kvm_proc.c revision 134791
175584Sru/*-
2151497Sru * Copyright (c) 1989, 1992, 1993
375584Sru *	The Regents of the University of California.  All rights reserved.
4104862Sru *
5104862Sru * This code is derived from software developed by the Computer Systems
6104862Sru * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7104862Sru * BG 91-66 and contributed to Berkeley.
8104862Sru *
9104862Sru * Redistribution and use in source and binary forms, with or without
10104862Sru * modification, are permitted provided that the following conditions
11104862Sru * are met:
12104862Sru * 1. Redistributions of source code must retain the above copyright
13104862Sru *    notice, this list of conditions and the following disclaimer.
14104862Sru * 2. Redistributions in binary form must reproduce the above copyright
15104862Sru *    notice, this list of conditions and the following disclaimer in the
16104862Sru *    documentation and/or other materials provided with the distribution.
17104862Sru * 3. All advertising materials mentioning features or use of this software
18104862Sru *    must display the following acknowledgement:
19151497Sru *	This product includes software developed by the University of
20104862Sru *	California, Berkeley and its contributors.
21151497Sru * 4. Neither the name of the University nor the names of its contributors
22151497Sru *    may be used to endorse or promote products derived from this software
23104862Sru *    without specific prior written permission.
24151497Sru *
25104862Sru * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26104862Sru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27104862Sru * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28151497Sru * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29104862Sru * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30151497Sru * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31104862Sru * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32104862Sru * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33104862Sru * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34104862Sru * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35104862Sru * SUCH DAMAGE.
36104862Sru */
37104862Sru
38151497Sru#if 0
39151497Sru#if defined(LIBC_SCCS) && !defined(lint)
40104862Srustatic char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41151497Sru#endif /* LIBC_SCCS and not lint */
42104862Sru#endif
43104862Sru
44151497Sru#include <sys/cdefs.h>
45104862Sru__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 134791 2004-09-05 02:09:54Z julian $");
46104862Sru
47151497Sru/*
48151497Sru * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49151497Sru * users of this code, so we've factored it out into a separate module.
50104862Sru * Thus, we keep this grunge out of the other kvm applications (i.e.,
5175584Sru * most other applications are interested only in open/close/read/nlist).
5275584Sru */
53114402Sru
54114402Sru#include <sys/param.h>
55114402Sru#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56114402Sru#include <sys/ucred.h>
57114402Sru#include <sys/user.h>
58114402Sru#include <sys/proc.h>
59114402Sru#include <sys/exec.h>
60114402Sru#include <sys/stat.h>
61114402Sru#include <sys/sysent.h>
62114402Sru#include <sys/ioctl.h>
63114402Sru#include <sys/tty.h>
64114402Sru#include <sys/file.h>
65114402Sru#include <stdio.h>
66151497Sru#include <stdlib.h>
67114402Sru#include <unistd.h>
68151497Sru#include <nlist.h>
69114402Sru#include <kvm.h>
70114402Sru
71114402Sru#include <vm/vm.h>
72114402Sru#include <vm/vm_param.h>
73114402Sru
74151497Sru#include <sys/sysctl.h>
75114402Sru
76114402Sru#include <limits.h>
77114402Sru#include <memory.h>
78114402Sru#include <paths.h>
79114402Sru
80114402Sru#include "kvm_private.h"
81114402Sru
82151497Sru#define KREAD(kd, addr, obj) \
83114402Sru	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84114402Sru
85114402Sru/*
86151497Sru * Read proc's from memory file into buffer bp, which has space to hold
87114402Sru * at most maxcnt procs.
88114402Sru */
89151497Srustatic int
90151497Srukvm_proclist(kd, what, arg, p, bp, maxcnt)
91151497Sru	kvm_t *kd;
92114402Sru	int what, arg;
9375584Sru	struct proc *p;
9475584Sru	struct kinfo_proc *bp;
9575584Sru	int maxcnt;
9675584Sru{
9775584Sru	int cnt = 0;
9875584Sru	struct kinfo_proc kinfo_proc, *kp;
9975584Sru	struct pgrp pgrp;
10075584Sru	struct session sess;
101151497Sru	struct tty tty;
10275584Sru	struct vmspace vmspace;
103151497Sru	struct sigacts sigacts;
104151497Sru	struct pstats pstats;
105114402Sru	struct ucred ucred;
10675584Sru	struct thread mtd;
107114402Sru	/*struct kse mke;*/
108104862Sru	struct ksegrp mkg;
109104862Sru	struct proc proc;
11075584Sru	struct proc pproc;
111114402Sru	struct timeval tv;
11275584Sru	struct sysentvec sysent;
113104862Sru	char svname[KI_EMULNAMELEN];
114104862Sru
11575584Sru	kp = &kinfo_proc;
116114402Sru	kp->ki_structsize = sizeof(kinfo_proc);
117114402Sru	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
118104862Sru		memset(kp, 0, sizeof *kp);
119104862Sru		if (KREAD(kd, (u_long)p, &proc)) {
120104862Sru			_kvm_err(kd, kd->program, "can't read proc at %x", p);
12175584Sru			return (-1);
122104862Sru		}
123104862Sru		if (proc.p_state != PRS_ZOMBIE) {
124104862Sru			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
125104862Sru			    &mtd)) {
126104862Sru				_kvm_err(kd, kd->program,
127				    "can't read thread at %x",
128				    TAILQ_FIRST(&proc.p_threads));
129				return (-1);
130			}
131			if ((proc.p_flag & P_SA) == 0) {
132				if (KREAD(kd,
133				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
134				    &mkg)) {
135					_kvm_err(kd, kd->program,
136					    "can't read ksegrp at %x",
137					    TAILQ_FIRST(&proc.p_ksegrps));
138					return (-1);
139				}
140#if 0
141				if (KREAD(kd,
142				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
143					_kvm_err(kd, kd->program,
144					    "can't read kse at %x",
145					    TAILQ_FIRST(&mkg.kg_kseq));
146					return (-1);
147				}
148#endif
149			}
150		}
151		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
152			kp->ki_ruid = ucred.cr_ruid;
153			kp->ki_svuid = ucred.cr_svuid;
154			kp->ki_rgid = ucred.cr_rgid;
155			kp->ki_svgid = ucred.cr_svgid;
156			kp->ki_ngroups = ucred.cr_ngroups;
157			bcopy(ucred.cr_groups, kp->ki_groups,
158			    NGROUPS * sizeof(gid_t));
159			kp->ki_uid = ucred.cr_uid;
160		}
161
162		switch(what & ~KERN_PROC_INC_THREAD) {
163
164		case KERN_PROC_GID:
165			if (kp->ki_groups[0] != (gid_t)arg)
166				continue;
167			break;
168
169		case KERN_PROC_PID:
170			if (proc.p_pid != (pid_t)arg)
171				continue;
172			break;
173
174		case KERN_PROC_RGID:
175			if (kp->ki_rgid != (gid_t)arg)
176				continue;
177			break;
178
179		case KERN_PROC_UID:
180			if (kp->ki_uid != (uid_t)arg)
181				continue;
182			break;
183
184		case KERN_PROC_RUID:
185			if (kp->ki_ruid != (uid_t)arg)
186				continue;
187			break;
188		}
189		/*
190		 * We're going to add another proc to the set.  If this
191		 * will overflow the buffer, assume the reason is because
192		 * nprocs (or the proc list) is corrupt and declare an error.
193		 */
194		if (cnt >= maxcnt) {
195			_kvm_err(kd, kd->program, "nprocs corrupt");
196			return (-1);
197		}
198		/*
199		 * gather kinfo_proc
200		 */
201		kp->ki_paddr = p;
202		kp->ki_addr = proc.p_uarea;
203		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204		kp->ki_args = proc.p_args;
205		kp->ki_tracep = proc.p_tracevp;
206		kp->ki_textvp = proc.p_textvp;
207		kp->ki_fd = proc.p_fd;
208		kp->ki_vmspace = proc.p_vmspace;
209		if (proc.p_sigacts != NULL) {
210			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211				_kvm_err(kd, kd->program,
212				    "can't read sigacts at %x", proc.p_sigacts);
213				return (-1);
214			}
215			kp->ki_sigignore = sigacts.ps_sigignore;
216			kp->ki_sigcatch = sigacts.ps_sigcatch;
217		}
218		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
219			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
220				_kvm_err(kd, kd->program,
221				    "can't read stats at %x", proc.p_stats);
222				return (-1);
223			}
224			kp->ki_start = pstats.p_start;
225			kp->ki_rusage = pstats.p_ru;
226			kp->ki_childstime = pstats.p_cru.ru_stime;
227			kp->ki_childutime = pstats.p_cru.ru_utime;
228			/* Some callers want child-times in a single value */
229			timeradd(&kp->ki_childstime, &kp->ki_childutime,
230			    &kp->ki_childtime);
231		}
232		if (proc.p_oppid)
233			kp->ki_ppid = proc.p_oppid;
234		else if (proc.p_pptr) {
235			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
236				_kvm_err(kd, kd->program,
237				    "can't read pproc at %x", proc.p_pptr);
238				return (-1);
239			}
240			kp->ki_ppid = pproc.p_pid;
241		} else
242			kp->ki_ppid = 0;
243		if (proc.p_pgrp == NULL)
244			goto nopgrp;
245		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
246			_kvm_err(kd, kd->program, "can't read pgrp at %x",
247				 proc.p_pgrp);
248			return (-1);
249		}
250		kp->ki_pgid = pgrp.pg_id;
251		kp->ki_jobc = pgrp.pg_jobc;
252		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
253			_kvm_err(kd, kd->program, "can't read session at %x",
254				pgrp.pg_session);
255			return (-1);
256		}
257		kp->ki_sid = sess.s_sid;
258		(void)memcpy(kp->ki_login, sess.s_login,
259						sizeof(kp->ki_login));
260		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
261		if (sess.s_leader == p)
262			kp->ki_kiflag |= KI_SLEADER;
263		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
264			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
265				_kvm_err(kd, kd->program,
266					 "can't read tty at %x", sess.s_ttyp);
267				return (-1);
268			}
269			kp->ki_tdev = tty.t_dev;	/* XXX: wrong */
270			if (tty.t_pgrp != NULL) {
271				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
272					_kvm_err(kd, kd->program,
273						 "can't read tpgrp at %x",
274						tty.t_pgrp);
275					return (-1);
276				}
277				kp->ki_tpgid = pgrp.pg_id;
278			} else
279				kp->ki_tpgid = -1;
280			if (tty.t_session != NULL) {
281				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
282					_kvm_err(kd, kd->program,
283					    "can't read session at %x",
284					    tty.t_session);
285					return (-1);
286				}
287				kp->ki_tsid = sess.s_sid;
288			}
289		} else {
290nopgrp:
291			kp->ki_tdev = NODEV;
292		}
293		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
294			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
295			    kp->ki_wmesg, WMESGLEN);
296
297		(void)kvm_read(kd, (u_long)proc.p_vmspace,
298		    (char *)&vmspace, sizeof(vmspace));
299		kp->ki_size = vmspace.vm_map.size;
300		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
301		kp->ki_swrss = vmspace.vm_swrss;
302		kp->ki_tsize = vmspace.vm_tsize;
303		kp->ki_dsize = vmspace.vm_dsize;
304		kp->ki_ssize = vmspace.vm_ssize;
305
306		switch (what & ~KERN_PROC_INC_THREAD) {
307
308		case KERN_PROC_PGRP:
309			if (kp->ki_pgid != (pid_t)arg)
310				continue;
311			break;
312
313		case KERN_PROC_SESSION:
314			if (kp->ki_sid != (pid_t)arg)
315				continue;
316			break;
317
318		case KERN_PROC_TTY:
319			if ((proc.p_flag & P_CONTROLT) == 0 ||
320			     kp->ki_tdev != (dev_t)arg)
321				continue;
322			break;
323		}
324		if (proc.p_comm[0] != 0)
325			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
326		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
327		    sizeof(sysent));
328		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
329		    sizeof(svname));
330		if (svname[0] != 0)
331			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
332		if ((proc.p_state != PRS_ZOMBIE) &&
333		    (mtd.td_blocked != 0)) {
334			kp->ki_kiflag |= KI_LOCKBLOCK;
335			if (mtd.td_lockname)
336				(void)kvm_read(kd,
337				    (u_long)mtd.td_lockname,
338				    kp->ki_lockname, LOCKNAMELEN);
339			kp->ki_lockname[LOCKNAMELEN] = 0;
340		}
341		bintime2timeval(&proc.p_runtime, &tv);
342		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
343		kp->ki_pid = proc.p_pid;
344		kp->ki_siglist = proc.p_siglist;
345		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
346		kp->ki_sigmask = mtd.td_sigmask;
347		kp->ki_xstat = proc.p_xstat;
348		kp->ki_acflag = proc.p_acflag;
349		kp->ki_lock = proc.p_lock;
350		if (proc.p_state != PRS_ZOMBIE) {
351			kp->ki_swtime = proc.p_swtime;
352			kp->ki_flag = proc.p_flag;
353			kp->ki_sflag = proc.p_sflag;
354			kp->ki_nice = proc.p_nice;
355			kp->ki_traceflag = proc.p_traceflag;
356			if (proc.p_state == PRS_NORMAL) {
357				if (TD_ON_RUNQ(&mtd) ||
358				    TD_CAN_RUN(&mtd) ||
359				    TD_IS_RUNNING(&mtd)) {
360					kp->ki_stat = SRUN;
361				} else if (mtd.td_state ==
362				    TDS_INHIBITED) {
363					if (P_SHOULDSTOP(&proc)) {
364						kp->ki_stat = SSTOP;
365					} else if (
366					    TD_IS_SLEEPING(&mtd)) {
367						kp->ki_stat = SSLEEP;
368					} else if (TD_ON_LOCK(&mtd)) {
369						kp->ki_stat = SLOCK;
370					} else {
371						kp->ki_stat = SWAIT;
372					}
373				}
374			} else {
375				kp->ki_stat = SIDL;
376			}
377			/* Stuff from the thread */
378			kp->ki_pri.pri_level = mtd.td_priority;
379			kp->ki_pri.pri_native = mtd.td_base_pri;
380			kp->ki_lastcpu = mtd.td_lastcpu;
381			kp->ki_wchan = mtd.td_wchan;
382			kp->ki_oncpu = mtd.td_oncpu;
383
384			if (!(proc.p_flag & P_SA)) {
385				/* stuff from the ksegrp */
386				kp->ki_slptime = mkg.kg_slptime;
387				kp->ki_pri.pri_class = mkg.kg_pri_class;
388				kp->ki_pri.pri_user = mkg.kg_user_pri;
389				kp->ki_estcpu = mkg.kg_estcpu;
390
391#if 0
392				/* Stuff from the kse */
393				kp->ki_pctcpu = mke.ke_pctcpu;
394				kp->ki_rqindex = mke.ke_rqindex;
395#else
396				kp->ki_pctcpu = 0;
397				kp->ki_rqindex = 0;
398#endif
399			} else {
400				kp->ki_tdflags = -1;
401				/* All the rest are 0 for now */
402			}
403		} else {
404			kp->ki_stat = SZOMB;
405		}
406		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
407		++bp;
408		++cnt;
409	}
410	return (cnt);
411}
412
413/*
414 * Build proc info array by reading in proc list from a crash dump.
415 * Return number of procs read.  maxcnt is the max we will read.
416 */
417static int
418kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
419	kvm_t *kd;
420	int what, arg;
421	u_long a_allproc;
422	u_long a_zombproc;
423	int maxcnt;
424{
425	struct kinfo_proc *bp = kd->procbase;
426	int acnt, zcnt;
427	struct proc *p;
428
429	if (KREAD(kd, a_allproc, &p)) {
430		_kvm_err(kd, kd->program, "cannot read allproc");
431		return (-1);
432	}
433	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
434	if (acnt < 0)
435		return (acnt);
436
437	if (KREAD(kd, a_zombproc, &p)) {
438		_kvm_err(kd, kd->program, "cannot read zombproc");
439		return (-1);
440	}
441	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
442	if (zcnt < 0)
443		zcnt = 0;
444
445	return (acnt + zcnt);
446}
447
448struct kinfo_proc *
449kvm_getprocs(kd, op, arg, cnt)
450	kvm_t *kd;
451	int op, arg;
452	int *cnt;
453{
454	int mib[4], st, nprocs;
455	size_t size;
456	int temp_op;
457
458	if (kd->procbase != 0) {
459		free((void *)kd->procbase);
460		/*
461		 * Clear this pointer in case this call fails.  Otherwise,
462		 * kvm_close() will free it again.
463		 */
464		kd->procbase = 0;
465	}
466	if (ISALIVE(kd)) {
467		size = 0;
468		mib[0] = CTL_KERN;
469		mib[1] = KERN_PROC;
470		mib[2] = op;
471		mib[3] = arg;
472		temp_op = op & ~KERN_PROC_INC_THREAD;
473		st = sysctl(mib,
474		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
475		    3 : 4, NULL, &size, NULL, 0);
476		if (st == -1) {
477			_kvm_syserr(kd, kd->program, "kvm_getprocs");
478			return (0);
479		}
480		/*
481		 * We can't continue with a size of 0 because we pass
482		 * it to realloc() (via _kvm_realloc()), and passing 0
483		 * to realloc() results in undefined behavior.
484		 */
485		if (size == 0) {
486			/*
487			 * XXX: We should probably return an invalid,
488			 * but non-NULL, pointer here so any client
489			 * program trying to dereference it will
490			 * crash.  However, _kvm_freeprocs() calls
491			 * free() on kd->procbase if it isn't NULL,
492			 * and free()'ing a junk pointer isn't good.
493			 * Then again, _kvm_freeprocs() isn't used
494			 * anywhere . . .
495			 */
496			kd->procbase = _kvm_malloc(kd, 1);
497			goto liveout;
498		}
499		do {
500			size += size / 10;
501			kd->procbase = (struct kinfo_proc *)
502			    _kvm_realloc(kd, kd->procbase, size);
503			if (kd->procbase == 0)
504				return (0);
505			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
506			    temp_op == KERN_PROC_PROC ? 3 : 4,
507			    kd->procbase, &size, NULL, 0);
508		} while (st == -1 && errno == ENOMEM);
509		if (st == -1) {
510			_kvm_syserr(kd, kd->program, "kvm_getprocs");
511			return (0);
512		}
513		/*
514		 * We have to check the size again because sysctl()
515		 * may "round up" oldlenp if oldp is NULL; hence it
516		 * might've told us that there was data to get when
517		 * there really isn't any.
518		 */
519		if (size > 0 &&
520		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
521			_kvm_err(kd, kd->program,
522			    "kinfo_proc size mismatch (expected %d, got %d)",
523			    sizeof(struct kinfo_proc),
524			    kd->procbase->ki_structsize);
525			return (0);
526		}
527liveout:
528		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
529	} else {
530		struct nlist nl[4], *p;
531
532		nl[0].n_name = "_nprocs";
533		nl[1].n_name = "_allproc";
534		nl[2].n_name = "_zombproc";
535		nl[3].n_name = 0;
536
537		if (kvm_nlist(kd, nl) != 0) {
538			for (p = nl; p->n_type != 0; ++p)
539				;
540			_kvm_err(kd, kd->program,
541				 "%s: no such symbol", p->n_name);
542			return (0);
543		}
544		if (KREAD(kd, nl[0].n_value, &nprocs)) {
545			_kvm_err(kd, kd->program, "can't read nprocs");
546			return (0);
547		}
548		size = nprocs * sizeof(struct kinfo_proc);
549		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
550		if (kd->procbase == 0)
551			return (0);
552
553		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
554				      nl[2].n_value, nprocs);
555#ifdef notdef
556		size = nprocs * sizeof(struct kinfo_proc);
557		(void)realloc(kd->procbase, size);
558#endif
559	}
560	*cnt = nprocs;
561	return (kd->procbase);
562}
563
564void
565_kvm_freeprocs(kd)
566	kvm_t *kd;
567{
568	if (kd->procbase) {
569		free(kd->procbase);
570		kd->procbase = 0;
571	}
572}
573
574void *
575_kvm_realloc(kd, p, n)
576	kvm_t *kd;
577	void *p;
578	size_t n;
579{
580	void *np = (void *)realloc(p, n);
581
582	if (np == 0) {
583		free(p);
584		_kvm_err(kd, kd->program, "out of memory");
585	}
586	return (np);
587}
588
589#ifndef MAX
590#define MAX(a, b) ((a) > (b) ? (a) : (b))
591#endif
592
593/*
594 * Read in an argument vector from the user address space of process kp.
595 * addr if the user-space base address of narg null-terminated contiguous
596 * strings.  This is used to read in both the command arguments and
597 * environment strings.  Read at most maxcnt characters of strings.
598 */
599static char **
600kvm_argv(kd, kp, addr, narg, maxcnt)
601	kvm_t *kd;
602	struct kinfo_proc *kp;
603	u_long addr;
604	int narg;
605	int maxcnt;
606{
607	char *np, *cp, *ep, *ap;
608	u_long oaddr = -1;
609	int len, cc;
610	char **argv;
611
612	/*
613	 * Check that there aren't an unreasonable number of agruments,
614	 * and that the address is in user space.
615	 */
616	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
617		return (0);
618
619	/*
620	 * kd->argv : work space for fetching the strings from the target
621	 *            process's space, and is converted for returning to caller
622	 */
623	if (kd->argv == 0) {
624		/*
625		 * Try to avoid reallocs.
626		 */
627		kd->argc = MAX(narg + 1, 32);
628		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
629						sizeof(*kd->argv));
630		if (kd->argv == 0)
631			return (0);
632	} else if (narg + 1 > kd->argc) {
633		kd->argc = MAX(2 * kd->argc, narg + 1);
634		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
635						sizeof(*kd->argv));
636		if (kd->argv == 0)
637			return (0);
638	}
639	/*
640	 * kd->argspc : returned to user, this is where the kd->argv
641	 *              arrays are left pointing to the collected strings.
642	 */
643	if (kd->argspc == 0) {
644		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
645		if (kd->argspc == 0)
646			return (0);
647		kd->arglen = PAGE_SIZE;
648	}
649	/*
650	 * kd->argbuf : used to pull in pages from the target process.
651	 *              the strings are copied out of here.
652	 */
653	if (kd->argbuf == 0) {
654		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
655		if (kd->argbuf == 0)
656			return (0);
657	}
658
659	/* Pull in the target process'es argv vector */
660	cc = sizeof(char *) * narg;
661	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
662		return (0);
663	/*
664	 * ap : saved start address of string we're working on in kd->argspc
665	 * np : pointer to next place to write in kd->argspc
666	 * len: length of data in kd->argspc
667	 * argv: pointer to the argv vector that we are hunting around the
668	 *       target process space for, and converting to addresses in
669	 *       our address space (kd->argspc).
670	 */
671	ap = np = kd->argspc;
672	argv = kd->argv;
673	len = 0;
674	/*
675	 * Loop over pages, filling in the argument vector.
676	 * Note that the argv strings could be pointing *anywhere* in
677	 * the user address space and are no longer contiguous.
678	 * Note that *argv is modified when we are going to fetch a string
679	 * that crosses a page boundary.  We copy the next part of the string
680	 * into to "np" and eventually convert the pointer.
681	 */
682	while (argv < kd->argv + narg && *argv != 0) {
683
684		/* get the address that the current argv string is on */
685		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
686
687		/* is it the same page as the last one? */
688		if (addr != oaddr) {
689			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
690			    PAGE_SIZE)
691				return (0);
692			oaddr = addr;
693		}
694
695		/* offset within the page... kd->argbuf */
696		addr = (u_long)*argv & (PAGE_SIZE - 1);
697
698		/* cp = start of string, cc = count of chars in this chunk */
699		cp = kd->argbuf + addr;
700		cc = PAGE_SIZE - addr;
701
702		/* dont get more than asked for by user process */
703		if (maxcnt > 0 && cc > maxcnt - len)
704			cc = maxcnt - len;
705
706		/* pointer to end of string if we found it in this page */
707		ep = memchr(cp, '\0', cc);
708		if (ep != 0)
709			cc = ep - cp + 1;
710		/*
711		 * at this point, cc is the count of the chars that we are
712		 * going to retrieve this time. we may or may not have found
713		 * the end of it.  (ep points to the null if the end is known)
714		 */
715
716		/* will we exceed the malloc/realloced buffer? */
717		if (len + cc > kd->arglen) {
718			int off;
719			char **pp;
720			char *op = kd->argspc;
721
722			kd->arglen *= 2;
723			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
724							  kd->arglen);
725			if (kd->argspc == 0)
726				return (0);
727			/*
728			 * Adjust argv pointers in case realloc moved
729			 * the string space.
730			 */
731			off = kd->argspc - op;
732			for (pp = kd->argv; pp < argv; pp++)
733				*pp += off;
734			ap += off;
735			np += off;
736		}
737		/* np = where to put the next part of the string in kd->argspc*/
738		/* np is kinda redundant.. could use "kd->argspc + len" */
739		memcpy(np, cp, cc);
740		np += cc;	/* inc counters */
741		len += cc;
742
743		/*
744		 * if end of string found, set the *argv pointer to the
745		 * saved beginning of string, and advance. argv points to
746		 * somewhere in kd->argv..  This is initially relative
747		 * to the target process, but when we close it off, we set
748		 * it to point in our address space.
749		 */
750		if (ep != 0) {
751			*argv++ = ap;
752			ap = np;
753		} else {
754			/* update the address relative to the target process */
755			*argv += cc;
756		}
757
758		if (maxcnt > 0 && len >= maxcnt) {
759			/*
760			 * We're stopping prematurely.  Terminate the
761			 * current string.
762			 */
763			if (ep == 0) {
764				*np = '\0';
765				*argv++ = ap;
766			}
767			break;
768		}
769	}
770	/* Make sure argv is terminated. */
771	*argv = 0;
772	return (kd->argv);
773}
774
775static void
776ps_str_a(p, addr, n)
777	struct ps_strings *p;
778	u_long *addr;
779	int *n;
780{
781	*addr = (u_long)p->ps_argvstr;
782	*n = p->ps_nargvstr;
783}
784
785static void
786ps_str_e(p, addr, n)
787	struct ps_strings *p;
788	u_long *addr;
789	int *n;
790{
791	*addr = (u_long)p->ps_envstr;
792	*n = p->ps_nenvstr;
793}
794
795/*
796 * Determine if the proc indicated by p is still active.
797 * This test is not 100% foolproof in theory, but chances of
798 * being wrong are very low.
799 */
800static int
801proc_verify(curkp)
802	struct kinfo_proc *curkp;
803{
804	struct kinfo_proc newkp;
805	int mib[4];
806	size_t len;
807
808	mib[0] = CTL_KERN;
809	mib[1] = KERN_PROC;
810	mib[2] = KERN_PROC_PID;
811	mib[3] = curkp->ki_pid;
812	len = sizeof(newkp);
813	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
814		return (0);
815	return (curkp->ki_pid == newkp.ki_pid &&
816	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
817}
818
819static char **
820kvm_doargv(kd, kp, nchr, info)
821	kvm_t *kd;
822	struct kinfo_proc *kp;
823	int nchr;
824	void (*info)(struct ps_strings *, u_long *, int *);
825{
826	char **ap;
827	u_long addr;
828	int cnt;
829	static struct ps_strings arginfo;
830	static u_long ps_strings;
831	size_t len;
832
833	if (ps_strings == 0) {
834		len = sizeof(ps_strings);
835		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
836		    0) == -1)
837			ps_strings = PS_STRINGS;
838	}
839
840	/*
841	 * Pointers are stored at the top of the user stack.
842	 */
843	if (kp->ki_stat == SZOMB ||
844	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
845		      sizeof(arginfo)) != sizeof(arginfo))
846		return (0);
847
848	(*info)(&arginfo, &addr, &cnt);
849	if (cnt == 0)
850		return (0);
851	ap = kvm_argv(kd, kp, addr, cnt, nchr);
852	/*
853	 * For live kernels, make sure this process didn't go away.
854	 */
855	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
856		ap = 0;
857	return (ap);
858}
859
860/*
861 * Get the command args.  This code is now machine independent.
862 */
863char **
864kvm_getargv(kd, kp, nchr)
865	kvm_t *kd;
866	const struct kinfo_proc *kp;
867	int nchr;
868{
869	int oid[4];
870	int i;
871	size_t bufsz;
872	static unsigned long buflen;
873	static char *buf, *p;
874	static char **bufp;
875	static int argc;
876
877	if (!ISALIVE(kd)) {
878		_kvm_err(kd, kd->program,
879		    "cannot read user space from dead kernel");
880		return (0);
881	}
882
883	if (!buflen) {
884		bufsz = sizeof(buflen);
885		i = sysctlbyname("kern.ps_arg_cache_limit",
886		    &buflen, &bufsz, NULL, 0);
887		if (i == -1) {
888			buflen = 0;
889		} else {
890			buf = malloc(buflen);
891			if (buf == NULL)
892				buflen = 0;
893			argc = 32;
894			bufp = malloc(sizeof(char *) * argc);
895		}
896	}
897	if (buf != NULL) {
898		oid[0] = CTL_KERN;
899		oid[1] = KERN_PROC;
900		oid[2] = KERN_PROC_ARGS;
901		oid[3] = kp->ki_pid;
902		bufsz = buflen;
903		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
904		if (i == 0 && bufsz > 0) {
905			i = 0;
906			p = buf;
907			do {
908				bufp[i++] = p;
909				p += strlen(p) + 1;
910				if (i >= argc) {
911					argc += argc;
912					bufp = realloc(bufp,
913					    sizeof(char *) * argc);
914				}
915			} while (p < buf + bufsz);
916			bufp[i++] = 0;
917			return (bufp);
918		}
919	}
920	if (kp->ki_flag & P_SYSTEM)
921		return (NULL);
922	return (kvm_doargv(kd, kp, nchr, ps_str_a));
923}
924
925char **
926kvm_getenvv(kd, kp, nchr)
927	kvm_t *kd;
928	const struct kinfo_proc *kp;
929	int nchr;
930{
931	return (kvm_doargv(kd, kp, nchr, ps_str_e));
932}
933
934/*
935 * Read from user space.  The user context is given by p.
936 */
937ssize_t
938kvm_uread(kd, kp, uva, buf, len)
939	kvm_t *kd;
940	struct kinfo_proc *kp;
941	u_long uva;
942	char *buf;
943	size_t len;
944{
945	char *cp;
946	char procfile[MAXPATHLEN];
947	ssize_t amount;
948	int fd;
949
950	if (!ISALIVE(kd)) {
951		_kvm_err(kd, kd->program,
952		    "cannot read user space from dead kernel");
953		return (0);
954	}
955
956	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
957	fd = open(procfile, O_RDONLY, 0);
958	if (fd < 0) {
959		_kvm_err(kd, kd->program, "cannot open %s", procfile);
960		close(fd);
961		return (0);
962	}
963
964	cp = buf;
965	while (len > 0) {
966		errno = 0;
967		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
968			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
969			    uva, procfile);
970			break;
971		}
972		amount = read(fd, cp, len);
973		if (amount < 0) {
974			_kvm_syserr(kd, kd->program, "error reading %s",
975			    procfile);
976			break;
977		}
978		if (amount == 0) {
979			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
980			break;
981		}
982		cp += amount;
983		uva += amount;
984		len -= amount;
985	}
986
987	close(fd);
988	return ((ssize_t)(cp - buf));
989}
990