kvm_proc.c revision 16158
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if defined(LIBC_SCCS) && !defined(lint)
39static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40#endif /* LIBC_SCCS and not lint */
41
42/*
43 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44 * users of this code, so we've factored it out into a separate module.
45 * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 * most other applications are interested only in open/close/read/nlist).
47 */
48
49#include <sys/param.h>
50#include <sys/user.h>
51#include <sys/proc.h>
52#include <sys/exec.h>
53#include <sys/stat.h>
54#include <sys/ioctl.h>
55#include <sys/tty.h>
56#include <sys/file.h>
57#include <unistd.h>
58#include <nlist.h>
59#include <kvm.h>
60
61#include <vm/vm.h>
62#include <vm/vm_param.h>
63#include <vm/swap_pager.h>
64
65#include <sys/sysctl.h>
66
67#include <limits.h>
68#include <memory.h>
69#include <db.h>
70#include <paths.h>
71
72#include "kvm_private.h"
73
74static char *
75kvm_readswap(kd, p, va, cnt)
76	kvm_t *kd;
77	const struct proc *p;
78	u_long va;
79	u_long *cnt;
80{
81#ifdef __FreeBSD__
82	/* XXX Stubbed out, our vm system is differnet */
83	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
84	return(0);
85#endif	/* __FreeBSD__ */
86}
87
88#define KREAD(kd, addr, obj) \
89	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
90
91/*
92 * Read proc's from memory file into buffer bp, which has space to hold
93 * at most maxcnt procs.
94 */
95static int
96kvm_proclist(kd, what, arg, p, bp, maxcnt)
97	kvm_t *kd;
98	int what, arg;
99	struct proc *p;
100	struct kinfo_proc *bp;
101	int maxcnt;
102{
103	register int cnt = 0;
104	struct eproc eproc;
105	struct pgrp pgrp;
106	struct session sess;
107	struct tty tty;
108	struct proc proc;
109
110	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
111		if (KREAD(kd, (u_long)p, &proc)) {
112			_kvm_err(kd, kd->program, "can't read proc at %x", p);
113			return (-1);
114		}
115		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
116			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
117			      &eproc.e_ucred);
118
119		switch(what) {
120
121		case KERN_PROC_PID:
122			if (proc.p_pid != (pid_t)arg)
123				continue;
124			break;
125
126		case KERN_PROC_UID:
127			if (eproc.e_ucred.cr_uid != (uid_t)arg)
128				continue;
129			break;
130
131		case KERN_PROC_RUID:
132			if (eproc.e_pcred.p_ruid != (uid_t)arg)
133				continue;
134			break;
135		}
136		/*
137		 * We're going to add another proc to the set.  If this
138		 * will overflow the buffer, assume the reason is because
139		 * nprocs (or the proc list) is corrupt and declare an error.
140		 */
141		if (cnt >= maxcnt) {
142			_kvm_err(kd, kd->program, "nprocs corrupt");
143			return (-1);
144		}
145		/*
146		 * gather eproc
147		 */
148		eproc.e_paddr = p;
149		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
150			_kvm_err(kd, kd->program, "can't read pgrp at %x",
151				 proc.p_pgrp);
152			return (-1);
153		}
154		eproc.e_sess = pgrp.pg_session;
155		eproc.e_pgid = pgrp.pg_id;
156		eproc.e_jobc = pgrp.pg_jobc;
157		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
158			_kvm_err(kd, kd->program, "can't read session at %x",
159				pgrp.pg_session);
160			return (-1);
161		}
162		(void)memcpy(eproc.e_login, sess.s_login,
163						sizeof(eproc.e_login));
164		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
165			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
166				_kvm_err(kd, kd->program,
167					 "can't read tty at %x", sess.s_ttyp);
168				return (-1);
169			}
170			eproc.e_tdev = tty.t_dev;
171			eproc.e_tsess = tty.t_session;
172			if (tty.t_pgrp != NULL) {
173				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
174					_kvm_err(kd, kd->program,
175						 "can't read tpgrp at &x",
176						tty.t_pgrp);
177					return (-1);
178				}
179				eproc.e_tpgid = pgrp.pg_id;
180			} else
181				eproc.e_tpgid = -1;
182		} else
183			eproc.e_tdev = NODEV;
184		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
185		if (sess.s_leader == p)
186			eproc.e_flag |= EPROC_SLEADER;
187		if (proc.p_wmesg)
188			(void)kvm_read(kd, (u_long)proc.p_wmesg,
189			    eproc.e_wmesg, WMESGLEN);
190
191#ifdef sparc
192		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
193		    (char *)&eproc.e_vm.vm_rssize,
194		    sizeof(eproc.e_vm.vm_rssize));
195		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
196		    (char *)&eproc.e_vm.vm_tsize,
197		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
198#else
199		(void)kvm_read(kd, (u_long)proc.p_vmspace,
200		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
201#endif
202		eproc.e_xsize = eproc.e_xrssize = 0;
203		eproc.e_xccount = eproc.e_xswrss = 0;
204
205		switch (what) {
206
207		case KERN_PROC_PGRP:
208			if (eproc.e_pgid != (pid_t)arg)
209				continue;
210			break;
211
212		case KERN_PROC_TTY:
213			if ((proc.p_flag & P_CONTROLT) == 0 ||
214			     eproc.e_tdev != (dev_t)arg)
215				continue;
216			break;
217		}
218		bcopy(&proc, &bp->kp_proc, sizeof(proc));
219		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
220		++bp;
221		++cnt;
222	}
223	return (cnt);
224}
225
226/*
227 * Build proc info array by reading in proc list from a crash dump.
228 * Return number of procs read.  maxcnt is the max we will read.
229 */
230static int
231kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
232	kvm_t *kd;
233	int what, arg;
234	u_long a_allproc;
235	u_long a_zombproc;
236	int maxcnt;
237{
238	register struct kinfo_proc *bp = kd->procbase;
239	register int acnt, zcnt;
240	struct proc *p;
241
242	if (KREAD(kd, a_allproc, &p)) {
243		_kvm_err(kd, kd->program, "cannot read allproc");
244		return (-1);
245	}
246	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
247	if (acnt < 0)
248		return (acnt);
249
250	if (KREAD(kd, a_zombproc, &p)) {
251		_kvm_err(kd, kd->program, "cannot read zombproc");
252		return (-1);
253	}
254	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
255	if (zcnt < 0)
256		zcnt = 0;
257
258	return (acnt + zcnt);
259}
260
261struct kinfo_proc *
262kvm_getprocs(kd, op, arg, cnt)
263	kvm_t *kd;
264	int op, arg;
265	int *cnt;
266{
267	int mib[4], size, st, nprocs;
268
269	if (kd->procbase != 0) {
270		free((void *)kd->procbase);
271		/*
272		 * Clear this pointer in case this call fails.  Otherwise,
273		 * kvm_close() will free it again.
274		 */
275		kd->procbase = 0;
276	}
277	if (ISALIVE(kd)) {
278		size = 0;
279		mib[0] = CTL_KERN;
280		mib[1] = KERN_PROC;
281		mib[2] = op;
282		mib[3] = arg;
283		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
284		if (st == -1) {
285			_kvm_syserr(kd, kd->program, "kvm_getprocs");
286			return (0);
287		}
288		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
289		if (kd->procbase == 0)
290			return (0);
291		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0);
292		if (st == -1) {
293			_kvm_syserr(kd, kd->program, "kvm_getprocs");
294			return (0);
295		}
296		if (size % sizeof(struct kinfo_proc) != 0) {
297			_kvm_err(kd, kd->program,
298				"proc size mismatch (%d total, %d chunks)",
299				size, sizeof(struct kinfo_proc));
300			return (0);
301		}
302		nprocs = size / sizeof(struct kinfo_proc);
303	} else {
304		struct nlist nl[4], *p;
305
306		nl[0].n_name = "_nprocs";
307		nl[1].n_name = "_allproc";
308		nl[2].n_name = "_zombproc";
309		nl[3].n_name = 0;
310
311		if (kvm_nlist(kd, nl) != 0) {
312			for (p = nl; p->n_type != 0; ++p)
313				;
314			_kvm_err(kd, kd->program,
315				 "%s: no such symbol", p->n_name);
316			return (0);
317		}
318		if (KREAD(kd, nl[0].n_value, &nprocs)) {
319			_kvm_err(kd, kd->program, "can't read nprocs");
320			return (0);
321		}
322		size = nprocs * sizeof(struct kinfo_proc);
323		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
324		if (kd->procbase == 0)
325			return (0);
326
327		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
328				      nl[2].n_value, nprocs);
329#ifdef notdef
330		size = nprocs * sizeof(struct kinfo_proc);
331		(void)realloc(kd->procbase, size);
332#endif
333	}
334	*cnt = nprocs;
335	return (kd->procbase);
336}
337
338void
339_kvm_freeprocs(kd)
340	kvm_t *kd;
341{
342	if (kd->procbase) {
343		free(kd->procbase);
344		kd->procbase = 0;
345	}
346}
347
348void *
349_kvm_realloc(kd, p, n)
350	kvm_t *kd;
351	void *p;
352	size_t n;
353{
354	void *np = (void *)realloc(p, n);
355
356	if (np == 0)
357		_kvm_err(kd, kd->program, "out of memory");
358	return (np);
359}
360
361#ifndef MAX
362#define MAX(a, b) ((a) > (b) ? (a) : (b))
363#endif
364
365/*
366 * Read in an argument vector from the user address space of process p.
367 * addr if the user-space base address of narg null-terminated contiguous
368 * strings.  This is used to read in both the command arguments and
369 * environment strings.  Read at most maxcnt characters of strings.
370 */
371static char **
372kvm_argv(kd, p, addr, narg, maxcnt)
373	kvm_t *kd;
374	const struct proc *p;
375	register u_long addr;
376	register int narg;
377	register int maxcnt;
378{
379	register char *np, *cp, *ep, *ap;
380	register u_long oaddr = -1;
381	register int len, cc;
382	register char **argv;
383
384	/*
385	 * Check that there aren't an unreasonable number of agruments,
386	 * and that the address is in user space.
387	 */
388	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
389		return (0);
390
391	/*
392	 * kd->argv : work space for fetching the strings from the target
393	 *            process's space, and is converted for returning to caller
394	 */
395	if (kd->argv == 0) {
396		/*
397		 * Try to avoid reallocs.
398		 */
399		kd->argc = MAX(narg + 1, 32);
400		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
401						sizeof(*kd->argv));
402		if (kd->argv == 0)
403			return (0);
404	} else if (narg + 1 > kd->argc) {
405		kd->argc = MAX(2 * kd->argc, narg + 1);
406		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
407						sizeof(*kd->argv));
408		if (kd->argv == 0)
409			return (0);
410	}
411	/*
412	 * kd->argspc : returned to user, this is where the kd->argv
413	 *              arrays are left pointing to the collected strings.
414	 */
415	if (kd->argspc == 0) {
416		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
417		if (kd->argspc == 0)
418			return (0);
419		kd->arglen = PAGE_SIZE;
420	}
421	/*
422	 * kd->argbuf : used to pull in pages from the target process.
423	 *              the strings are copied out of here.
424	 */
425	if (kd->argbuf == 0) {
426		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
427		if (kd->argbuf == 0)
428			return (0);
429	}
430
431	/* Pull in the target process'es argv vector */
432	cc = sizeof(char *) * narg;
433	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
434		return (0);
435	/*
436	 * ap : saved start address of string we're working on in kd->argspc
437	 * np : pointer to next place to write in kd->argspc
438	 * len: length of data in kd->argspc
439	 * argv: pointer to the argv vector that we are hunting around the
440	 *       target process space for, and converting to addresses in
441	 *       our address space (kd->argspc).
442	 */
443	ap = np = kd->argspc;
444	argv = kd->argv;
445	len = 0;
446	/*
447	 * Loop over pages, filling in the argument vector.
448	 * Note that the argv strings could be pointing *anywhere* in
449	 * the user address space and are no longer contiguous.
450	 * Note that *argv is modified when we are going to fetch a string
451	 * that crosses a page boundary.  We copy the next part of the string
452	 * into to "np" and eventually convert the pointer.
453	 */
454	while (argv < kd->argv + narg && *argv != 0) {
455
456		/* get the address that the current argv string is on */
457		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
458
459		/* is it the same page as the last one? */
460		if (addr != oaddr) {
461			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
462			    PAGE_SIZE)
463				return (0);
464			oaddr = addr;
465		}
466
467		/* offset within the page... kd->argbuf */
468		addr = (u_long)*argv & (PAGE_SIZE - 1);
469
470		/* cp = start of string, cc = count of chars in this chunk */
471		cp = kd->argbuf + addr;
472		cc = PAGE_SIZE - addr;
473
474		/* dont get more than asked for by user process */
475		if (maxcnt > 0 && cc > maxcnt - len)
476			cc = maxcnt - len;
477
478		/* pointer to end of string if we found it in this page */
479		ep = memchr(cp, '\0', cc);
480		if (ep != 0)
481			cc = ep - cp + 1;
482		/*
483		 * at this point, cc is the count of the chars that we are
484		 * going to retrieve this time. we may or may not have found
485		 * the end of it.  (ep points to the null if the end is known)
486		 */
487
488		/* will we exceed the malloc/realloced buffer? */
489		if (len + cc > kd->arglen) {
490			register int off;
491			register char **pp;
492			register char *op = kd->argspc;
493
494			kd->arglen *= 2;
495			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
496							  kd->arglen);
497			if (kd->argspc == 0)
498				return (0);
499			/*
500			 * Adjust argv pointers in case realloc moved
501			 * the string space.
502			 */
503			off = kd->argspc - op;
504			for (pp = kd->argv; pp < argv; pp++)
505				*pp += off;
506			ap += off;
507			np += off;
508		}
509		/* np = where to put the next part of the string in kd->argspc*/
510		/* np is kinda redundant.. could use "kd->argspc + len" */
511		memcpy(np, cp, cc);
512		np += cc;	/* inc counters */
513		len += cc;
514
515		/*
516		 * if end of string found, set the *argv pointer to the
517		 * saved beginning of string, and advance. argv points to
518		 * somewhere in kd->argv..  This is initially relative
519		 * to the target process, but when we close it off, we set
520		 * it to point in our address space.
521		 */
522		if (ep != 0) {
523			*argv++ = ap;
524			ap = np;
525		} else {
526			/* update the address relative to the target process */
527			*argv += cc;
528		}
529
530		if (maxcnt > 0 && len >= maxcnt) {
531			/*
532			 * We're stopping prematurely.  Terminate the
533			 * current string.
534			 */
535			if (ep == 0) {
536				*np = '\0';
537				*argv++ = ap;
538			}
539			break;
540		}
541	}
542	/* Make sure argv is terminated. */
543	*argv = 0;
544	return (kd->argv);
545}
546
547static void
548ps_str_a(p, addr, n)
549	struct ps_strings *p;
550	u_long *addr;
551	int *n;
552{
553	*addr = (u_long)p->ps_argvstr;
554	*n = p->ps_nargvstr;
555}
556
557static void
558ps_str_e(p, addr, n)
559	struct ps_strings *p;
560	u_long *addr;
561	int *n;
562{
563	*addr = (u_long)p->ps_envstr;
564	*n = p->ps_nenvstr;
565}
566
567/*
568 * Determine if the proc indicated by p is still active.
569 * This test is not 100% foolproof in theory, but chances of
570 * being wrong are very low.
571 */
572static int
573proc_verify(kd, kernp, p)
574	kvm_t *kd;
575	u_long kernp;
576	const struct proc *p;
577{
578	struct proc kernproc;
579
580	/*
581	 * Just read in the whole proc.  It's not that big relative
582	 * to the cost of the read system call.
583	 */
584	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
585	    sizeof(kernproc))
586		return (0);
587	return (p->p_pid == kernproc.p_pid &&
588		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
589}
590
591static char **
592kvm_doargv(kd, kp, nchr, info)
593	kvm_t *kd;
594	const struct kinfo_proc *kp;
595	int nchr;
596	void (*info)(struct ps_strings *, u_long *, int *);
597{
598	register const struct proc *p = &kp->kp_proc;
599	register char **ap;
600	u_long addr;
601	int cnt;
602	struct ps_strings arginfo, *ps_strings;
603	int mib[2];
604	size_t len;
605
606	ps_strings = NULL;
607	mib[0] = CTL_KERN;
608	mib[1] = KERN_PS_STRINGS;
609	len = sizeof(ps_strings);
610	if (sysctl(mib, 2, &ps_strings, &len, NULL, 0) < 0 ||
611	    ps_strings == NULL)
612		ps_strings = PS_STRINGS;
613
614	/*
615	 * Pointers are stored at the top of the user stack.
616	 */
617	if (p->p_stat == SZOMB ||
618	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
619		      sizeof(arginfo)) != sizeof(arginfo))
620		return (0);
621
622	(*info)(&arginfo, &addr, &cnt);
623	if (cnt == 0)
624		return (0);
625	ap = kvm_argv(kd, p, addr, cnt, nchr);
626	/*
627	 * For live kernels, make sure this process didn't go away.
628	 */
629	if (ap != 0 && ISALIVE(kd) &&
630	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
631		ap = 0;
632	return (ap);
633}
634
635/*
636 * Get the command args.  This code is now machine independent.
637 */
638char **
639kvm_getargv(kd, kp, nchr)
640	kvm_t *kd;
641	const struct kinfo_proc *kp;
642	int nchr;
643{
644	return (kvm_doargv(kd, kp, nchr, ps_str_a));
645}
646
647char **
648kvm_getenvv(kd, kp, nchr)
649	kvm_t *kd;
650	const struct kinfo_proc *kp;
651	int nchr;
652{
653	return (kvm_doargv(kd, kp, nchr, ps_str_e));
654}
655
656/*
657 * Read from user space.  The user context is given by p.
658 */
659ssize_t
660kvm_uread(kd, p, uva, buf, len)
661	kvm_t *kd;
662	register struct proc *p;
663	register u_long uva;
664	register char *buf;
665	register size_t len;
666{
667	register char *cp;
668	char procfile[MAXPATHLEN];
669	ssize_t amount;
670	int fd;
671
672	if (!ISALIVE(kd)) {
673		_kvm_err(kd, kd->program, "cannot read user space from dead kernel");
674		return(0);
675	}
676
677	cp = buf;
678
679	sprintf(procfile, "/proc/%d/mem", p->p_pid);
680	fd = open(procfile, O_RDONLY, 0);
681
682	if (fd < 0) {
683		_kvm_err(kd, kd->program, "cannot open %s", procfile);
684		close(fd);
685		return (0);
686	}
687
688
689	while (len > 0) {
690		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
691			_kvm_err(kd, kd->program, "invalid address (%x) in %s", uva, procfile);
692			break;
693		}
694		amount = read(fd, cp, len);
695		if (amount < 0) {
696			_kvm_err(kd, kd->program, "error reading %s", procfile);
697			break;
698		}
699		cp += amount;
700		uva += amount;
701		len -= amount;
702	}
703
704	close(fd);
705	return (ssize_t)(cp - buf);
706}
707