:
329			if (kp->ki_sid != (pid_t)arg)
330				continue;
331			break;
332
333		case KERN_PROC_TTY:
334			if ((proc.p_flag & P_CONTROLT) == 0 ||
335			     kp->ki_tdev != (dev_t)arg)
336				continue;
337			break;
338		}
339		if (proc.p_comm[0] != 0)
340			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
341		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
342		    sizeof(sysent));
343		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
344		    sizeof(svname));
345		if (svname[0] != 0)
346			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
347		if ((proc.p_state != PRS_ZOMBIE) &&
348		    (mtd.td_blocked != 0)) {
349			kp->ki_kiflag |= KI_LOCKBLOCK;
350			if (mtd.td_lockname)
351				(void)kvm_read(kd,
352				    (u_long)mtd.td_lockname,
353				    kp->ki_lockname, LOCKNAMELEN);
354			kp->ki_lockname[LOCKNAMELEN] = 0;
355		}
356		/*
357		 * XXX: This is plain wrong, rux_runtime has nothing
358		 * to do with struct bintime, rux_runtime is just a 64-bit
359		 * integer counter of cputicks.  What we need here is a way
360		 * to convert cputicks to usecs.  The kernel does it in
361		 * kern/kern_tc.c, but the function can't be just copied.
362		 */
363		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
364		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
365		kp->ki_pid = proc.p_pid;
366		kp->ki_siglist = proc.p_siglist;
367		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
368		kp->ki_sigmask = mtd.td_sigmask;
369		kp->ki_xstat = proc.p_xstat;
370		kp->ki_acflag = proc.p_acflag;
371		kp->ki_lock = proc.p_lock;
372		if (proc.p_state != PRS_ZOMBIE) {
373			kp->ki_swtime = proc.p_swtime;
374			kp->ki_flag = proc.p_flag;
375			kp->ki_sflag = proc.p_sflag;
376			kp->ki_nice = proc.p_nice;
377			kp->ki_traceflag = proc.p_traceflag;
378			if (proc.p_state == PRS_NORMAL) {
379				if (TD_ON_RUNQ(&mtd) ||
380				    TD_CAN_RUN(&mtd) ||
381				    TD_IS_RUNNING(&mtd)) {
382					kp->ki_stat = SRUN;
383				} else if (mtd.td_state ==
384				    TDS_INHIBITED) {
385					if (P_SHOULDSTOP(&proc)) {
386						kp->ki_stat = SSTOP;
387					} else if (
388					    TD_IS_SLEEPING(&mtd)) {
389						kp->ki_stat = SSLEEP;
390					} else if (TD_ON_LOCK(&mtd)) {
391						kp->ki_stat = SLOCK;
392					} else {
393						kp->ki_stat = SWAIT;
394					}
395				}
396			} else {
397				kp->ki_stat = SIDL;
398			}
399			/* Stuff from the thread */
400			kp->ki_pri.pri_level = mtd.td_priority;
401			kp->ki_pri.pri_native = mtd.td_base_pri;
402			kp->ki_lastcpu = mtd.td_lastcpu;
403			kp->ki_wchan = mtd.td_wchan;
404			kp->ki_oncpu = mtd.td_oncpu;
405
406			if (!(proc.p_flag & P_SA)) {
407				kp->ki_pctcpu = 0;
408				kp->ki_rqindex = 0;
409			} else {
410				kp->ki_tdflags = -1;
411				/* All the rest are 0 for now */
412			}
413		} else {
414			kp->ki_stat = SZOMB;
415		}
416		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
417		++bp;
418		++cnt;
419	}
420	return (cnt);
421}
422
423/*
424 * Build proc info array by reading in proc list from a crash dump.
425 * Return number of procs read.  maxcnt is the max we will read.
426 */
427static int
428kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
429	kvm_t *kd;
430	int what, arg;
431	u_long a_allproc;
432	u_long a_zombproc;
433	int maxcnt;
434{
435	struct kinfo_proc *bp = kd->procbase;
436	int acnt, zcnt;
437	struct proc *p;
438
439	if (KREAD(kd, a_allproc, &p)) {
440		_kvm_err(kd, kd->program, "cannot read allproc");
441		return (-1);
442	}
443	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
444	if (acnt < 0)
445		return (acnt);
446
447	if (KREAD(kd, a_zombproc, &p)) {
448		_kvm_err(kd, kd->program, "cannot read zombproc");
449		return (-1);
450	}
451	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
452	if (zcnt < 0)
453		zcnt = 0;
454
455	return (acnt + zcnt);
456}
457
458struct kinfo_proc *
459kvm_getprocs(kd, op, arg, cnt)
460	kvm_t *kd;
461	int op, arg;
462	int *cnt;
463{
464	int mib[4], st, nprocs;
465	size_t size;
466	int temp_op;
467
468	if (kd->procbase != 0) {
469		free((void *)kd->procbase);
470		/*
471		 * Clear this pointer in case this call fails.  Otherwise,
472		 * kvm_close() will free it again.
473		 */
474		kd->procbase = 0;
475	}
476	if (ISALIVE(kd)) {
477		size = 0;
478		mib[0] = CTL_KERN;
479		mib[1] = KERN_PROC;
480		mib[2] = op;
481		mib[3] = arg;
482		temp_op = op & ~KERN_PROC_INC_THREAD;
483		st = sysctl(mib,
484		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
485		    3 : 4, NULL, &size, NULL, 0);
486		if (st == -1) {
487			_kvm_syserr(kd, kd->program, "kvm_getprocs");
488			return (0);
489		}
490		/*
491		 * We can't continue with a size of 0 because we pass
492		 * it to realloc() (via _kvm_realloc()), and passing 0
493		 * to realloc() results in undefined behavior.
494		 */
495		if (size == 0) {
496			/*
497			 * XXX: We should probably return an invalid,
498			 * but non-NULL, pointer here so any client
499			 * program trying to dereference it will
500			 * crash.  However, _kvm_freeprocs() calls
501			 * free() on kd->procbase if it isn't NULL,
502			 * and free()'ing a junk pointer isn't good.
503			 * Then again, _kvm_freeprocs() isn't used
504			 * anywhere . . .
505			 */
506			kd->procbase = _kvm_malloc(kd, 1);
507			goto liveout;
508		}
509		do {
510			size += size / 10;
511			kd->procbase = (struct kinfo_proc *)
512			    _kvm_realloc(kd, kd->procbase, size);
513			if (kd->procbase == 0)
514				return (0);
515			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
516			    temp_op == KERN_PROC_PROC ? 3 : 4,
517			    kd->procbase, &size, NULL, 0);
518		} while (st == -1 && errno == ENOMEM);
519		if (st == -1) {
520			_kvm_syserr(kd, kd->program, "kvm_getprocs");
521			return (0);
522		}
523		/*
524		 * We have to check the size again because sysctl()
525		 * may "round up" oldlenp if oldp is NULL; hence it
526		 * might've told us that there was data to get when
527		 * there really isn't any.
528		 */
529		if (size > 0 &&
530		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
531			_kvm_err(kd, kd->program,
532			    "kinfo_proc size mismatch (expected %d, got %d)",
533			    sizeof(struct kinfo_proc),
534			    kd->procbase->ki_structsize);
535			return (0);
536		}
537liveout:
538		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
539	} else {
540		struct nlist nl[4], *p;
541
542		nl[0].n_name = "_nprocs";
543		nl[1].n_name = "_allproc";
544		nl[2].n_name = "_zombproc";
545		nl[3].n_name = 0;
546
547		if (kvm_nlist(kd, nl) != 0) {
548			for (p = nl; p->n_type != 0; ++p)
549				;
550			_kvm_err(kd, kd->program,
551				 "%s: no such symbol", p->n_name);
552			return (0);
553		}
554		if (KREAD(kd, nl[0].n_value, &nprocs)) {
555			_kvm_err(kd, kd->program, "can't read nprocs");
556			return (0);
557		}
558		size = nprocs * sizeof(struct kinfo_proc);
559		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
560		if (kd->procbase == 0)
561			return (0);
562
563		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
564				      nl[2].n_value, nprocs);
565#ifdef notdef
566		size = nprocs * sizeof(struct kinfo_proc);
567		(void)realloc(kd->procbase, size);
568#endif
569	}
570	*cnt = nprocs;
571	return (kd->procbase);
572}
573
574void
575_kvm_freeprocs(kd)
576	kvm_t *kd;
577{
578	if (kd->procbase) {
579		free(kd->procbase);
580		kd->procbase = 0;
581	}
582}
583
584void *
585_kvm_realloc(kd, p, n)
586	kvm_t *kd;
587	void *p;
588	size_t n;
589{
590	void *np = (void *)realloc(p, n);
591
592	if (np == 0) {
593		free(p);
594		_kvm_err(kd, kd->program, "out of memory");
595	}
596	return (np);
597}
598
599#ifndef MAX
600#define MAX(a, b) ((a) > (b) ? (a) : (b))
601#endif
602
603/*
604 * Read in an argument vector from the user address space of process kp.
605 * addr if the user-space base address of narg null-terminated contiguous
606 * strings.  This is used to read in both the command arguments and
607 * environment strings.  Read at most maxcnt characters of strings.
608 */
609static char **
610kvm_argv(kd, kp, addr, narg, maxcnt)
611	kvm_t *kd;
612	struct kinfo_proc *kp;
613	u_long addr;
614	int narg;
615	int maxcnt;
616{
617	char *np, *cp, *ep, *ap;
618	u_long oaddr = -1;
619	int len, cc;
620	char **argv;
621
622	/*
623	 * Check that there aren't an unreasonable number of agruments,
624	 * and that the address is in user space.
625	 */
626	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
627		return (0);
628
629	/*
630	 * kd->argv : work space for fetching the strings from the target
631	 *            process's space, and is converted for returning to caller
632	 */
633	if (kd->argv == 0) {
634		/*
635		 * Try to avoid reallocs.
636		 */
637		kd->argc = MAX(narg + 1, 32);
638		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
639						sizeof(*kd->argv));
640		if (kd->argv == 0)
641			return (0);
642	} else if (narg + 1 > kd->argc) {
643		kd->argc = MAX(2 * kd->argc, narg + 1);
644		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
645						sizeof(*kd->argv));
646		if (kd->argv == 0)
647			return (0);
648	}
649	/*
650	 * kd->argspc : returned to user, this is where the kd->argv
651	 *              arrays are left pointing to the collected strings.
652	 */
653	if (kd->argspc == 0) {
654		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
655		if (kd->argspc == 0)
656			return (0);
657		kd->arglen = PAGE_SIZE;
658	}
659	/*
660	 * kd->argbuf : used to pull in pages from the target process.
661	 *              the strings are copied out of here.
662	 */
663	if (kd->argbuf == 0) {
664		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
665		if (kd->argbuf == 0)
666			return (0);
667	}
668
669	/* Pull in the target process'es argv vector */
670	cc = sizeof(char *) * narg;
671	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
672		return (0);
673	/*
674	 * ap : saved start address of string we're working on in kd->argspc
675	 * np : pointer to next place to write in kd->argspc
676	 * len: length of data in kd->argspc
677	 * argv: pointer to the argv vector that we are hunting around the
678	 *       target process space for, and converting to addresses in
679	 *       our address space (kd->argspc).
680	 */
681	ap = np = kd->argspc;
682	argv = kd->argv;
683	len = 0;
684	/*
685	 * Loop over pages, filling in the argument vector.
686	 * Note that the argv strings could be pointing *anywhere* in
687	 * the user address space and are no longer contiguous.
688	 * Note that *argv is modified when we are going to fetch a string
689	 * that crosses a page boundary.  We copy the next part of the string
690	 * into to "np" and eventually convert the pointer.
691	 */
692	while (argv < kd->argv + narg && *argv != 0) {
693
694		/* get the address that the current argv string is on */
695		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
696
697		/* is it the same page as the last one? */
698		if (addr != oaddr) {
699			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
700			    PAGE_SIZE)
701				return (0);
702			oaddr = addr;
703		}
704
705		/* offset within the page... kd->argbuf */
706		addr = (u_long)*argv & (PAGE_SIZE - 1);
707
708		/* cp = start of string, cc = count of chars in this chunk */
709		cp = kd->argbuf + addr;
710		cc = PAGE_SIZE - addr;
711
712		/* dont get more than asked for by user process */
713		if (maxcnt > 0 && cc > maxcnt - len)
714			cc = maxcnt - len;
715
716		/* pointer to end of string if we found it in this page */
717		ep = memchr(cp, '\0', cc);
718		if (ep != 0)
719			cc = ep - cp + 1;
720		/*
721		 * at this point, cc is the count of the chars that we are
722		 * going to retrieve this time. we may or may not have found
723		 * the end of it.  (ep points to the null if the end is known)
724		 */
725
726		/* will we exceed the malloc/realloced buffer? */
727		if (len + cc > kd->arglen) {
728			int off;
729			char **pp;
730			char *op = kd->argspc;
731
732			kd->arglen *= 2;
733			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
734							  kd->arglen);
735			if (kd->argspc == 0)
736				return (0);
737			/*
738			 * Adjust argv pointers in case realloc moved
739			 * the string space.
740			 */
741			off = kd->argspc - op;
742			for (pp = kd->argv; pp < argv; pp++)
743				*pp += off;
744			ap += off;
745			np += off;
746		}
747		/* np = where to put the next part of the string in kd->argspc*/
748		/* np is kinda redundant.. could use "kd->argspc + len" */
749		memcpy(np, cp, cc);
750		np += cc;	/* inc counters */
751		len += cc;
752
753		/*
754		 * if end of string found, set the *argv pointer to the
755		 * saved beginning of string, and advance. argv points to
756		 * somewhere in kd->argv..  This is initially relative
757		 * to the target process, but when we close it off, we set
758		 * it to point in our address space.
759		 */
760		if (ep != 0) {
761			*argv++ = ap;
762			ap = np;
763		} else {
764			/* update the address relative to the target process */
765			*argv += cc;
766		}
767
768		if (maxcnt > 0 && len >= maxcnt) {
769			/*
770			 * We're stopping prematurely.  Terminate the
771			 * current string.
772			 */
773			if (ep == 0) {
774				*np = '\0';
775				*argv++ = ap;
776			}
777			break;
778		}
779	}
780	/* Make sure argv is terminated. */
781	*argv = 0;
782	return (kd->argv);
783}
784
785static void
786ps_str_a(p, addr, n)
787	struct ps_strings *p;
788	u_long *addr;
789	int *n;
790{
791	*addr = (u_long)p->ps_argvstr;
792	*n = p->ps_nargvstr;
793}
794
795static void
796ps_str_e(p, addr, n)
797	struct ps_strings *p;
798	u_long *addr;
799	int *n;
800{
801	*addr = (u_long)p->ps_envstr;
802	*n = p->ps_nenvstr;
803}
804
805/*
806 * Determine if the proc indicated by p is still active.
807 * This test is not 100% foolproof in theory, but chances of
808 * being wrong are very low.
809 */
810static int
811proc_verify(curkp)
812	struct kinfo_proc *curkp;
813{
814	struct kinfo_proc newkp;
815	int mib[4];
816	size_t len;
817
818	mib[0] = CTL_KERN;
819	mib[1] = KERN_PROC;
820	mib[2] = KERN_PROC_PID;
821	mib[3] = curkp->ki_pid;
822	len = sizeof(newkp);
823	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
824		return (0);
825	return (curkp->ki_pid == newkp.ki_pid &&
826	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
827}
828
829static char **
830kvm_doargv(kd, kp, nchr, info)
831	kvm_t *kd;
832	struct kinfo_proc *kp;
833	int nchr;
834	void (*info)(struct ps_strings *, u_long *, int *);
835{
836	char **ap;
837	u_long addr;
838	int cnt;
839	static struct ps_strings arginfo;
840	static u_long ps_strings;
841	size_t len;
842
843	if (ps_strings == 0) {
844		len = sizeof(ps_strings);
845		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
846		    0) == -1)
847			ps_strings = PS_STRINGS;
848	}
849
850	/*
851	 * Pointers are stored at the top of the user stack.
852	 */
853	if (kp->ki_stat == SZOMB ||
854	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
855		      sizeof(arginfo)) != sizeof(arginfo))
856		return (0);
857
858	(*info)(&arginfo, &addr, &cnt);
859	if (cnt == 0)
860		return (0);
861	ap = kvm_argv(kd, kp, addr, cnt, nchr);
862	/*
863	 * For live kernels, make sure this process didn't go away.
864	 */
865	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
866		ap = 0;
867	return (ap);
868}
869
870/*
871 * Get the command args.  This code is now machine independent.
872 */
873char **
874kvm_getargv(kd, kp, nchr)
875	kvm_t *kd;
876	const struct kinfo_proc *kp;
877	int nchr;
878{
879	int oid[4];
880	int i;
881	size_t bufsz;
882	static unsigned long buflen;
883	static char *buf, *p;
884	static char **bufp;
885	static int argc;
886
887	if (!ISALIVE(kd)) {
888		_kvm_err(kd, kd->program,
889		    "cannot read user space from dead kernel");
890		return (0);
891	}
892
893	if (!buflen) {
894		bufsz = sizeof(buflen);
895		i = sysctlbyname("kern.ps_arg_cache_limit",
896		    &buflen, &bufsz, NULL, 0);
897		if (i == -1) {
898			buflen = 0;
899		} else {
900			buf = malloc(buflen);
901			if (buf == NULL)
902				buflen = 0;
903			argc = 32;
904			bufp = malloc(sizeof(char *) * argc);
905		}
906	}
907	if (buf != NULL) {
908		oid[0] = CTL_KERN;
909		oid[1] = KERN_PROC;
910		oid[2] = KERN_PROC_ARGS;
911		oid[3] = kp->ki_pid;
912		bufsz = buflen;
913		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
914		if (i == 0 && bufsz > 0) {
915			i = 0;
916			p = buf;
917			do {
918				bufp[i++] = p;
919				p += strlen(p) + 1;
920				if (i >= argc) {
921					argc += argc;
922					bufp = realloc(bufp,
923					    sizeof(char *) * argc);
924				}
925			} while (p < buf + bufsz);
926			bufp[i++] = 0;
927			return (bufp);
928		}
929	}
930	if (kp->ki_flag & P_SYSTEM)
931		return (NULL);
932	return (kvm_doargv(kd, kp, nchr, ps_str_a));
933}
934
935char **
936kvm_getenvv(kd, kp, nchr)
937	kvm_t *kd;
938	const struct kinfo_proc *kp;
939	int nchr;
940{
941	return (kvm_doargv(kd, kp, nchr, ps_str_e));
942}
943
944/*
945 * Read from user space.  The user context is given by p.
946 */
947ssize_t
948kvm_uread(kd, kp, uva, buf, len)
949	kvm_t *kd;
950	struct kinfo_proc *kp;
951	u_long uva;
952	char *buf;
953	size_t len;
954{
955	char *cp;
956	char procfile[MAXPATHLEN];
957	ssize_t amount;
958	int fd;
959
960	if (!ISALIVE(kd)) {
961		_kvm_err(kd, kd->program,
962		    "cannot read user space from dead kernel");
963		return (0);
964	}
965
966	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
967	fd = open(procfile, O_RDONLY, 0);
968	if (fd < 0) {
969		_kvm_err(kd, kd->program, "cannot open %s", procfile);
970		return (0);
971	}
972
973	cp = buf;
974	while (len > 0) {
975		errno = 0;
976		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
977			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
978			    uva, procfile);
979			break;
980		}
981		amount = read(fd, cp, len);
982		if (amount < 0) {
983			_kvm_syserr(kd, kd->program, "error reading %s",
984			    procfile);
985			break;
986		}
987		if (amount == 0) {
988			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
989			break;
990		}
991		cp += amount;
992		uva += amount;
993		len -= amount;
994	}
995
996	close(fd);
997	return ((ssize_t)(cp - buf));
998}
999