kvm_proc.c revision 130996
1157184Sache/*-
2157184Sache * Copyright (c) 1989, 1992, 1993
3157184Sache *	The Regents of the University of California.  All rights reserved.
4157184Sache *
5157184Sache * This code is derived from software developed by the Computer Systems
6157184Sache * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7157184Sache * BG 91-66 and contributed to Berkeley.
8157184Sache *
9157184Sache * Redistribution and use in source and binary forms, with or without
10157184Sache * modification, are permitted provided that the following conditions
11157184Sache * are met:
12157184Sache * 1. Redistributions of source code must retain the above copyright
13157184Sache *    notice, this list of conditions and the following disclaimer.
14157184Sache * 2. Redistributions in binary form must reproduce the above copyright
15157184Sache *    notice, this list of conditions and the following disclaimer in the
16157184Sache *    documentation and/or other materials provided with the distribution.
17157184Sache * 3. All advertising materials mentioning features or use of this software
18157184Sache *    must display the following acknowledgement:
19157184Sache *	This product includes software developed by the University of
20157184Sache *	California, Berkeley and its contributors.
21157184Sache * 4. Neither the name of the University nor the names of its contributors
22157184Sache *    may be used to endorse or promote products derived from this software
23157184Sache *    without specific prior written permission.
24157184Sache *
25157184Sache * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26157184Sache * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27157184Sache * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28157184Sache * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29157184Sache * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30157184Sache * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31157184Sache * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32157184Sache * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33157184Sache * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34157184Sache * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35157184Sache * SUCH DAMAGE.
36157184Sache */
37157184Sache
38157184Sache#if 0
39157184Sache#if defined(LIBC_SCCS) && !defined(lint)
40157184Sachestatic char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41157184Sache#endif /* LIBC_SCCS and not lint */
42157184Sache#endif
43157184Sache
44157184Sache#include <sys/cdefs.h>
45157184Sache__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 130996 2004-06-23 21:59:56Z gad $");
46157184Sache
47157184Sache/*
48157184Sache * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49157184Sache * users of this code, so we've factored it out into a separate module.
50157184Sache * Thus, we keep this grunge out of the other kvm applications (i.e.,
51157184Sache * most other applications are interested only in open/close/read/nlist).
52157184Sache */
53157184Sache
54157184Sache#include <sys/param.h>
55157184Sache#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56157184Sache#include <sys/ucred.h>
57157184Sache#include <sys/user.h>
58157184Sache#include <sys/proc.h>
59157184Sache#include <sys/exec.h>
60157184Sache#include <sys/stat.h>
61157184Sache#include <sys/sysent.h>
62157184Sache#include <sys/ioctl.h>
63157184Sache#include <sys/tty.h>
64157184Sache#include <sys/file.h>
65157184Sache#include <stdio.h>
66157184Sache#include <stdlib.h>
67157184Sache#include <unistd.h>
68157184Sache#include <nlist.h>
69157184Sache#include <kvm.h>
70157184Sache
71157184Sache#include <vm/vm.h>
72157184Sache#include <vm/vm_param.h>
73157184Sache
74157184Sache#include <sys/sysctl.h>
75157184Sache
76157184Sache#include <limits.h>
77157184Sache#include <memory.h>
78157184Sache#include <paths.h>
79157184Sache
80157184Sache#include "kvm_private.h"
81157184Sache
82157184Sache#define KREAD(kd, addr, obj) \
83157184Sache	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84157184Sache
85157184Sache/*
86157184Sache * Read proc's from memory file into buffer bp, which has space to hold
87157184Sache * at most maxcnt procs.
88157184Sache */
89157184Sachestatic int
90157184Sachekvm_proclist(kd, what, arg, p, bp, maxcnt)
91157184Sache	kvm_t *kd;
92157184Sache	int what, arg;
93157184Sache	struct proc *p;
94157184Sache	struct kinfo_proc *bp;
95157184Sache	int maxcnt;
96157184Sache{
97157184Sache	int cnt = 0;
98157184Sache	struct kinfo_proc kinfo_proc, *kp;
99157184Sache	struct pgrp pgrp;
100157184Sache	struct session sess;
101157184Sache	struct tty tty;
102157184Sache	struct vmspace vmspace;
103157184Sache	struct sigacts sigacts;
104157184Sache	struct pstats pstats;
105157184Sache	struct ucred ucred;
106157184Sache	struct thread mtd;
107157184Sache	struct kse mke;
108157184Sache	struct ksegrp mkg;
109157184Sache	struct proc proc;
110157184Sache	struct proc pproc;
111157184Sache	struct timeval tv;
112157184Sache	struct sysentvec sysent;
113157184Sache	char svname[KI_EMULNAMELEN];
114157184Sache
115157184Sache	kp = &kinfo_proc;
116157184Sache	kp->ki_structsize = sizeof(kinfo_proc);
117157184Sache	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
118157184Sache		memset(kp, 0, sizeof *kp);
119157184Sache		if (KREAD(kd, (u_long)p, &proc)) {
120157184Sache			_kvm_err(kd, kd->program, "can't read proc at %x", p);
121157184Sache			return (-1);
122157184Sache		}
123157184Sache		if (proc.p_state != PRS_ZOMBIE) {
124157184Sache			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
125157184Sache			    &mtd)) {
126157184Sache				_kvm_err(kd, kd->program,
127157184Sache				    "can't read thread at %x",
128157184Sache				    TAILQ_FIRST(&proc.p_threads));
129157184Sache				return (-1);
130157184Sache			}
131157184Sache			if ((proc.p_flag & P_SA) == 0) {
132157184Sache				if (KREAD(kd,
133157184Sache				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
134157184Sache				    &mkg)) {
135157184Sache					_kvm_err(kd, kd->program,
136157184Sache					    "can't read ksegrp at %x",
137157184Sache					    TAILQ_FIRST(&proc.p_ksegrps));
138157184Sache					return (-1);
139157184Sache				}
140157184Sache				if (KREAD(kd,
141157184Sache				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
142157184Sache					_kvm_err(kd, kd->program,
143157184Sache					    "can't read kse at %x",
144157184Sache					    TAILQ_FIRST(&mkg.kg_kseq));
145157184Sache					return (-1);
146157184Sache				}
147157184Sache			}
148157184Sache		}
149157184Sache		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
150157184Sache			kp->ki_ruid = ucred.cr_ruid;
151157184Sache			kp->ki_svuid = ucred.cr_svuid;
152157184Sache			kp->ki_rgid = ucred.cr_rgid;
153157184Sache			kp->ki_svgid = ucred.cr_svgid;
154157184Sache			kp->ki_ngroups = ucred.cr_ngroups;
155157184Sache			bcopy(ucred.cr_groups, kp->ki_groups,
156157184Sache			    NGROUPS * sizeof(gid_t));
157157184Sache			kp->ki_uid = ucred.cr_uid;
158157184Sache		}
159157184Sache
160157184Sache		switch(what & ~KERN_PROC_INC_THREAD) {
161157184Sache
162157184Sache		case KERN_PROC_GID:
163157184Sache			if (kp->ki_groups[0] != (gid_t)arg)
164157184Sache				continue;
165157184Sache			break;
166157184Sache
167157184Sache		case KERN_PROC_PID:
168157184Sache			if (proc.p_pid != (pid_t)arg)
169157184Sache				continue;
170157184Sache			break;
171157184Sache
172157184Sache		case KERN_PROC_RGID:
173157184Sache			if (kp->ki_rgid != (gid_t)arg)
174157184Sache				continue;
175157184Sache			break;
176157184Sache
177157184Sache		case KERN_PROC_UID:
178157184Sache			if (kp->ki_uid != (uid_t)arg)
179157184Sache				continue;
180157184Sache			break;
181157184Sache
182157184Sache		case KERN_PROC_RUID:
183157184Sache			if (kp->ki_ruid != (uid_t)arg)
184157184Sache				continue;
185157184Sache			break;
186157184Sache		}
187157184Sache		/*
188157184Sache		 * We're going to add another proc to the set.  If this
189157184Sache		 * will overflow the buffer, assume the reason is because
190157184Sache		 * nprocs (or the proc list) is corrupt and declare an error.
191157184Sache		 */
192157184Sache		if (cnt >= maxcnt) {
193157184Sache			_kvm_err(kd, kd->program, "nprocs corrupt");
194157184Sache			return (-1);
195157184Sache		}
196157184Sache		/*
197157184Sache		 * gather kinfo_proc
198157184Sache		 */
199157184Sache		kp->ki_paddr = p;
200157184Sache		kp->ki_addr = proc.p_uarea;
201157184Sache		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
202157184Sache		kp->ki_args = proc.p_args;
203157184Sache		kp->ki_tracep = proc.p_tracevp;
204157184Sache		kp->ki_textvp = proc.p_textvp;
205157184Sache		kp->ki_fd = proc.p_fd;
206157184Sache		kp->ki_vmspace = proc.p_vmspace;
207157184Sache		if (proc.p_sigacts != NULL) {
208157184Sache			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
209157184Sache				_kvm_err(kd, kd->program,
210157184Sache				    "can't read sigacts at %x", proc.p_sigacts);
211157184Sache				return (-1);
212157184Sache			}
213157184Sache			kp->ki_sigignore = sigacts.ps_sigignore;
214157184Sache			kp->ki_sigcatch = sigacts.ps_sigcatch;
215157184Sache		}
216157184Sache		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
217157184Sache			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
218157184Sache				_kvm_err(kd, kd->program,
219157184Sache				    "can't read stats at %x", proc.p_stats);
220157184Sache				return (-1);
221157184Sache			}
222157184Sache			kp->ki_start = pstats.p_start;
223157184Sache			kp->ki_rusage = pstats.p_ru;
224157184Sache			kp->ki_childstime = pstats.p_cru.ru_stime;
225157184Sache			kp->ki_childutime = pstats.p_cru.ru_utime;
226157184Sache			/* Some callers want child-times in a single value */
227157184Sache			timeradd(&kp->ki_childstime, &kp->ki_childutime,
228157184Sache			    &kp->ki_childtime);
229157184Sache		}
230157184Sache		if (proc.p_oppid)
231157184Sache			kp->ki_ppid = proc.p_oppid;
232157184Sache		else if (proc.p_pptr) {
233157184Sache			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
234157184Sache				_kvm_err(kd, kd->program,
235157184Sache				    "can't read pproc at %x", proc.p_pptr);
236157184Sache				return (-1);
237157184Sache			}
238157184Sache			kp->ki_ppid = pproc.p_pid;
239157184Sache		} else
240157184Sache			kp->ki_ppid = 0;
241157184Sache		if (proc.p_pgrp == NULL)
242157184Sache			goto nopgrp;
243157184Sache		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
244157184Sache			_kvm_err(kd, kd->program, "can't read pgrp at %x",
245157184Sache				 proc.p_pgrp);
246157184Sache			return (-1);
247157184Sache		}
248157184Sache		kp->ki_pgid = pgrp.pg_id;
249157184Sache		kp->ki_jobc = pgrp.pg_jobc;
250157184Sache		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
251157184Sache			_kvm_err(kd, kd->program, "can't read session at %x",
252157184Sache				pgrp.pg_session);
253157184Sache			return (-1);
254157184Sache		}
255157184Sache		kp->ki_sid = sess.s_sid;
256157184Sache		(void)memcpy(kp->ki_login, sess.s_login,
257157184Sache						sizeof(kp->ki_login));
258157184Sache		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
259157184Sache		if (sess.s_leader == p)
260157184Sache			kp->ki_kiflag |= KI_SLEADER;
261157184Sache		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
262157184Sache			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
263157184Sache				_kvm_err(kd, kd->program,
264157184Sache					 "can't read tty at %x", sess.s_ttyp);
265157184Sache				return (-1);
266157184Sache			}
267157184Sache			kp->ki_tdev = tty.t_dev;	/* XXX: wrong */
268157184Sache			if (tty.t_pgrp != NULL) {
269157184Sache				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
270157184Sache					_kvm_err(kd, kd->program,
271157184Sache						 "can't read tpgrp at %x",
272157184Sache						tty.t_pgrp);
273157184Sache					return (-1);
274157184Sache				}
275157184Sache				kp->ki_tpgid = pgrp.pg_id;
276157184Sache			} else
277157184Sache				kp->ki_tpgid = -1;
278157184Sache			if (tty.t_session != NULL) {
279157184Sache				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
280157184Sache					_kvm_err(kd, kd->program,
281157184Sache					    "can't read session at %x",
282157184Sache					    tty.t_session);
283157184Sache					return (-1);
284157184Sache				}
285157184Sache				kp->ki_tsid = sess.s_sid;
286157184Sache			}
287157184Sache		} else {
288157184Sachenopgrp:
289157184Sache			kp->ki_tdev = NODEV;
290157184Sache		}
291157184Sache		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
292157184Sache			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
293157184Sache			    kp->ki_wmesg, WMESGLEN);
294157184Sache
295157184Sache#ifdef sparc
296157184Sache		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
297157184Sache		    (char *)&kp->ki_rssize,
298157184Sache		    sizeof(kp->ki_rssize));
299157184Sache		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
300157184Sache		    (char *)&kp->ki_tsize,
301157184Sache		    3 * sizeof(kp->ki_rssize));	/* XXX */
302157184Sache#else
303157184Sache		(void)kvm_read(kd, (u_long)proc.p_vmspace,
304157184Sache		    (char *)&vmspace, sizeof(vmspace));
305157184Sache		kp->ki_size = vmspace.vm_map.size;
306157184Sache		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
307157184Sache		kp->ki_swrss = vmspace.vm_swrss;
308157184Sache		kp->ki_tsize = vmspace.vm_tsize;
309157184Sache		kp->ki_dsize = vmspace.vm_dsize;
310157184Sache		kp->ki_ssize = vmspace.vm_ssize;
311157184Sache#endif
312157184Sache
313157184Sache		switch (what & ~KERN_PROC_INC_THREAD) {
314157184Sache
315157184Sache		case KERN_PROC_PGRP:
316157184Sache			if (kp->ki_pgid != (pid_t)arg)
317157184Sache				continue;
318157184Sache			break;
319157184Sache
320157184Sache		case KERN_PROC_SESSION:
321157184Sache			if (kp->ki_sid != (pid_t)arg)
322157184Sache				continue;
323157184Sache			break;
324157184Sache
325157184Sache		case KERN_PROC_TTY:
326157184Sache			if ((proc.p_flag & P_CONTROLT) == 0 ||
327157184Sache			     kp->ki_tdev != (dev_t)arg)
328157184Sache				continue;
329157184Sache			break;
330157184Sache		}
331157184Sache		if (proc.p_comm[0] != 0)
332157184Sache			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
333157184Sache		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
334157184Sache		    sizeof(sysent));
335157184Sache		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
336157184Sache		    sizeof(svname));
337157184Sache		if (svname[0] != 0)
338157184Sache			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
339157184Sache		if ((proc.p_state != PRS_ZOMBIE) &&
340157184Sache		    (mtd.td_blocked != 0)) {
341157184Sache			kp->ki_kiflag |= KI_LOCKBLOCK;
342157184Sache			if (mtd.td_lockname)
343157184Sache				(void)kvm_read(kd,
344157184Sache				    (u_long)mtd.td_lockname,
345157184Sache				    kp->ki_lockname, LOCKNAMELEN);
346157184Sache			kp->ki_lockname[LOCKNAMELEN] = 0;
347157184Sache		}
348157184Sache		bintime2timeval(&proc.p_runtime, &tv);
349157184Sache		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
350157184Sache		kp->ki_pid = proc.p_pid;
351157184Sache		kp->ki_siglist = proc.p_siglist;
352157184Sache		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
353157184Sache		kp->ki_sigmask = mtd.td_sigmask;
354157184Sache		kp->ki_xstat = proc.p_xstat;
355157184Sache		kp->ki_acflag = proc.p_acflag;
356157184Sache		kp->ki_lock = proc.p_lock;
357157184Sache		if (proc.p_state != PRS_ZOMBIE) {
358157184Sache			kp->ki_swtime = proc.p_swtime;
359157184Sache			kp->ki_flag = proc.p_flag;
360157184Sache			kp->ki_sflag = proc.p_sflag;
361157184Sache			kp->ki_nice = proc.p_nice;
362157184Sache			kp->ki_traceflag = proc.p_traceflag;
363157184Sache			if (proc.p_state == PRS_NORMAL) {
364157184Sache				if (TD_ON_RUNQ(&mtd) ||
365157184Sache				    TD_CAN_RUN(&mtd) ||
366157184Sache				    TD_IS_RUNNING(&mtd)) {
367157184Sache					kp->ki_stat = SRUN;
368157184Sache				} else if (mtd.td_state ==
369157184Sache				    TDS_INHIBITED) {
370157184Sache					if (P_SHOULDSTOP(&proc)) {
371157184Sache						kp->ki_stat = SSTOP;
372157184Sache					} else if (
373157184Sache					    TD_IS_SLEEPING(&mtd)) {
374157184Sache						kp->ki_stat = SSLEEP;
375157184Sache					} else if (TD_ON_LOCK(&mtd)) {
376157184Sache						kp->ki_stat = SLOCK;
377157184Sache					} else {
378157184Sache						kp->ki_stat = SWAIT;
379157184Sache					}
380157184Sache				}
381157184Sache			} else {
382157184Sache				kp->ki_stat = SIDL;
383157184Sache			}
384157184Sache			/* Stuff from the thread */
385157184Sache			kp->ki_pri.pri_level = mtd.td_priority;
386157184Sache			kp->ki_pri.pri_native = mtd.td_base_pri;
387157184Sache			kp->ki_lastcpu = mtd.td_lastcpu;
388157184Sache			kp->ki_wchan = mtd.td_wchan;
389157184Sache			kp->ki_oncpu = mtd.td_oncpu;
390157184Sache
391157184Sache			if (!(proc.p_flag & P_SA)) {
392157184Sache				/* stuff from the ksegrp */
393157184Sache				kp->ki_slptime = mkg.kg_slptime;
394157184Sache				kp->ki_pri.pri_class = mkg.kg_pri_class;
395157184Sache				kp->ki_pri.pri_user = mkg.kg_user_pri;
396157184Sache				kp->ki_estcpu = mkg.kg_estcpu;
397157184Sache
398157184Sache				/* Stuff from the kse */
399157184Sache				kp->ki_pctcpu = mke.ke_pctcpu;
400157184Sache				kp->ki_rqindex = mke.ke_rqindex;
401157184Sache			} else {
402157184Sache				kp->ki_tdflags = -1;
403157184Sache				/* All the rest are 0 for now */
404157184Sache			}
405157184Sache		} else {
406157184Sache			kp->ki_stat = SZOMB;
407157184Sache		}
408157184Sache		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
409157184Sache		++bp;
410157184Sache		++cnt;
411157184Sache	}
412157184Sache	return (cnt);
413157184Sache}
414157184Sache
415157184Sache/*
416157184Sache * Build proc info array by reading in proc list from a crash dump.
417157184Sache * Return number of procs read.  maxcnt is the max we will read.
418157184Sache */
419157184Sachestatic int
420157184Sachekvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
421157184Sache	kvm_t *kd;
422157184Sache	int what, arg;
423157184Sache	u_long a_allproc;
424157184Sache	u_long a_zombproc;
425157184Sache	int maxcnt;
426157184Sache{
427157184Sache	struct kinfo_proc *bp = kd->procbase;
428157184Sache	int acnt, zcnt;
429157184Sache	struct proc *p;
430157184Sache
431157184Sache	if (KREAD(kd, a_allproc, &p)) {
432157184Sache		_kvm_err(kd, kd->program, "cannot read allproc");
433157184Sache		return (-1);
434157184Sache	}
435157184Sache	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
436157184Sache	if (acnt < 0)
437157184Sache		return (acnt);
438157184Sache
439157184Sache	if (KREAD(kd, a_zombproc, &p)) {
440157184Sache		_kvm_err(kd, kd->program, "cannot read zombproc");
441157184Sache		return (-1);
442157184Sache	}
443157184Sache	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
444157184Sache	if (zcnt < 0)
445157184Sache		zcnt = 0;
446157184Sache
447157184Sache	return (acnt + zcnt);
448157184Sache}
449157184Sache
450157184Sachestruct kinfo_proc *
451157184Sachekvm_getprocs(kd, op, arg, cnt)
452157184Sache	kvm_t *kd;
453157184Sache	int op, arg;
454157184Sache	int *cnt;
455157184Sache{
456157184Sache	int mib[4], st, nprocs;
457157184Sache	size_t size;
458157184Sache	int temp_op;
459157184Sache
460157184Sache	if (kd->procbase != 0) {
461157184Sache		free((void *)kd->procbase);
462157184Sache		/*
463157184Sache		 * Clear this pointer in case this call fails.  Otherwise,
464157184Sache		 * kvm_close() will free it again.
465157184Sache		 */
466157184Sache		kd->procbase = 0;
467157184Sache	}
468157184Sache	if (ISALIVE(kd)) {
469157184Sache		size = 0;
470157184Sache		mib[0] = CTL_KERN;
471157184Sache		mib[1] = KERN_PROC;
472157184Sache		mib[2] = op;
473157184Sache		mib[3] = arg;
474157184Sache		temp_op = op & ~KERN_PROC_INC_THREAD;
475157184Sache		st = sysctl(mib,
476157184Sache		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
477157184Sache		    3 : 4, NULL, &size, NULL, 0);
478157184Sache		if (st == -1) {
479157184Sache			_kvm_syserr(kd, kd->program, "kvm_getprocs");
480157184Sache			return (0);
481157184Sache		}
482157184Sache		/*
483157184Sache		 * We can't continue with a size of 0 because we pass
484157184Sache		 * it to realloc() (via _kvm_realloc()), and passing 0
485157184Sache		 * to realloc() results in undefined behavior.
486157184Sache		 */
487157184Sache		if (size == 0) {
488157184Sache			/*
489157184Sache			 * XXX: We should probably return an invalid,
490157184Sache			 * but non-NULL, pointer here so any client
491157184Sache			 * program trying to dereference it will
492157184Sache			 * crash.  However, _kvm_freeprocs() calls
493157184Sache			 * free() on kd->procbase if it isn't NULL,
494157184Sache			 * and free()'ing a junk pointer isn't good.
495157184Sache			 * Then again, _kvm_freeprocs() isn't used
496157184Sache			 * anywhere . . .
497157184Sache			 */
498157184Sache			kd->procbase = _kvm_malloc(kd, 1);
499157184Sache			goto liveout;
500157184Sache		}
501157184Sache		do {
502157184Sache			size += size / 10;
503157184Sache			kd->procbase = (struct kinfo_proc *)
504157184Sache			    _kvm_realloc(kd, kd->procbase, size);
505157184Sache			if (kd->procbase == 0)
506157184Sache				return (0);
507157184Sache			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
508157184Sache			    temp_op == KERN_PROC_PROC ? 3 : 4,
509157184Sache			    kd->procbase, &size, NULL, 0);
510157184Sache		} while (st == -1 && errno == ENOMEM);
511157184Sache		if (st == -1) {
512157184Sache			_kvm_syserr(kd, kd->program, "kvm_getprocs");
513157184Sache			return (0);
514157184Sache		}
515157184Sache		/*
516157184Sache		 * We have to check the size again because sysctl()
517157184Sache		 * may "round up" oldlenp if oldp is NULL; hence it
518157184Sache		 * might've told us that there was data to get when
519157184Sache		 * there really isn't any.
520157184Sache		 */
521157184Sache		if (size > 0 &&
522157184Sache		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
523157184Sache			_kvm_err(kd, kd->program,
524157184Sache			    "kinfo_proc size mismatch (expected %d, got %d)",
525157184Sache			    sizeof(struct kinfo_proc),
526157184Sache			    kd->procbase->ki_structsize);
527157184Sache			return (0);
528157184Sache		}
529157184Sacheliveout:
530157184Sache		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
531	} else {
532		struct nlist nl[4], *p;
533
534		nl[0].n_name = "_nprocs";
535		nl[1].n_name = "_allproc";
536		nl[2].n_name = "_zombproc";
537		nl[3].n_name = 0;
538
539		if (kvm_nlist(kd, nl) != 0) {
540			for (p = nl; p->n_type != 0; ++p)
541				;
542			_kvm_err(kd, kd->program,
543				 "%s: no such symbol", p->n_name);
544			return (0);
545		}
546		if (KREAD(kd, nl[0].n_value, &nprocs)) {
547			_kvm_err(kd, kd->program, "can't read nprocs");
548			return (0);
549		}
550		size = nprocs * sizeof(struct kinfo_proc);
551		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
552		if (kd->procbase == 0)
553			return (0);
554
555		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
556				      nl[2].n_value, nprocs);
557#ifdef notdef
558		size = nprocs * sizeof(struct kinfo_proc);
559		(void)realloc(kd->procbase, size);
560#endif
561	}
562	*cnt = nprocs;
563	return (kd->procbase);
564}
565
566void
567_kvm_freeprocs(kd)
568	kvm_t *kd;
569{
570	if (kd->procbase) {
571		free(kd->procbase);
572		kd->procbase = 0;
573	}
574}
575
576void *
577_kvm_realloc(kd, p, n)
578	kvm_t *kd;
579	void *p;
580	size_t n;
581{
582	void *np = (void *)realloc(p, n);
583
584	if (np == 0) {
585		free(p);
586		_kvm_err(kd, kd->program, "out of memory");
587	}
588	return (np);
589}
590
591#ifndef MAX
592#define MAX(a, b) ((a) > (b) ? (a) : (b))
593#endif
594
595/*
596 * Read in an argument vector from the user address space of process kp.
597 * addr if the user-space base address of narg null-terminated contiguous
598 * strings.  This is used to read in both the command arguments and
599 * environment strings.  Read at most maxcnt characters of strings.
600 */
601static char **
602kvm_argv(kd, kp, addr, narg, maxcnt)
603	kvm_t *kd;
604	struct kinfo_proc *kp;
605	u_long addr;
606	int narg;
607	int maxcnt;
608{
609	char *np, *cp, *ep, *ap;
610	u_long oaddr = -1;
611	int len, cc;
612	char **argv;
613
614	/*
615	 * Check that there aren't an unreasonable number of agruments,
616	 * and that the address is in user space.
617	 */
618	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
619		return (0);
620
621	/*
622	 * kd->argv : work space for fetching the strings from the target
623	 *            process's space, and is converted for returning to caller
624	 */
625	if (kd->argv == 0) {
626		/*
627		 * Try to avoid reallocs.
628		 */
629		kd->argc = MAX(narg + 1, 32);
630		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
631						sizeof(*kd->argv));
632		if (kd->argv == 0)
633			return (0);
634	} else if (narg + 1 > kd->argc) {
635		kd->argc = MAX(2 * kd->argc, narg + 1);
636		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
637						sizeof(*kd->argv));
638		if (kd->argv == 0)
639			return (0);
640	}
641	/*
642	 * kd->argspc : returned to user, this is where the kd->argv
643	 *              arrays are left pointing to the collected strings.
644	 */
645	if (kd->argspc == 0) {
646		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
647		if (kd->argspc == 0)
648			return (0);
649		kd->arglen = PAGE_SIZE;
650	}
651	/*
652	 * kd->argbuf : used to pull in pages from the target process.
653	 *              the strings are copied out of here.
654	 */
655	if (kd->argbuf == 0) {
656		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
657		if (kd->argbuf == 0)
658			return (0);
659	}
660
661	/* Pull in the target process'es argv vector */
662	cc = sizeof(char *) * narg;
663	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
664		return (0);
665	/*
666	 * ap : saved start address of string we're working on in kd->argspc
667	 * np : pointer to next place to write in kd->argspc
668	 * len: length of data in kd->argspc
669	 * argv: pointer to the argv vector that we are hunting around the
670	 *       target process space for, and converting to addresses in
671	 *       our address space (kd->argspc).
672	 */
673	ap = np = kd->argspc;
674	argv = kd->argv;
675	len = 0;
676	/*
677	 * Loop over pages, filling in the argument vector.
678	 * Note that the argv strings could be pointing *anywhere* in
679	 * the user address space and are no longer contiguous.
680	 * Note that *argv is modified when we are going to fetch a string
681	 * that crosses a page boundary.  We copy the next part of the string
682	 * into to "np" and eventually convert the pointer.
683	 */
684	while (argv < kd->argv + narg && *argv != 0) {
685
686		/* get the address that the current argv string is on */
687		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
688
689		/* is it the same page as the last one? */
690		if (addr != oaddr) {
691			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
692			    PAGE_SIZE)
693				return (0);
694			oaddr = addr;
695		}
696
697		/* offset within the page... kd->argbuf */
698		addr = (u_long)*argv & (PAGE_SIZE - 1);
699
700		/* cp = start of string, cc = count of chars in this chunk */
701		cp = kd->argbuf + addr;
702		cc = PAGE_SIZE - addr;
703
704		/* dont get more than asked for by user process */
705		if (maxcnt > 0 && cc > maxcnt - len)
706			cc = maxcnt - len;
707
708		/* pointer to end of string if we found it in this page */
709		ep = memchr(cp, '\0', cc);
710		if (ep != 0)
711			cc = ep - cp + 1;
712		/*
713		 * at this point, cc is the count of the chars that we are
714		 * going to retrieve this time. we may or may not have found
715		 * the end of it.  (ep points to the null if the end is known)
716		 */
717
718		/* will we exceed the malloc/realloced buffer? */
719		if (len + cc > kd->arglen) {
720			int off;
721			char **pp;
722			char *op = kd->argspc;
723
724			kd->arglen *= 2;
725			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
726							  kd->arglen);
727			if (kd->argspc == 0)
728				return (0);
729			/*
730			 * Adjust argv pointers in case realloc moved
731			 * the string space.
732			 */
733			off = kd->argspc - op;
734			for (pp = kd->argv; pp < argv; pp++)
735				*pp += off;
736			ap += off;
737			np += off;
738		}
739		/* np = where to put the next part of the string in kd->argspc*/
740		/* np is kinda redundant.. could use "kd->argspc + len" */
741		memcpy(np, cp, cc);
742		np += cc;	/* inc counters */
743		len += cc;
744
745		/*
746		 * if end of string found, set the *argv pointer to the
747		 * saved beginning of string, and advance. argv points to
748		 * somewhere in kd->argv..  This is initially relative
749		 * to the target process, but when we close it off, we set
750		 * it to point in our address space.
751		 */
752		if (ep != 0) {
753			*argv++ = ap;
754			ap = np;
755		} else {
756			/* update the address relative to the target process */
757			*argv += cc;
758		}
759
760		if (maxcnt > 0 && len >= maxcnt) {
761			/*
762			 * We're stopping prematurely.  Terminate the
763			 * current string.
764			 */
765			if (ep == 0) {
766				*np = '\0';
767				*argv++ = ap;
768			}
769			break;
770		}
771	}
772	/* Make sure argv is terminated. */
773	*argv = 0;
774	return (kd->argv);
775}
776
777static void
778ps_str_a(p, addr, n)
779	struct ps_strings *p;
780	u_long *addr;
781	int *n;
782{
783	*addr = (u_long)p->ps_argvstr;
784	*n = p->ps_nargvstr;
785}
786
787static void
788ps_str_e(p, addr, n)
789	struct ps_strings *p;
790	u_long *addr;
791	int *n;
792{
793	*addr = (u_long)p->ps_envstr;
794	*n = p->ps_nenvstr;
795}
796
797/*
798 * Determine if the proc indicated by p is still active.
799 * This test is not 100% foolproof in theory, but chances of
800 * being wrong are very low.
801 */
802static int
803proc_verify(curkp)
804	struct kinfo_proc *curkp;
805{
806	struct kinfo_proc newkp;
807	int mib[4];
808	size_t len;
809
810	mib[0] = CTL_KERN;
811	mib[1] = KERN_PROC;
812	mib[2] = KERN_PROC_PID;
813	mib[3] = curkp->ki_pid;
814	len = sizeof(newkp);
815	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
816		return (0);
817	return (curkp->ki_pid == newkp.ki_pid &&
818	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
819}
820
821static char **
822kvm_doargv(kd, kp, nchr, info)
823	kvm_t *kd;
824	struct kinfo_proc *kp;
825	int nchr;
826	void (*info)(struct ps_strings *, u_long *, int *);
827{
828	char **ap;
829	u_long addr;
830	int cnt;
831	static struct ps_strings arginfo;
832	static u_long ps_strings;
833	size_t len;
834
835	if (ps_strings == 0) {
836		len = sizeof(ps_strings);
837		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
838		    0) == -1)
839			ps_strings = PS_STRINGS;
840	}
841
842	/*
843	 * Pointers are stored at the top of the user stack.
844	 */
845	if (kp->ki_stat == SZOMB ||
846	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
847		      sizeof(arginfo)) != sizeof(arginfo))
848		return (0);
849
850	(*info)(&arginfo, &addr, &cnt);
851	if (cnt == 0)
852		return (0);
853	ap = kvm_argv(kd, kp, addr, cnt, nchr);
854	/*
855	 * For live kernels, make sure this process didn't go away.
856	 */
857	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
858		ap = 0;
859	return (ap);
860}
861
862/*
863 * Get the command args.  This code is now machine independent.
864 */
865char **
866kvm_getargv(kd, kp, nchr)
867	kvm_t *kd;
868	const struct kinfo_proc *kp;
869	int nchr;
870{
871	int oid[4];
872	int i;
873	size_t bufsz;
874	static unsigned long buflen;
875	static char *buf, *p;
876	static char **bufp;
877	static int argc;
878
879	if (!ISALIVE(kd)) {
880		_kvm_err(kd, kd->program,
881		    "cannot read user space from dead kernel");
882		return (0);
883	}
884
885	if (!buflen) {
886		bufsz = sizeof(buflen);
887		i = sysctlbyname("kern.ps_arg_cache_limit",
888		    &buflen, &bufsz, NULL, 0);
889		if (i == -1) {
890			buflen = 0;
891		} else {
892			buf = malloc(buflen);
893			if (buf == NULL)
894				buflen = 0;
895			argc = 32;
896			bufp = malloc(sizeof(char *) * argc);
897		}
898	}
899	if (buf != NULL) {
900		oid[0] = CTL_KERN;
901		oid[1] = KERN_PROC;
902		oid[2] = KERN_PROC_ARGS;
903		oid[3] = kp->ki_pid;
904		bufsz = buflen;
905		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
906		if (i == 0 && bufsz > 0) {
907			i = 0;
908			p = buf;
909			do {
910				bufp[i++] = p;
911				p += strlen(p) + 1;
912				if (i >= argc) {
913					argc += argc;
914					bufp = realloc(bufp,
915					    sizeof(char *) * argc);
916				}
917			} while (p < buf + bufsz);
918			bufp[i++] = 0;
919			return (bufp);
920		}
921	}
922	if (kp->ki_flag & P_SYSTEM)
923		return (NULL);
924	return (kvm_doargv(kd, kp, nchr, ps_str_a));
925}
926
927char **
928kvm_getenvv(kd, kp, nchr)
929	kvm_t *kd;
930	const struct kinfo_proc *kp;
931	int nchr;
932{
933	return (kvm_doargv(kd, kp, nchr, ps_str_e));
934}
935
936/*
937 * Read from user space.  The user context is given by p.
938 */
939ssize_t
940kvm_uread(kd, kp, uva, buf, len)
941	kvm_t *kd;
942	struct kinfo_proc *kp;
943	u_long uva;
944	char *buf;
945	size_t len;
946{
947	char *cp;
948	char procfile[MAXPATHLEN];
949	ssize_t amount;
950	int fd;
951
952	if (!ISALIVE(kd)) {
953		_kvm_err(kd, kd->program,
954		    "cannot read user space from dead kernel");
955		return (0);
956	}
957
958	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
959	fd = open(procfile, O_RDONLY, 0);
960	if (fd < 0) {
961		_kvm_err(kd, kd->program, "cannot open %s", procfile);
962		close(fd);
963		return (0);
964	}
965
966	cp = buf;
967	while (len > 0) {
968		errno = 0;
969		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
970			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
971			    uva, procfile);
972			break;
973		}
974		amount = read(fd, cp, len);
975		if (amount < 0) {
976			_kvm_syserr(kd, kd->program, "error reading %s",
977			    procfile);
978			break;
979		}
980		if (amount == 0) {
981			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
982			break;
983		}
984		cp += amount;
985		uva += amount;
986		len -= amount;
987	}
988
989	close(fd);
990	return ((ssize_t)(cp - buf));
991}
992