kvm_proc.c revision 136402
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 136402 2004-10-11 21:56:27Z peter $");
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/sysent.h>
62#include <sys/ioctl.h>
63#include <sys/tty.h>
64#include <sys/file.h>
65#include <sys/conf.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <unistd.h>
69#include <nlist.h>
70#include <kvm.h>
71
72#include <vm/vm.h>
73#include <vm/vm_param.h>
74
75#include <sys/sysctl.h>
76
77#include <limits.h>
78#include <memory.h>
79#include <paths.h>
80
81#include "kvm_private.h"
82
83#define KREAD(kd, addr, obj) \
84	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
85
86/*
87 * Read proc's from memory file into buffer bp, which has space to hold
88 * at most maxcnt procs.
89 */
90static int
91kvm_proclist(kd, what, arg, p, bp, maxcnt)
92	kvm_t *kd;
93	int what, arg;
94	struct proc *p;
95	struct kinfo_proc *bp;
96	int maxcnt;
97{
98	int cnt = 0;
99	struct kinfo_proc kinfo_proc, *kp;
100	struct pgrp pgrp;
101	struct session sess;
102	struct cdev t_cdev;
103	struct tty tty;
104	struct vmspace vmspace;
105	struct sigacts sigacts;
106	struct pstats pstats;
107	struct ucred ucred;
108	struct thread mtd;
109	/*struct kse mke;*/
110	struct ksegrp mkg;
111	struct proc proc;
112	struct proc pproc;
113	struct timeval tv;
114	struct sysentvec sysent;
115	char svname[KI_EMULNAMELEN];
116
117	kp = &kinfo_proc;
118	kp->ki_structsize = sizeof(kinfo_proc);
119	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
120		memset(kp, 0, sizeof *kp);
121		if (KREAD(kd, (u_long)p, &proc)) {
122			_kvm_err(kd, kd->program, "can't read proc at %x", p);
123			return (-1);
124		}
125		if (proc.p_state != PRS_ZOMBIE) {
126			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
127			    &mtd)) {
128				_kvm_err(kd, kd->program,
129				    "can't read thread at %x",
130				    TAILQ_FIRST(&proc.p_threads));
131				return (-1);
132			}
133			if ((proc.p_flag & P_SA) == 0) {
134				if (KREAD(kd,
135				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
136				    &mkg)) {
137					_kvm_err(kd, kd->program,
138					    "can't read ksegrp at %x",
139					    TAILQ_FIRST(&proc.p_ksegrps));
140					return (-1);
141				}
142#if 0
143				if (KREAD(kd,
144				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
145					_kvm_err(kd, kd->program,
146					    "can't read kse at %x",
147					    TAILQ_FIRST(&mkg.kg_kseq));
148					return (-1);
149				}
150#endif
151			}
152		}
153		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
154			kp->ki_ruid = ucred.cr_ruid;
155			kp->ki_svuid = ucred.cr_svuid;
156			kp->ki_rgid = ucred.cr_rgid;
157			kp->ki_svgid = ucred.cr_svgid;
158			kp->ki_ngroups = ucred.cr_ngroups;
159			bcopy(ucred.cr_groups, kp->ki_groups,
160			    NGROUPS * sizeof(gid_t));
161			kp->ki_uid = ucred.cr_uid;
162		}
163
164		switch(what & ~KERN_PROC_INC_THREAD) {
165
166		case KERN_PROC_GID:
167			if (kp->ki_groups[0] != (gid_t)arg)
168				continue;
169			break;
170
171		case KERN_PROC_PID:
172			if (proc.p_pid != (pid_t)arg)
173				continue;
174			break;
175
176		case KERN_PROC_RGID:
177			if (kp->ki_rgid != (gid_t)arg)
178				continue;
179			break;
180
181		case KERN_PROC_UID:
182			if (kp->ki_uid != (uid_t)arg)
183				continue;
184			break;
185
186		case KERN_PROC_RUID:
187			if (kp->ki_ruid != (uid_t)arg)
188				continue;
189			break;
190		}
191		/*
192		 * We're going to add another proc to the set.  If this
193		 * will overflow the buffer, assume the reason is because
194		 * nprocs (or the proc list) is corrupt and declare an error.
195		 */
196		if (cnt >= maxcnt) {
197			_kvm_err(kd, kd->program, "nprocs corrupt");
198			return (-1);
199		}
200		/*
201		 * gather kinfo_proc
202		 */
203		kp->ki_paddr = p;
204		kp->ki_addr = proc.p_uarea;
205		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
206		kp->ki_args = proc.p_args;
207		kp->ki_tracep = proc.p_tracevp;
208		kp->ki_textvp = proc.p_textvp;
209		kp->ki_fd = proc.p_fd;
210		kp->ki_vmspace = proc.p_vmspace;
211		if (proc.p_sigacts != NULL) {
212			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
213				_kvm_err(kd, kd->program,
214				    "can't read sigacts at %x", proc.p_sigacts);
215				return (-1);
216			}
217			kp->ki_sigignore = sigacts.ps_sigignore;
218			kp->ki_sigcatch = sigacts.ps_sigcatch;
219		}
220		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
221			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
222				_kvm_err(kd, kd->program,
223				    "can't read stats at %x", proc.p_stats);
224				return (-1);
225			}
226			kp->ki_start = pstats.p_start;
227
228			/*
229			 * XXX: The times here are probably zero and need
230			 * to be calculated from the raw data in p_rux and
231			 * p_crux.
232			 */
233			kp->ki_rusage = pstats.p_ru;
234			kp->ki_childstime = pstats.p_cru.ru_stime;
235			kp->ki_childutime = pstats.p_cru.ru_utime;
236			/* Some callers want child-times in a single value */
237			timeradd(&kp->ki_childstime, &kp->ki_childutime,
238			    &kp->ki_childtime);
239		}
240		if (proc.p_oppid)
241			kp->ki_ppid = proc.p_oppid;
242		else if (proc.p_pptr) {
243			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
244				_kvm_err(kd, kd->program,
245				    "can't read pproc at %x", proc.p_pptr);
246				return (-1);
247			}
248			kp->ki_ppid = pproc.p_pid;
249		} else
250			kp->ki_ppid = 0;
251		if (proc.p_pgrp == NULL)
252			goto nopgrp;
253		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
254			_kvm_err(kd, kd->program, "can't read pgrp at %x",
255				 proc.p_pgrp);
256			return (-1);
257		}
258		kp->ki_pgid = pgrp.pg_id;
259		kp->ki_jobc = pgrp.pg_jobc;
260		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
261			_kvm_err(kd, kd->program, "can't read session at %x",
262				pgrp.pg_session);
263			return (-1);
264		}
265		kp->ki_sid = sess.s_sid;
266		(void)memcpy(kp->ki_login, sess.s_login,
267						sizeof(kp->ki_login));
268		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
269		if (sess.s_leader == p)
270			kp->ki_kiflag |= KI_SLEADER;
271		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
272			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
273				_kvm_err(kd, kd->program,
274					 "can't read tty at %x", sess.s_ttyp);
275				return (-1);
276			}
277			if (tty.t_dev != NULL) {
278				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
279					_kvm_err(kd, kd->program,
280						 "can't read cdev at %x",
281						tty.t_dev);
282					return (-1);
283				}
284				kp->ki_tdev = t_cdev.si_udev;
285			}
286			if (tty.t_pgrp != NULL) {
287				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
288					_kvm_err(kd, kd->program,
289						 "can't read tpgrp at %x",
290						tty.t_pgrp);
291					return (-1);
292				}
293				kp->ki_tpgid = pgrp.pg_id;
294			} else
295				kp->ki_tpgid = -1;
296			if (tty.t_session != NULL) {
297				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
298					_kvm_err(kd, kd->program,
299					    "can't read session at %x",
300					    tty.t_session);
301					return (-1);
302				}
303				kp->ki_tsid = sess.s_sid;
304			}
305		} else {
306nopgrp:
307			kp->ki_tdev = NODEV;
308		}
309		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
310			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
311			    kp->ki_wmesg, WMESGLEN);
312
313		(void)kvm_read(kd, (u_long)proc.p_vmspace,
314		    (char *)&vmspace, sizeof(vmspace));
315		kp->ki_size = vmspace.vm_map.size;
316		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
317		kp->ki_swrss = vmspace.vm_swrss;
318		kp->ki_tsize = vmspace.vm_tsize;
319		kp->ki_dsize = vmspace.vm_dsize;
320		kp->ki_ssize = vmspace.vm_ssize;
321
322		switch (what & ~KERN_PROC_INC_THREAD) {
323
324		case KERN_PROC_PGRP:
325			if (kp->ki_pgid != (pid_t)arg)
326				continue;
327			break;
328
329		case KERN_PROC_SESSION:
330			if (kp->ki_sid != (pid_t)arg)
331				continue;
332			break;
333
334		case KERN_PROC_TTY:
335			if ((proc.p_flag & P_CONTROLT) == 0 ||
336			     kp->ki_tdev != (dev_t)arg)
337				continue;
338			break;
339		}
340		if (proc.p_comm[0] != 0)
341			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
342		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
343		    sizeof(sysent));
344		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
345		    sizeof(svname));
346		if (svname[0] != 0)
347			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
348		if ((proc.p_state != PRS_ZOMBIE) &&
349		    (mtd.td_blocked != 0)) {
350			kp->ki_kiflag |= KI_LOCKBLOCK;
351			if (mtd.td_lockname)
352				(void)kvm_read(kd,
353				    (u_long)mtd.td_lockname,
354				    kp->ki_lockname, LOCKNAMELEN);
355			kp->ki_lockname[LOCKNAMELEN] = 0;
356		}
357		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
358		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
359		kp->ki_pid = proc.p_pid;
360		kp->ki_siglist = proc.p_siglist;
361		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
362		kp->ki_sigmask = mtd.td_sigmask;
363		kp->ki_xstat = proc.p_xstat;
364		kp->ki_acflag = proc.p_acflag;
365		kp->ki_lock = proc.p_lock;
366		if (proc.p_state != PRS_ZOMBIE) {
367			kp->ki_swtime = proc.p_swtime;
368			kp->ki_flag = proc.p_flag;
369			kp->ki_sflag = proc.p_sflag;
370			kp->ki_nice = proc.p_nice;
371			kp->ki_traceflag = proc.p_traceflag;
372			if (proc.p_state == PRS_NORMAL) {
373				if (TD_ON_RUNQ(&mtd) ||
374				    TD_CAN_RUN(&mtd) ||
375				    TD_IS_RUNNING(&mtd)) {
376					kp->ki_stat = SRUN;
377				} else if (mtd.td_state ==
378				    TDS_INHIBITED) {
379					if (P_SHOULDSTOP(&proc)) {
380						kp->ki_stat = SSTOP;
381					} else if (
382					    TD_IS_SLEEPING(&mtd)) {
383						kp->ki_stat = SSLEEP;
384					} else if (TD_ON_LOCK(&mtd)) {
385						kp->ki_stat = SLOCK;
386					} else {
387						kp->ki_stat = SWAIT;
388					}
389				}
390			} else {
391				kp->ki_stat = SIDL;
392			}
393			/* Stuff from the thread */
394			kp->ki_pri.pri_level = mtd.td_priority;
395			kp->ki_pri.pri_native = mtd.td_base_pri;
396			kp->ki_lastcpu = mtd.td_lastcpu;
397			kp->ki_wchan = mtd.td_wchan;
398			kp->ki_oncpu = mtd.td_oncpu;
399
400			if (!(proc.p_flag & P_SA)) {
401				/* stuff from the ksegrp */
402				kp->ki_slptime = mkg.kg_slptime;
403				kp->ki_pri.pri_class = mkg.kg_pri_class;
404				kp->ki_pri.pri_user = mkg.kg_user_pri;
405				kp->ki_estcpu = mkg.kg_estcpu;
406
407#if 0
408				/* Stuff from the kse */
409				kp->ki_pctcpu = mke.ke_pctcpu;
410				kp->ki_rqindex = mke.ke_rqindex;
411#else
412				kp->ki_pctcpu = 0;
413				kp->ki_rqindex = 0;
414#endif
415			} else {
416				kp->ki_tdflags = -1;
417				/* All the rest are 0 for now */
418			}
419		} else {
420			kp->ki_stat = SZOMB;
421		}
422		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
423		++bp;
424		++cnt;
425	}
426	return (cnt);
427}
428
429/*
430 * Build proc info array by reading in proc list from a crash dump.
431 * Return number of procs read.  maxcnt is the max we will read.
432 */
433static int
434kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
435	kvm_t *kd;
436	int what, arg;
437	u_long a_allproc;
438	u_long a_zombproc;
439	int maxcnt;
440{
441	struct kinfo_proc *bp = kd->procbase;
442	int acnt, zcnt;
443	struct proc *p;
444
445	if (KREAD(kd, a_allproc, &p)) {
446		_kvm_err(kd, kd->program, "cannot read allproc");
447		return (-1);
448	}
449	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
450	if (acnt < 0)
451		return (acnt);
452
453	if (KREAD(kd, a_zombproc, &p)) {
454		_kvm_err(kd, kd->program, "cannot read zombproc");
455		return (-1);
456	}
457	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
458	if (zcnt < 0)
459		zcnt = 0;
460
461	return (acnt + zcnt);
462}
463
464struct kinfo_proc *
465kvm_getprocs(kd, op, arg, cnt)
466	kvm_t *kd;
467	int op, arg;
468	int *cnt;
469{
470	int mib[4], st, nprocs;
471	size_t size;
472	int temp_op;
473
474	if (kd->procbase != 0) {
475		free((void *)kd->procbase);
476		/*
477		 * Clear this pointer in case this call fails.  Otherwise,
478		 * kvm_close() will free it again.
479		 */
480		kd->procbase = 0;
481	}
482	if (ISALIVE(kd)) {
483		size = 0;
484		mib[0] = CTL_KERN;
485		mib[1] = KERN_PROC;
486		mib[2] = op;
487		mib[3] = arg;
488		temp_op = op & ~KERN_PROC_INC_THREAD;
489		st = sysctl(mib,
490		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
491		    3 : 4, NULL, &size, NULL, 0);
492		if (st == -1) {
493			_kvm_syserr(kd, kd->program, "kvm_getprocs");
494			return (0);
495		}
496		/*
497		 * We can't continue with a size of 0 because we pass
498		 * it to realloc() (via _kvm_realloc()), and passing 0
499		 * to realloc() results in undefined behavior.
500		 */
501		if (size == 0) {
502			/*
503			 * XXX: We should probably return an invalid,
504			 * but non-NULL, pointer here so any client
505			 * program trying to dereference it will
506			 * crash.  However, _kvm_freeprocs() calls
507			 * free() on kd->procbase if it isn't NULL,
508			 * and free()'ing a junk pointer isn't good.
509			 * Then again, _kvm_freeprocs() isn't used
510			 * anywhere . . .
511			 */
512			kd->procbase = _kvm_malloc(kd, 1);
513			goto liveout;
514		}
515		do {
516			size += size / 10;
517			kd->procbase = (struct kinfo_proc *)
518			    _kvm_realloc(kd, kd->procbase, size);
519			if (kd->procbase == 0)
520				return (0);
521			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
522			    temp_op == KERN_PROC_PROC ? 3 : 4,
523			    kd->procbase, &size, NULL, 0);
524		} while (st == -1 && errno == ENOMEM);
525		if (st == -1) {
526			_kvm_syserr(kd, kd->program, "kvm_getprocs");
527			return (0);
528		}
529		/*
530		 * We have to check the size again because sysctl()
531		 * may "round up" oldlenp if oldp is NULL; hence it
532		 * might've told us that there was data to get when
533		 * there really isn't any.
534		 */
535		if (size > 0 &&
536		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
537			_kvm_err(kd, kd->program,
538			    "kinfo_proc size mismatch (expected %d, got %d)",
539			    sizeof(struct kinfo_proc),
540			    kd->procbase->ki_structsize);
541			return (0);
542		}
543liveout:
544		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
545	} else {
546		struct nlist nl[4], *p;
547
548		nl[0].n_name = "_nprocs";
549		nl[1].n_name = "_allproc";
550		nl[2].n_name = "_zombproc";
551		nl[3].n_name = 0;
552
553		if (kvm_nlist(kd, nl) != 0) {
554			for (p = nl; p->n_type != 0; ++p)
555				;
556			_kvm_err(kd, kd->program,
557				 "%s: no such symbol", p->n_name);
558			return (0);
559		}
560		if (KREAD(kd, nl[0].n_value, &nprocs)) {
561			_kvm_err(kd, kd->program, "can't read nprocs");
562			return (0);
563		}
564		size = nprocs * sizeof(struct kinfo_proc);
565		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
566		if (kd->procbase == 0)
567			return (0);
568
569		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
570				      nl[2].n_value, nprocs);
571#ifdef notdef
572		size = nprocs * sizeof(struct kinfo_proc);
573		(void)realloc(kd->procbase, size);
574#endif
575	}
576	*cnt = nprocs;
577	return (kd->procbase);
578}
579
580void
581_kvm_freeprocs(kd)
582	kvm_t *kd;
583{
584	if (kd->procbase) {
585		free(kd->procbase);
586		kd->procbase = 0;
587	}
588}
589
590void *
591_kvm_realloc(kd, p, n)
592	kvm_t *kd;
593	void *p;
594	size_t n;
595{
596	void *np = (void *)realloc(p, n);
597
598	if (np == 0) {
599		free(p);
600		_kvm_err(kd, kd->program, "out of memory");
601	}
602	return (np);
603}
604
605#ifndef MAX
606#define MAX(a, b) ((a) > (b) ? (a) : (b))
607#endif
608
609/*
610 * Read in an argument vector from the user address space of process kp.
611 * addr if the user-space base address of narg null-terminated contiguous
612 * strings.  This is used to read in both the command arguments and
613 * environment strings.  Read at most maxcnt characters of strings.
614 */
615static char **
616kvm_argv(kd, kp, addr, narg, maxcnt)
617	kvm_t *kd;
618	struct kinfo_proc *kp;
619	u_long addr;
620	int narg;
621	int maxcnt;
622{
623	char *np, *cp, *ep, *ap;
624	u_long oaddr = -1;
625	int len, cc;
626	char **argv;
627
628	/*
629	 * Check that there aren't an unreasonable number of agruments,
630	 * and that the address is in user space.
631	 */
632	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
633		return (0);
634
635	/*
636	 * kd->argv : work space for fetching the strings from the target
637	 *            process's space, and is converted for returning to caller
638	 */
639	if (kd->argv == 0) {
640		/*
641		 * Try to avoid reallocs.
642		 */
643		kd->argc = MAX(narg + 1, 32);
644		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
645						sizeof(*kd->argv));
646		if (kd->argv == 0)
647			return (0);
648	} else if (narg + 1 > kd->argc) {
649		kd->argc = MAX(2 * kd->argc, narg + 1);
650		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
651						sizeof(*kd->argv));
652		if (kd->argv == 0)
653			return (0);
654	}
655	/*
656	 * kd->argspc : returned to user, this is where the kd->argv
657	 *              arrays are left pointing to the collected strings.
658	 */
659	if (kd->argspc == 0) {
660		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
661		if (kd->argspc == 0)
662			return (0);
663		kd->arglen = PAGE_SIZE;
664	}
665	/*
666	 * kd->argbuf : used to pull in pages from the target process.
667	 *              the strings are copied out of here.
668	 */
669	if (kd->argbuf == 0) {
670		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
671		if (kd->argbuf == 0)
672			return (0);
673	}
674
675	/* Pull in the target process'es argv vector */
676	cc = sizeof(char *) * narg;
677	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
678		return (0);
679	/*
680	 * ap : saved start address of string we're working on in kd->argspc
681	 * np : pointer to next place to write in kd->argspc
682	 * len: length of data in kd->argspc
683	 * argv: pointer to the argv vector that we are hunting around the
684	 *       target process space for, and converting to addresses in
685	 *       our address space (kd->argspc).
686	 */
687	ap = np = kd->argspc;
688	argv = kd->argv;
689	len = 0;
690	/*
691	 * Loop over pages, filling in the argument vector.
692	 * Note that the argv strings could be pointing *anywhere* in
693	 * the user address space and are no longer contiguous.
694	 * Note that *argv is modified when we are going to fetch a string
695	 * that crosses a page boundary.  We copy the next part of the string
696	 * into to "np" and eventually convert the pointer.
697	 */
698	while (argv < kd->argv + narg && *argv != 0) {
699
700		/* get the address that the current argv string is on */
701		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
702
703		/* is it the same page as the last one? */
704		if (addr != oaddr) {
705			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
706			    PAGE_SIZE)
707				return (0);
708			oaddr = addr;
709		}
710
711		/* offset within the page... kd->argbuf */
712		addr = (u_long)*argv & (PAGE_SIZE - 1);
713
714		/* cp = start of string, cc = count of chars in this chunk */
715		cp = kd->argbuf + addr;
716		cc = PAGE_SIZE - addr;
717
718		/* dont get more than asked for by user process */
719		if (maxcnt > 0 && cc > maxcnt - len)
720			cc = maxcnt - len;
721
722		/* pointer to end of string if we found it in this page */
723		ep = memchr(cp, '\0', cc);
724		if (ep != 0)
725			cc = ep - cp + 1;
726		/*
727		 * at this point, cc is the count of the chars that we are
728		 * going to retrieve this time. we may or may not have found
729		 * the end of it.  (ep points to the null if the end is known)
730		 */
731
732		/* will we exceed the malloc/realloced buffer? */
733		if (len + cc > kd->arglen) {
734			int off;
735			char **pp;
736			char *op = kd->argspc;
737
738			kd->arglen *= 2;
739			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
740							  kd->arglen);
741			if (kd->argspc == 0)
742				return (0);
743			/*
744			 * Adjust argv pointers in case realloc moved
745			 * the string space.
746			 */
747			off = kd->argspc - op;
748			for (pp = kd->argv; pp < argv; pp++)
749				*pp += off;
750			ap += off;
751			np += off;
752		}
753		/* np = where to put the next part of the string in kd->argspc*/
754		/* np is kinda redundant.. could use "kd->argspc + len" */
755		memcpy(np, cp, cc);
756		np += cc;	/* inc counters */
757		len += cc;
758
759		/*
760		 * if end of string found, set the *argv pointer to the
761		 * saved beginning of string, and advance. argv points to
762		 * somewhere in kd->argv..  This is initially relative
763		 * to the target process, but when we close it off, we set
764		 * it to point in our address space.
765		 */
766		if (ep != 0) {
767			*argv++ = ap;
768			ap = np;
769		} else {
770			/* update the address relative to the target process */
771			*argv += cc;
772		}
773
774		if (maxcnt > 0 && len >= maxcnt) {
775			/*
776			 * We're stopping prematurely.  Terminate the
777			 * current string.
778			 */
779			if (ep == 0) {
780				*np = '\0';
781				*argv++ = ap;
782			}
783			break;
784		}
785	}
786	/* Make sure argv is terminated. */
787	*argv = 0;
788	return (kd->argv);
789}
790
791static void
792ps_str_a(p, addr, n)
793	struct ps_strings *p;
794	u_long *addr;
795	int *n;
796{
797	*addr = (u_long)p->ps_argvstr;
798	*n = p->ps_nargvstr;
799}
800
801static void
802ps_str_e(p, addr, n)
803	struct ps_strings *p;
804	u_long *addr;
805	int *n;
806{
807	*addr = (u_long)p->ps_envstr;
808	*n = p->ps_nenvstr;
809}
810
811/*
812 * Determine if the proc indicated by p is still active.
813 * This test is not 100% foolproof in theory, but chances of
814 * being wrong are very low.
815 */
816static int
817proc_verify(curkp)
818	struct kinfo_proc *curkp;
819{
820	struct kinfo_proc newkp;
821	int mib[4];
822	size_t len;
823
824	mib[0] = CTL_KERN;
825	mib[1] = KERN_PROC;
826	mib[2] = KERN_PROC_PID;
827	mib[3] = curkp->ki_pid;
828	len = sizeof(newkp);
829	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
830		return (0);
831	return (curkp->ki_pid == newkp.ki_pid &&
832	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
833}
834
835static char **
836kvm_doargv(kd, kp, nchr, info)
837	kvm_t *kd;
838	struct kinfo_proc *kp;
839	int nchr;
840	void (*info)(struct ps_strings *, u_long *, int *);
841{
842	char **ap;
843	u_long addr;
844	int cnt;
845	static struct ps_strings arginfo;
846	static u_long ps_strings;
847	size_t len;
848
849	if (ps_strings == 0) {
850		len = sizeof(ps_strings);
851		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
852		    0) == -1)
853			ps_strings = PS_STRINGS;
854	}
855
856	/*
857	 * Pointers are stored at the top of the user stack.
858	 */
859	if (kp->ki_stat == SZOMB ||
860	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
861		      sizeof(arginfo)) != sizeof(arginfo))
862		return (0);
863
864	(*info)(&arginfo, &addr, &cnt);
865	if (cnt == 0)
866		return (0);
867	ap = kvm_argv(kd, kp, addr, cnt, nchr);
868	/*
869	 * For live kernels, make sure this process didn't go away.
870	 */
871	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
872		ap = 0;
873	return (ap);
874}
875
876/*
877 * Get the command args.  This code is now machine independent.
878 */
879char **
880kvm_getargv(kd, kp, nchr)
881	kvm_t *kd;
882	const struct kinfo_proc *kp;
883	int nchr;
884{
885	int oid[4];
886	int i;
887	size_t bufsz;
888	static unsigned long buflen;
889	static char *buf, *p;
890	static char **bufp;
891	static int argc;
892
893	if (!ISALIVE(kd)) {
894		_kvm_err(kd, kd->program,
895		    "cannot read user space from dead kernel");
896		return (0);
897	}
898
899	if (!buflen) {
900		bufsz = sizeof(buflen);
901		i = sysctlbyname("kern.ps_arg_cache_limit",
902		    &buflen, &bufsz, NULL, 0);
903		if (i == -1) {
904			buflen = 0;
905		} else {
906			buf = malloc(buflen);
907			if (buf == NULL)
908				buflen = 0;
909			argc = 32;
910			bufp = malloc(sizeof(char *) * argc);
911		}
912	}
913	if (buf != NULL) {
914		oid[0] = CTL_KERN;
915		oid[1] = KERN_PROC;
916		oid[2] = KERN_PROC_ARGS;
917		oid[3] = kp->ki_pid;
918		bufsz = buflen;
919		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
920		if (i == 0 && bufsz > 0) {
921			i = 0;
922			p = buf;
923			do {
924				bufp[i++] = p;
925				p += strlen(p) + 1;
926				if (i >= argc) {
927					argc += argc;
928					bufp = realloc(bufp,
929					    sizeof(char *) * argc);
930				}
931			} while (p < buf + bufsz);
932			bufp[i++] = 0;
933			return (bufp);
934		}
935	}
936	if (kp->ki_flag & P_SYSTEM)
937		return (NULL);
938	return (kvm_doargv(kd, kp, nchr, ps_str_a));
939}
940
941char **
942kvm_getenvv(kd, kp, nchr)
943	kvm_t *kd;
944	const struct kinfo_proc *kp;
945	int nchr;
946{
947	return (kvm_doargv(kd, kp, nchr, ps_str_e));
948}
949
950/*
951 * Read from user space.  The user context is given by p.
952 */
953ssize_t
954kvm_uread(kd, kp, uva, buf, len)
955	kvm_t *kd;
956	struct kinfo_proc *kp;
957	u_long uva;
958	char *buf;
959	size_t len;
960{
961	char *cp;
962	char procfile[MAXPATHLEN];
963	ssize_t amount;
964	int fd;
965
966	if (!ISALIVE(kd)) {
967		_kvm_err(kd, kd->program,
968		    "cannot read user space from dead kernel");
969		return (0);
970	}
971
972	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
973	fd = open(procfile, O_RDONLY, 0);
974	if (fd < 0) {
975		_kvm_err(kd, kd->program, "cannot open %s", procfile);
976		close(fd);
977		return (0);
978	}
979
980	cp = buf;
981	while (len > 0) {
982		errno = 0;
983		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
984			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
985			    uva, procfile);
986			break;
987		}
988		amount = read(fd, cp, len);
989		if (amount < 0) {
990			_kvm_syserr(kd, kd->program, "error reading %s",
991			    procfile);
992			break;
993		}
994		if (amount == 0) {
995			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
996			break;
997		}
998		cp += amount;
999		uva += amount;
1000		len -= amount;
1001	}
1002
1003	close(fd);
1004	return ((ssize_t)(cp - buf));
1005}
1006