kvm_proc.c revision 1603
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if defined(LIBC_SCCS) && !defined(lint)
39static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40#endif /* LIBC_SCCS and not lint */
41
42/*
43 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44 * users of this code, so we've factored it out into a separate module.
45 * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 * most other applications are interested only in open/close/read/nlist).
47 */
48
49#include <sys/param.h>
50#include <sys/user.h>
51#include <sys/proc.h>
52#include <sys/exec.h>
53#include <sys/stat.h>
54#include <sys/ioctl.h>
55#include <sys/tty.h>
56#include <unistd.h>
57#include <nlist.h>
58#include <kvm.h>
59
60#include <vm/vm.h>
61#include <vm/vm_param.h>
62#include <vm/swap_pager.h>
63
64#include <sys/sysctl.h>
65
66#include <limits.h>
67#include <db.h>
68#include <paths.h>
69
70#include "kvm_private.h"
71
72static char *
73kvm_readswap(kd, p, va, cnt)
74	kvm_t *kd;
75	const struct proc *p;
76	u_long va;
77	u_long *cnt;
78{
79#ifdef __FreeBSD__
80	/* XXX Stubbed out, our vm system is differnet */
81	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
82	return(0);
83#else
84	register int ix;
85	register u_long addr, head;
86	register u_long offset, pagestart, sbstart, pgoff;
87	register off_t seekpoint;
88	struct vm_map_entry vme;
89	struct vm_object vmo;
90	struct pager_struct pager;
91	struct swpager swap;
92	struct swblock swb;
93	static char page[NBPG];
94
95	head = (u_long)&p->p_vmspace->vm_map.header;
96	/*
97	 * Look through the address map for the memory object
98	 * that corresponds to the given virtual address.
99	 * The header just has the entire valid range.
100	 */
101	addr = head;
102	while (1) {
103		if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) !=
104		    sizeof(vme))
105			return (0);
106
107		if (va >= vme.start && va <= vme.end &&
108		    vme.object.vm_object != 0)
109			break;
110
111		addr = (u_long)vme.next;
112		if (addr == 0 || addr == head)
113			return (0);
114	}
115	/*
116	 * We found the right object -- follow shadow links.
117	 */
118	offset = va - vme.start + vme.offset;
119	addr = (u_long)vme.object.vm_object;
120	while (1) {
121		if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) !=
122		    sizeof(vmo))
123			return (0);
124		addr = (u_long)vmo.shadow;
125		if (addr == 0)
126			break;
127		offset += vmo.shadow_offset;
128	}
129	if (vmo.pager == 0)
130		return (0);
131
132	offset += vmo.paging_offset;
133	/*
134	 * Read in the pager info and make sure it's a swap device.
135	 */
136	addr = (u_long)vmo.pager;
137	if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager)
138	    || pager.pg_type != PG_SWAP)
139		return (0);
140
141	/*
142	 * Read in the swap_pager private data, and compute the
143	 * swap offset.
144	 */
145	addr = (u_long)pager.pg_data;
146	if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap))
147		return (0);
148	ix = offset / dbtob(swap.sw_bsize);
149	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
150		return (0);
151
152	addr = (u_long)&swap.sw_blocks[ix];
153	if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb))
154		return (0);
155
156	sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize);
157	sbstart /= NBPG;
158	pagestart = offset / NBPG;
159	pgoff = pagestart - sbstart;
160
161	if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0)
162		return (0);
163
164	seekpoint = dbtob(swb.swb_block) + ctob(pgoff);
165	errno = 0;
166	if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0)
167		return (0);
168	if (read(kd->swfd, page, sizeof(page)) != sizeof(page))
169		return (0);
170
171	offset %= NBPG;
172	*cnt = NBPG - offset;
173	return (&page[offset]);
174#endif	/* __FreeBSD__ */
175}
176
177#define KREAD(kd, addr, obj) \
178	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
179
180/*
181 * Read proc's from memory file into buffer bp, which has space to hold
182 * at most maxcnt procs.
183 */
184static int
185kvm_proclist(kd, what, arg, p, bp, maxcnt)
186	kvm_t *kd;
187	int what, arg;
188	struct proc *p;
189	struct kinfo_proc *bp;
190	int maxcnt;
191{
192	register int cnt = 0;
193	struct eproc eproc;
194	struct pgrp pgrp;
195	struct session sess;
196	struct tty tty;
197	struct proc proc;
198
199	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
200		if (KREAD(kd, (u_long)p, &proc)) {
201			_kvm_err(kd, kd->program, "can't read proc at %x", p);
202			return (-1);
203		}
204		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
205			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
206			      &eproc.e_ucred);
207
208		switch(what) {
209
210		case KERN_PROC_PID:
211			if (proc.p_pid != (pid_t)arg)
212				continue;
213			break;
214
215		case KERN_PROC_UID:
216			if (eproc.e_ucred.cr_uid != (uid_t)arg)
217				continue;
218			break;
219
220		case KERN_PROC_RUID:
221			if (eproc.e_pcred.p_ruid != (uid_t)arg)
222				continue;
223			break;
224		}
225		/*
226		 * We're going to add another proc to the set.  If this
227		 * will overflow the buffer, assume the reason is because
228		 * nprocs (or the proc list) is corrupt and declare an error.
229		 */
230		if (cnt >= maxcnt) {
231			_kvm_err(kd, kd->program, "nprocs corrupt");
232			return (-1);
233		}
234		/*
235		 * gather eproc
236		 */
237		eproc.e_paddr = p;
238		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
239			_kvm_err(kd, kd->program, "can't read pgrp at %x",
240				 proc.p_pgrp);
241			return (-1);
242		}
243		eproc.e_sess = pgrp.pg_session;
244		eproc.e_pgid = pgrp.pg_id;
245		eproc.e_jobc = pgrp.pg_jobc;
246		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
247			_kvm_err(kd, kd->program, "can't read session at %x",
248				pgrp.pg_session);
249			return (-1);
250		}
251		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
252			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
253				_kvm_err(kd, kd->program,
254					 "can't read tty at %x", sess.s_ttyp);
255				return (-1);
256			}
257			eproc.e_tdev = tty.t_dev;
258			eproc.e_tsess = tty.t_session;
259			if (tty.t_pgrp != NULL) {
260				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
261					_kvm_err(kd, kd->program,
262						 "can't read tpgrp at &x",
263						tty.t_pgrp);
264					return (-1);
265				}
266				eproc.e_tpgid = pgrp.pg_id;
267			} else
268				eproc.e_tpgid = -1;
269		} else
270			eproc.e_tdev = NODEV;
271		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
272		if (sess.s_leader == p)
273			eproc.e_flag |= EPROC_SLEADER;
274		if (proc.p_wmesg)
275			(void)kvm_read(kd, (u_long)proc.p_wmesg,
276			    eproc.e_wmesg, WMESGLEN);
277
278#ifdef sparc
279		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
280		    (char *)&eproc.e_vm.vm_rssize,
281		    sizeof(eproc.e_vm.vm_rssize));
282		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
283		    (char *)&eproc.e_vm.vm_tsize,
284		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
285#else
286		(void)kvm_read(kd, (u_long)proc.p_vmspace,
287		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
288#endif
289		eproc.e_xsize = eproc.e_xrssize = 0;
290		eproc.e_xccount = eproc.e_xswrss = 0;
291
292		switch (what) {
293
294		case KERN_PROC_PGRP:
295			if (eproc.e_pgid != (pid_t)arg)
296				continue;
297			break;
298
299		case KERN_PROC_TTY:
300			if ((proc.p_flag & P_CONTROLT) == 0 ||
301			     eproc.e_tdev != (dev_t)arg)
302				continue;
303			break;
304		}
305		bcopy(&proc, &bp->kp_proc, sizeof(proc));
306		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
307		++bp;
308		++cnt;
309	}
310	return (cnt);
311}
312
313/*
314 * Build proc info array by reading in proc list from a crash dump.
315 * Return number of procs read.  maxcnt is the max we will read.
316 */
317static int
318kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
319	kvm_t *kd;
320	int what, arg;
321	u_long a_allproc;
322	u_long a_zombproc;
323	int maxcnt;
324{
325	register struct kinfo_proc *bp = kd->procbase;
326	register int acnt, zcnt;
327	struct proc *p;
328
329	if (KREAD(kd, a_allproc, &p)) {
330		_kvm_err(kd, kd->program, "cannot read allproc");
331		return (-1);
332	}
333	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
334	if (acnt < 0)
335		return (acnt);
336
337	if (KREAD(kd, a_zombproc, &p)) {
338		_kvm_err(kd, kd->program, "cannot read zombproc");
339		return (-1);
340	}
341	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
342	if (zcnt < 0)
343		zcnt = 0;
344
345	return (acnt + zcnt);
346}
347
348struct kinfo_proc *
349kvm_getprocs(kd, op, arg, cnt)
350	kvm_t *kd;
351	int op, arg;
352	int *cnt;
353{
354	int mib[4], size, st, nprocs;
355
356	if (kd->procbase != 0) {
357		free((void *)kd->procbase);
358		/*
359		 * Clear this pointer in case this call fails.  Otherwise,
360		 * kvm_close() will free it again.
361		 */
362		kd->procbase = 0;
363	}
364	if (ISALIVE(kd)) {
365		size = 0;
366		mib[0] = CTL_KERN;
367		mib[1] = KERN_PROC;
368		mib[2] = op;
369		mib[3] = arg;
370		st = sysctl(mib, 4, NULL, &size, NULL, 0);
371		if (st == -1) {
372			_kvm_syserr(kd, kd->program, "kvm_getprocs");
373			return (0);
374		}
375		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
376		if (kd->procbase == 0)
377			return (0);
378		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
379		if (st == -1) {
380			_kvm_syserr(kd, kd->program, "kvm_getprocs");
381			return (0);
382		}
383		if (size % sizeof(struct kinfo_proc) != 0) {
384			_kvm_err(kd, kd->program,
385				"proc size mismatch (%d total, %d chunks)",
386				size, sizeof(struct kinfo_proc));
387			return (0);
388		}
389		nprocs = size / sizeof(struct kinfo_proc);
390	} else {
391		struct nlist nl[4], *p;
392
393		nl[0].n_name = "_nprocs";
394		nl[1].n_name = "_allproc";
395		nl[2].n_name = "_zombproc";
396		nl[3].n_name = 0;
397
398		if (kvm_nlist(kd, nl) != 0) {
399			for (p = nl; p->n_type != 0; ++p)
400				;
401			_kvm_err(kd, kd->program,
402				 "%s: no such symbol", p->n_name);
403			return (0);
404		}
405		if (KREAD(kd, nl[0].n_value, &nprocs)) {
406			_kvm_err(kd, kd->program, "can't read nprocs");
407			return (0);
408		}
409		size = nprocs * sizeof(struct kinfo_proc);
410		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
411		if (kd->procbase == 0)
412			return (0);
413
414		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
415				      nl[2].n_value, nprocs);
416#ifdef notdef
417		size = nprocs * sizeof(struct kinfo_proc);
418		(void)realloc(kd->procbase, size);
419#endif
420	}
421	*cnt = nprocs;
422	return (kd->procbase);
423}
424
425void
426_kvm_freeprocs(kd)
427	kvm_t *kd;
428{
429	if (kd->procbase) {
430		free(kd->procbase);
431		kd->procbase = 0;
432	}
433}
434
435void *
436_kvm_realloc(kd, p, n)
437	kvm_t *kd;
438	void *p;
439	size_t n;
440{
441	void *np = (void *)realloc(p, n);
442
443	if (np == 0)
444		_kvm_err(kd, kd->program, "out of memory");
445	return (np);
446}
447
448#ifndef MAX
449#define MAX(a, b) ((a) > (b) ? (a) : (b))
450#endif
451
452/*
453 * Read in an argument vector from the user address space of process p.
454 * addr if the user-space base address of narg null-terminated contiguous
455 * strings.  This is used to read in both the command arguments and
456 * environment strings.  Read at most maxcnt characters of strings.
457 */
458static char **
459kvm_argv(kd, p, addr, narg, maxcnt)
460	kvm_t *kd;
461	struct proc *p;
462	register u_long addr;
463	register int narg;
464	register int maxcnt;
465{
466	register char *cp;
467	register int len, cc;
468	register char **argv;
469
470	/*
471	 * Check that there aren't an unreasonable number of agruments,
472	 * and that the address is in user space.
473	 */
474	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
475		return (0);
476
477	if (kd->argv == 0) {
478		/*
479		 * Try to avoid reallocs.
480		 */
481		kd->argc = MAX(narg + 1, 32);
482		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
483						sizeof(*kd->argv));
484		if (kd->argv == 0)
485			return (0);
486	} else if (narg + 1 > kd->argc) {
487		kd->argc = MAX(2 * kd->argc, narg + 1);
488		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
489						sizeof(*kd->argv));
490		if (kd->argv == 0)
491			return (0);
492	}
493	if (kd->argspc == 0) {
494		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
495		if (kd->argspc == 0)
496			return (0);
497		kd->arglen = NBPG;
498	}
499	cp = kd->argspc;
500	argv = kd->argv;
501	*argv = cp;
502	len = 0;
503	/*
504	 * Loop over pages, filling in the argument vector.
505	 */
506	while (addr < VM_MAXUSER_ADDRESS) {
507		cc = NBPG - (addr & PGOFSET);
508		if (maxcnt > 0 && cc > maxcnt - len)
509			cc = maxcnt - len;;
510		if (len + cc > kd->arglen) {
511			register int off;
512			register char **pp;
513			register char *op = kd->argspc;
514
515			kd->arglen *= 2;
516			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
517							  kd->arglen);
518			if (kd->argspc == 0)
519				return (0);
520			cp = &kd->argspc[len];
521			/*
522			 * Adjust argv pointers in case realloc moved
523			 * the string space.
524			 */
525			off = kd->argspc - op;
526			for (pp = kd->argv; pp < argv; ++pp)
527				*pp += off;
528		}
529		if (kvm_uread(kd, p, addr, cp, cc) != cc)
530			/* XXX */
531			return (0);
532		len += cc;
533		addr += cc;
534
535		if (maxcnt == 0 && len > 16 * NBPG)
536			/* sanity */
537			return (0);
538
539		while (--cc >= 0) {
540			if (*cp++ == 0) {
541				if (--narg <= 0) {
542					*++argv = 0;
543					return (kd->argv);
544				} else
545					*++argv = cp;
546			}
547		}
548		if (maxcnt > 0 && len >= maxcnt) {
549			/*
550			 * We're stopping prematurely.  Terminate the
551			 * argv and current string.
552			 */
553			*++argv = 0;
554			*cp = 0;
555			return (kd->argv);
556		}
557	}
558}
559
560static void
561ps_str_a(p, addr, n)
562	struct ps_strings *p;
563	u_long *addr;
564	int *n;
565{
566	*addr = (u_long)p->ps_argvstr;
567	*n = p->ps_nargvstr;
568}
569
570static void
571ps_str_e(p, addr, n)
572	struct ps_strings *p;
573	u_long *addr;
574	int *n;
575{
576	*addr = (u_long)p->ps_envstr;
577	*n = p->ps_nenvstr;
578}
579
580/*
581 * Determine if the proc indicated by p is still active.
582 * This test is not 100% foolproof in theory, but chances of
583 * being wrong are very low.
584 */
585static int
586proc_verify(kd, kernp, p)
587	kvm_t *kd;
588	u_long kernp;
589	const struct proc *p;
590{
591	struct proc kernproc;
592
593	/*
594	 * Just read in the whole proc.  It's not that big relative
595	 * to the cost of the read system call.
596	 */
597	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
598	    sizeof(kernproc))
599		return (0);
600	return (p->p_pid == kernproc.p_pid &&
601		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
602}
603
604static char **
605kvm_doargv(kd, kp, nchr, info)
606	kvm_t *kd;
607	const struct kinfo_proc *kp;
608	int nchr;
609	int (*info)(struct ps_strings*, u_long *, int *);
610{
611	register const struct proc *p = &kp->kp_proc;
612	register char **ap;
613	u_long addr;
614	int cnt;
615	struct ps_strings arginfo;
616
617	/*
618	 * Pointers are stored at the top of the user stack.
619	 */
620	if (p->p_stat == SZOMB ||
621	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
622		      sizeof(arginfo)) != sizeof(arginfo))
623		return (0);
624
625	(*info)(&arginfo, &addr, &cnt);
626	ap = kvm_argv(kd, p, addr, cnt, nchr);
627	/*
628	 * For live kernels, make sure this process didn't go away.
629	 */
630	if (ap != 0 && ISALIVE(kd) &&
631	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
632		ap = 0;
633	return (ap);
634}
635
636/*
637 * Get the command args.  This code is now machine independent.
638 */
639char **
640kvm_getargv(kd, kp, nchr)
641	kvm_t *kd;
642	const struct kinfo_proc *kp;
643	int nchr;
644{
645	return (kvm_doargv(kd, kp, nchr, ps_str_a));
646}
647
648char **
649kvm_getenvv(kd, kp, nchr)
650	kvm_t *kd;
651	const struct kinfo_proc *kp;
652	int nchr;
653{
654	return (kvm_doargv(kd, kp, nchr, ps_str_e));
655}
656
657/*
658 * Read from user space.  The user context is given by p.
659 */
660ssize_t
661kvm_uread(kd, p, uva, buf, len)
662	kvm_t *kd;
663	register struct proc *p;
664	register u_long uva;
665	register char *buf;
666	register size_t len;
667{
668	register char *cp;
669
670	cp = buf;
671	while (len > 0) {
672		u_long pa;
673		register int cc;
674
675		cc = _kvm_uvatop(kd, p, uva, &pa);
676		if (cc > 0) {
677			if (cc > len)
678				cc = len;
679			errno = 0;
680			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
681				_kvm_err(kd, 0, "invalid address (%x)", uva);
682				break;
683			}
684			cc = read(kd->pmfd, cp, cc);
685			if (cc < 0) {
686				_kvm_syserr(kd, 0, _PATH_MEM);
687				break;
688			} else if (cc < len) {
689				_kvm_err(kd, kd->program, "short read");
690				break;
691			}
692		} else if (ISALIVE(kd)) {
693			/* try swap */
694			register char *dp;
695			int cnt;
696
697			dp = kvm_readswap(kd, p, uva, &cnt);
698			if (dp == 0) {
699				_kvm_err(kd, 0, "invalid address (%x)", uva);
700				return (0);
701			}
702			cc = MIN(cnt, len);
703			bcopy(dp, cp, cc);
704		} else
705			break;
706		cp += cc;
707		uva += cc;
708		len -= cc;
709	}
710	return (ssize_t)(cp - buf);
711}
712