kvm_proc.c revision 118284
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 118284 2003-07-31 21:44:31Z phk $");
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/file.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <unistd.h>
67#include <nlist.h>
68#include <kvm.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72
73#include <sys/sysctl.h>
74
75#include <limits.h>
76#include <memory.h>
77#include <paths.h>
78
79#include "kvm_private.h"
80
81#define KREAD(kd, addr, obj) \
82	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83
84/*
85 * Read proc's from memory file into buffer bp, which has space to hold
86 * at most maxcnt procs.
87 */
88static int
89kvm_proclist(kd, what, arg, p, bp, maxcnt)
90	kvm_t *kd;
91	int what, arg;
92	struct proc *p;
93	struct kinfo_proc *bp;
94	int maxcnt;
95{
96	int cnt = 0;
97	struct kinfo_proc kinfo_proc, *kp;
98	struct pgrp pgrp;
99	struct session sess;
100	struct tty tty;
101	struct vmspace vmspace;
102	struct sigacts sigacts;
103	struct pstats pstats;
104	struct ucred ucred;
105	struct thread mtd;
106	struct kse mke;
107	struct ksegrp mkg;
108	struct proc proc;
109	struct proc pproc;
110	struct timeval tv;
111
112	kp = &kinfo_proc;
113	kp->ki_structsize = sizeof(kinfo_proc);
114	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
115		memset(kp, 0, sizeof *kp);
116		if (KREAD(kd, (u_long)p, &proc)) {
117			_kvm_err(kd, kd->program, "can't read proc at %x", p);
118			return (-1);
119		}
120		if (proc.p_state != PRS_ZOMBIE) {
121			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
122			    &mtd)) {
123				_kvm_err(kd, kd->program,
124				    "can't read thread at %x",
125				    TAILQ_FIRST(&proc.p_threads));
126				return (-1);
127			}
128			if (proc.p_flag & P_SA == 0) {
129				if (KREAD(kd,
130				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
131				    &mkg)) {
132					_kvm_err(kd, kd->program,
133					    "can't read ksegrp at %x",
134					    TAILQ_FIRST(&proc.p_ksegrps));
135					return (-1);
136				}
137				if (KREAD(kd,
138				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
139					_kvm_err(kd, kd->program,
140					    "can't read kse at %x",
141					    TAILQ_FIRST(&mkg.kg_kseq));
142					return (-1);
143				}
144			}
145		}
146		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
147			kp->ki_ruid = ucred.cr_ruid;
148			kp->ki_svuid = ucred.cr_svuid;
149			kp->ki_rgid = ucred.cr_rgid;
150			kp->ki_svgid = ucred.cr_svgid;
151			kp->ki_ngroups = ucred.cr_ngroups;
152			bcopy(ucred.cr_groups, kp->ki_groups,
153			    NGROUPS * sizeof(gid_t));
154			kp->ki_uid = ucred.cr_uid;
155		}
156
157		switch(what) {
158
159		case KERN_PROC_PID:
160			if (proc.p_pid != (pid_t)arg)
161				continue;
162			break;
163
164		case KERN_PROC_UID:
165			if (kp->ki_uid != (uid_t)arg)
166				continue;
167			break;
168
169		case KERN_PROC_RUID:
170			if (kp->ki_ruid != (uid_t)arg)
171				continue;
172			break;
173		}
174		/*
175		 * We're going to add another proc to the set.  If this
176		 * will overflow the buffer, assume the reason is because
177		 * nprocs (or the proc list) is corrupt and declare an error.
178		 */
179		if (cnt >= maxcnt) {
180			_kvm_err(kd, kd->program, "nprocs corrupt");
181			return (-1);
182		}
183		/*
184		 * gather kinfo_proc
185		 */
186		kp->ki_paddr = p;
187		kp->ki_addr = proc.p_uarea;
188		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
189		kp->ki_args = proc.p_args;
190		kp->ki_tracep = proc.p_tracevp;
191		kp->ki_textvp = proc.p_textvp;
192		kp->ki_fd = proc.p_fd;
193		kp->ki_vmspace = proc.p_vmspace;
194		if (proc.p_sigacts != NULL) {
195			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
196				_kvm_err(kd, kd->program,
197				    "can't read sigacts at %x", proc.p_sigacts);
198				return (-1);
199			}
200			kp->ki_sigignore = sigacts.ps_sigignore;
201			kp->ki_sigcatch = sigacts.ps_sigcatch;
202		}
203		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
204			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
205				_kvm_err(kd, kd->program,
206				    "can't read stats at %x", proc.p_stats);
207				return (-1);
208			}
209			kp->ki_start = pstats.p_start;
210			kp->ki_rusage = pstats.p_ru;
211			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
212			    pstats.p_cru.ru_stime.tv_sec;
213			kp->ki_childtime.tv_usec =
214			    pstats.p_cru.ru_utime.tv_usec +
215			    pstats.p_cru.ru_stime.tv_usec;
216		}
217		if (proc.p_oppid)
218			kp->ki_ppid = proc.p_oppid;
219		else if (proc.p_pptr) {
220			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
221				_kvm_err(kd, kd->program,
222				    "can't read pproc at %x", proc.p_pptr);
223				return (-1);
224			}
225			kp->ki_ppid = pproc.p_pid;
226		} else
227			kp->ki_ppid = 0;
228		if (proc.p_pgrp == NULL)
229			goto nopgrp;
230		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
231			_kvm_err(kd, kd->program, "can't read pgrp at %x",
232				 proc.p_pgrp);
233			return (-1);
234		}
235		kp->ki_pgid = pgrp.pg_id;
236		kp->ki_jobc = pgrp.pg_jobc;
237		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
238			_kvm_err(kd, kd->program, "can't read session at %x",
239				pgrp.pg_session);
240			return (-1);
241		}
242		kp->ki_sid = sess.s_sid;
243		(void)memcpy(kp->ki_login, sess.s_login,
244						sizeof(kp->ki_login));
245		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
246		if (sess.s_leader == p)
247			kp->ki_kiflag |= KI_SLEADER;
248		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
249			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
250				_kvm_err(kd, kd->program,
251					 "can't read tty at %x", sess.s_ttyp);
252				return (-1);
253			}
254			kp->ki_tdev = tty.t_dev;
255			if (tty.t_pgrp != NULL) {
256				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
257					_kvm_err(kd, kd->program,
258						 "can't read tpgrp at %x",
259						tty.t_pgrp);
260					return (-1);
261				}
262				kp->ki_tpgid = pgrp.pg_id;
263			} else
264				kp->ki_tpgid = -1;
265			if (tty.t_session != NULL) {
266				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
267					_kvm_err(kd, kd->program,
268					    "can't read session at %x",
269					    tty.t_session);
270					return (-1);
271				}
272				kp->ki_tsid = sess.s_sid;
273			}
274		} else {
275nopgrp:
276			kp->ki_tdev = NODEV;
277		}
278		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
279			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
280			    kp->ki_wmesg, WMESGLEN);
281
282#ifdef sparc
283		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
284		    (char *)&kp->ki_rssize,
285		    sizeof(kp->ki_rssize));
286		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
287		    (char *)&kp->ki_tsize,
288		    3 * sizeof(kp->ki_rssize));	/* XXX */
289#else
290		(void)kvm_read(kd, (u_long)proc.p_vmspace,
291		    (char *)&vmspace, sizeof(vmspace));
292		kp->ki_size = vmspace.vm_map.size;
293		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
294		kp->ki_swrss = vmspace.vm_swrss;
295		kp->ki_tsize = vmspace.vm_tsize;
296		kp->ki_dsize = vmspace.vm_dsize;
297		kp->ki_ssize = vmspace.vm_ssize;
298#endif
299
300		switch (what) {
301
302		case KERN_PROC_PGRP:
303			if (kp->ki_pgid != (pid_t)arg)
304				continue;
305			break;
306
307		case KERN_PROC_TTY:
308			if ((proc.p_flag & P_CONTROLT) == 0 ||
309			     kp->ki_tdev != (dev_t)arg)
310				continue;
311			break;
312		}
313		if (proc.p_comm[0] != 0) {
314			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
315			kp->ki_comm[MAXCOMLEN] = 0;
316		}
317		if ((proc.p_state != PRS_ZOMBIE) &&
318		    (mtd.td_blocked != 0)) {
319			kp->ki_kiflag |= KI_LOCKBLOCK;
320			if (mtd.td_lockname)
321				(void)kvm_read(kd,
322				    (u_long)mtd.td_lockname,
323				    kp->ki_lockname, LOCKNAMELEN);
324			kp->ki_lockname[LOCKNAMELEN] = 0;
325		}
326		bintime2timeval(&proc.p_runtime, &tv);
327		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
328		kp->ki_pid = proc.p_pid;
329		kp->ki_siglist = proc.p_siglist;
330		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
331		kp->ki_sigmask = mtd.td_sigmask;
332		kp->ki_xstat = proc.p_xstat;
333		kp->ki_acflag = proc.p_acflag;
334		kp->ki_lock = proc.p_lock;
335		if (proc.p_state != PRS_ZOMBIE) {
336			kp->ki_swtime = proc.p_swtime;
337			kp->ki_flag = proc.p_flag;
338			kp->ki_sflag = proc.p_sflag;
339			kp->ki_traceflag = proc.p_traceflag;
340			if (proc.p_state == PRS_NORMAL) {
341				if (TD_ON_RUNQ(&mtd) ||
342				    TD_CAN_RUN(&mtd) ||
343				    TD_IS_RUNNING(&mtd)) {
344					kp->ki_stat = SRUN;
345				} else if (mtd.td_state ==
346				    TDS_INHIBITED) {
347					if (P_SHOULDSTOP(&proc)) {
348						kp->ki_stat = SSTOP;
349					} else if (
350					    TD_IS_SLEEPING(&mtd)) {
351						kp->ki_stat = SSLEEP;
352					} else if (TD_ON_LOCK(&mtd)) {
353						kp->ki_stat = SLOCK;
354					} else {
355						kp->ki_stat = SWAIT;
356					}
357				}
358			} else {
359				kp->ki_stat = SIDL;
360			}
361			/* Stuff from the thread */
362			kp->ki_pri.pri_level = mtd.td_priority;
363			kp->ki_pri.pri_native = mtd.td_base_pri;
364			kp->ki_lastcpu = mtd.td_lastcpu;
365			kp->ki_wchan = mtd.td_wchan;
366			kp->ki_oncpu = mtd.td_oncpu;
367
368			if (!(proc.p_flag & P_SA)) {
369				/* stuff from the ksegrp */
370				kp->ki_slptime = mkg.kg_slptime;
371				kp->ki_pri.pri_class = mkg.kg_pri_class;
372				kp->ki_pri.pri_user = mkg.kg_user_pri;
373				kp->ki_nice = mkg.kg_nice;
374				kp->ki_estcpu = mkg.kg_estcpu;
375
376				/* Stuff from the kse */
377				kp->ki_pctcpu = mke.ke_pctcpu;
378				kp->ki_rqindex = mke.ke_rqindex;
379			} else {
380				kp->ki_tdflags = -1;
381				/* All the rest are 0 for now */
382			}
383		} else {
384			kp->ki_stat = SZOMB;
385		}
386		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
387		++bp;
388		++cnt;
389	}
390	return (cnt);
391}
392
393/*
394 * Build proc info array by reading in proc list from a crash dump.
395 * Return number of procs read.  maxcnt is the max we will read.
396 */
397static int
398kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
399	kvm_t *kd;
400	int what, arg;
401	u_long a_allproc;
402	u_long a_zombproc;
403	int maxcnt;
404{
405	struct kinfo_proc *bp = kd->procbase;
406	int acnt, zcnt;
407	struct proc *p;
408
409	if (KREAD(kd, a_allproc, &p)) {
410		_kvm_err(kd, kd->program, "cannot read allproc");
411		return (-1);
412	}
413	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
414	if (acnt < 0)
415		return (acnt);
416
417	if (KREAD(kd, a_zombproc, &p)) {
418		_kvm_err(kd, kd->program, "cannot read zombproc");
419		return (-1);
420	}
421	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
422	if (zcnt < 0)
423		zcnt = 0;
424
425	return (acnt + zcnt);
426}
427
428struct kinfo_proc *
429kvm_getprocs(kd, op, arg, cnt)
430	kvm_t *kd;
431	int op, arg;
432	int *cnt;
433{
434	int mib[4], st, nprocs;
435	size_t size;
436
437	if (kd->procbase != 0) {
438		free((void *)kd->procbase);
439		/*
440		 * Clear this pointer in case this call fails.  Otherwise,
441		 * kvm_close() will free it again.
442		 */
443		kd->procbase = 0;
444	}
445	if (ISALIVE(kd)) {
446		size = 0;
447		mib[0] = CTL_KERN;
448		mib[1] = KERN_PROC;
449		mib[2] = op;
450		mib[3] = arg;
451		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
452		if (st == -1) {
453			_kvm_syserr(kd, kd->program, "kvm_getprocs");
454			return (0);
455		}
456		/*
457		 * We can't continue with a size of 0 because we pass
458		 * it to realloc() (via _kvm_realloc()), and passing 0
459		 * to realloc() results in undefined behavior.
460		 */
461		if (size == 0) {
462			/*
463			 * XXX: We should probably return an invalid,
464			 * but non-NULL, pointer here so any client
465			 * program trying to dereference it will
466			 * crash.  However, _kvm_freeprocs() calls
467			 * free() on kd->procbase if it isn't NULL,
468			 * and free()'ing a junk pointer isn't good.
469			 * Then again, _kvm_freeprocs() isn't used
470			 * anywhere . . .
471			 */
472			kd->procbase = _kvm_malloc(kd, 1);
473			goto liveout;
474		}
475		do {
476			size += size / 10;
477			kd->procbase = (struct kinfo_proc *)
478			    _kvm_realloc(kd, kd->procbase, size);
479			if (kd->procbase == 0)
480				return (0);
481			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
482			    kd->procbase, &size, NULL, 0);
483		} while (st == -1 && errno == ENOMEM);
484		if (st == -1) {
485			_kvm_syserr(kd, kd->program, "kvm_getprocs");
486			return (0);
487		}
488		/*
489		 * We have to check the size again because sysctl()
490		 * may "round up" oldlenp if oldp is NULL; hence it
491		 * might've told us that there was data to get when
492		 * there really isn't any.
493		 */
494		if (size > 0 &&
495		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
496			_kvm_err(kd, kd->program,
497			    "kinfo_proc size mismatch (expected %d, got %d)",
498			    sizeof(struct kinfo_proc),
499			    kd->procbase->ki_structsize);
500			return (0);
501		}
502liveout:
503		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
504	} else {
505		struct nlist nl[4], *p;
506
507		nl[0].n_name = "_nprocs";
508		nl[1].n_name = "_allproc";
509		nl[2].n_name = "_zombproc";
510		nl[3].n_name = 0;
511
512		if (kvm_nlist(kd, nl) != 0) {
513			for (p = nl; p->n_type != 0; ++p)
514				;
515			_kvm_err(kd, kd->program,
516				 "%s: no such symbol", p->n_name);
517			return (0);
518		}
519		if (KREAD(kd, nl[0].n_value, &nprocs)) {
520			_kvm_err(kd, kd->program, "can't read nprocs");
521			return (0);
522		}
523		size = nprocs * sizeof(struct kinfo_proc);
524		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
525		if (kd->procbase == 0)
526			return (0);
527
528		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
529				      nl[2].n_value, nprocs);
530#ifdef notdef
531		size = nprocs * sizeof(struct kinfo_proc);
532		(void)realloc(kd->procbase, size);
533#endif
534	}
535	*cnt = nprocs;
536	return (kd->procbase);
537}
538
539void
540_kvm_freeprocs(kd)
541	kvm_t *kd;
542{
543	if (kd->procbase) {
544		free(kd->procbase);
545		kd->procbase = 0;
546	}
547}
548
549void *
550_kvm_realloc(kd, p, n)
551	kvm_t *kd;
552	void *p;
553	size_t n;
554{
555	void *np = (void *)realloc(p, n);
556
557	if (np == 0) {
558		free(p);
559		_kvm_err(kd, kd->program, "out of memory");
560	}
561	return (np);
562}
563
564#ifndef MAX
565#define MAX(a, b) ((a) > (b) ? (a) : (b))
566#endif
567
568/*
569 * Read in an argument vector from the user address space of process kp.
570 * addr if the user-space base address of narg null-terminated contiguous
571 * strings.  This is used to read in both the command arguments and
572 * environment strings.  Read at most maxcnt characters of strings.
573 */
574static char **
575kvm_argv(kd, kp, addr, narg, maxcnt)
576	kvm_t *kd;
577	struct kinfo_proc *kp;
578	u_long addr;
579	int narg;
580	int maxcnt;
581{
582	char *np, *cp, *ep, *ap;
583	u_long oaddr = -1;
584	int len, cc;
585	char **argv;
586
587	/*
588	 * Check that there aren't an unreasonable number of agruments,
589	 * and that the address is in user space.
590	 */
591	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
592		return (0);
593
594	/*
595	 * kd->argv : work space for fetching the strings from the target
596	 *            process's space, and is converted for returning to caller
597	 */
598	if (kd->argv == 0) {
599		/*
600		 * Try to avoid reallocs.
601		 */
602		kd->argc = MAX(narg + 1, 32);
603		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
604						sizeof(*kd->argv));
605		if (kd->argv == 0)
606			return (0);
607	} else if (narg + 1 > kd->argc) {
608		kd->argc = MAX(2 * kd->argc, narg + 1);
609		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
610						sizeof(*kd->argv));
611		if (kd->argv == 0)
612			return (0);
613	}
614	/*
615	 * kd->argspc : returned to user, this is where the kd->argv
616	 *              arrays are left pointing to the collected strings.
617	 */
618	if (kd->argspc == 0) {
619		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
620		if (kd->argspc == 0)
621			return (0);
622		kd->arglen = PAGE_SIZE;
623	}
624	/*
625	 * kd->argbuf : used to pull in pages from the target process.
626	 *              the strings are copied out of here.
627	 */
628	if (kd->argbuf == 0) {
629		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
630		if (kd->argbuf == 0)
631			return (0);
632	}
633
634	/* Pull in the target process'es argv vector */
635	cc = sizeof(char *) * narg;
636	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
637		return (0);
638	/*
639	 * ap : saved start address of string we're working on in kd->argspc
640	 * np : pointer to next place to write in kd->argspc
641	 * len: length of data in kd->argspc
642	 * argv: pointer to the argv vector that we are hunting around the
643	 *       target process space for, and converting to addresses in
644	 *       our address space (kd->argspc).
645	 */
646	ap = np = kd->argspc;
647	argv = kd->argv;
648	len = 0;
649	/*
650	 * Loop over pages, filling in the argument vector.
651	 * Note that the argv strings could be pointing *anywhere* in
652	 * the user address space and are no longer contiguous.
653	 * Note that *argv is modified when we are going to fetch a string
654	 * that crosses a page boundary.  We copy the next part of the string
655	 * into to "np" and eventually convert the pointer.
656	 */
657	while (argv < kd->argv + narg && *argv != 0) {
658
659		/* get the address that the current argv string is on */
660		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
661
662		/* is it the same page as the last one? */
663		if (addr != oaddr) {
664			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
665			    PAGE_SIZE)
666				return (0);
667			oaddr = addr;
668		}
669
670		/* offset within the page... kd->argbuf */
671		addr = (u_long)*argv & (PAGE_SIZE - 1);
672
673		/* cp = start of string, cc = count of chars in this chunk */
674		cp = kd->argbuf + addr;
675		cc = PAGE_SIZE - addr;
676
677		/* dont get more than asked for by user process */
678		if (maxcnt > 0 && cc > maxcnt - len)
679			cc = maxcnt - len;
680
681		/* pointer to end of string if we found it in this page */
682		ep = memchr(cp, '\0', cc);
683		if (ep != 0)
684			cc = ep - cp + 1;
685		/*
686		 * at this point, cc is the count of the chars that we are
687		 * going to retrieve this time. we may or may not have found
688		 * the end of it.  (ep points to the null if the end is known)
689		 */
690
691		/* will we exceed the malloc/realloced buffer? */
692		if (len + cc > kd->arglen) {
693			int off;
694			char **pp;
695			char *op = kd->argspc;
696
697			kd->arglen *= 2;
698			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
699							  kd->arglen);
700			if (kd->argspc == 0)
701				return (0);
702			/*
703			 * Adjust argv pointers in case realloc moved
704			 * the string space.
705			 */
706			off = kd->argspc - op;
707			for (pp = kd->argv; pp < argv; pp++)
708				*pp += off;
709			ap += off;
710			np += off;
711		}
712		/* np = where to put the next part of the string in kd->argspc*/
713		/* np is kinda redundant.. could use "kd->argspc + len" */
714		memcpy(np, cp, cc);
715		np += cc;	/* inc counters */
716		len += cc;
717
718		/*
719		 * if end of string found, set the *argv pointer to the
720		 * saved beginning of string, and advance. argv points to
721		 * somewhere in kd->argv..  This is initially relative
722		 * to the target process, but when we close it off, we set
723		 * it to point in our address space.
724		 */
725		if (ep != 0) {
726			*argv++ = ap;
727			ap = np;
728		} else {
729			/* update the address relative to the target process */
730			*argv += cc;
731		}
732
733		if (maxcnt > 0 && len >= maxcnt) {
734			/*
735			 * We're stopping prematurely.  Terminate the
736			 * current string.
737			 */
738			if (ep == 0) {
739				*np = '\0';
740				*argv++ = ap;
741			}
742			break;
743		}
744	}
745	/* Make sure argv is terminated. */
746	*argv = 0;
747	return (kd->argv);
748}
749
750static void
751ps_str_a(p, addr, n)
752	struct ps_strings *p;
753	u_long *addr;
754	int *n;
755{
756	*addr = (u_long)p->ps_argvstr;
757	*n = p->ps_nargvstr;
758}
759
760static void
761ps_str_e(p, addr, n)
762	struct ps_strings *p;
763	u_long *addr;
764	int *n;
765{
766	*addr = (u_long)p->ps_envstr;
767	*n = p->ps_nenvstr;
768}
769
770/*
771 * Determine if the proc indicated by p is still active.
772 * This test is not 100% foolproof in theory, but chances of
773 * being wrong are very low.
774 */
775static int
776proc_verify(curkp)
777	struct kinfo_proc *curkp;
778{
779	struct kinfo_proc newkp;
780	int mib[4];
781	size_t len;
782
783	mib[0] = CTL_KERN;
784	mib[1] = KERN_PROC;
785	mib[2] = KERN_PROC_PID;
786	mib[3] = curkp->ki_pid;
787	len = sizeof(newkp);
788	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
789		return (0);
790	return (curkp->ki_pid == newkp.ki_pid &&
791	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
792}
793
794static char **
795kvm_doargv(kd, kp, nchr, info)
796	kvm_t *kd;
797	struct kinfo_proc *kp;
798	int nchr;
799	void (*info)(struct ps_strings *, u_long *, int *);
800{
801	char **ap;
802	u_long addr;
803	int cnt;
804	static struct ps_strings arginfo;
805	static u_long ps_strings;
806	size_t len;
807
808	if (ps_strings == NULL) {
809		len = sizeof(ps_strings);
810		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
811		    0) == -1)
812			ps_strings = PS_STRINGS;
813	}
814
815	/*
816	 * Pointers are stored at the top of the user stack.
817	 */
818	if (kp->ki_stat == SZOMB ||
819	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
820		      sizeof(arginfo)) != sizeof(arginfo))
821		return (0);
822
823	(*info)(&arginfo, &addr, &cnt);
824	if (cnt == 0)
825		return (0);
826	ap = kvm_argv(kd, kp, addr, cnt, nchr);
827	/*
828	 * For live kernels, make sure this process didn't go away.
829	 */
830	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
831		ap = 0;
832	return (ap);
833}
834
835/*
836 * Get the command args.  This code is now machine independent.
837 */
838char **
839kvm_getargv(kd, kp, nchr)
840	kvm_t *kd;
841	const struct kinfo_proc *kp;
842	int nchr;
843{
844	int oid[4];
845	int i;
846	size_t bufsz;
847	static unsigned long buflen;
848	static char *buf, *p;
849	static char **bufp;
850	static int argc;
851
852	if (!ISALIVE(kd)) {
853		_kvm_err(kd, kd->program,
854		    "cannot read user space from dead kernel");
855		return (0);
856	}
857
858	if (!buflen) {
859		bufsz = sizeof(buflen);
860		i = sysctlbyname("kern.ps_arg_cache_limit",
861		    &buflen, &bufsz, NULL, 0);
862		if (i == -1) {
863			buflen = 0;
864		} else {
865			buf = malloc(buflen);
866			if (buf == NULL)
867				buflen = 0;
868			argc = 32;
869			bufp = malloc(sizeof(char *) * argc);
870		}
871	}
872	if (buf != NULL) {
873		oid[0] = CTL_KERN;
874		oid[1] = KERN_PROC;
875		oid[2] = KERN_PROC_ARGS;
876		oid[3] = kp->ki_pid;
877		bufsz = buflen;
878		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
879		if (i == 0 && bufsz > 0) {
880			i = 0;
881			p = buf;
882			do {
883				bufp[i++] = p;
884				p += strlen(p) + 1;
885				if (i >= argc) {
886					argc += argc;
887					bufp = realloc(bufp,
888					    sizeof(char *) * argc);
889				}
890			} while (p < buf + bufsz);
891			bufp[i++] = 0;
892			return (bufp);
893		}
894	}
895	if (kp->ki_flag & P_SYSTEM)
896		return (NULL);
897	return (kvm_doargv(kd, kp, nchr, ps_str_a));
898}
899
900char **
901kvm_getenvv(kd, kp, nchr)
902	kvm_t *kd;
903	const struct kinfo_proc *kp;
904	int nchr;
905{
906	return (kvm_doargv(kd, kp, nchr, ps_str_e));
907}
908
909/*
910 * Read from user space.  The user context is given by p.
911 */
912ssize_t
913kvm_uread(kd, kp, uva, buf, len)
914	kvm_t *kd;
915	struct kinfo_proc *kp;
916	u_long uva;
917	char *buf;
918	size_t len;
919{
920	char *cp;
921	char procfile[MAXPATHLEN];
922	ssize_t amount;
923	int fd;
924
925	if (!ISALIVE(kd)) {
926		_kvm_err(kd, kd->program,
927		    "cannot read user space from dead kernel");
928		return (0);
929	}
930
931	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
932	fd = open(procfile, O_RDONLY, 0);
933	if (fd < 0) {
934		_kvm_err(kd, kd->program, "cannot open %s", procfile);
935		close(fd);
936		return (0);
937	}
938
939	cp = buf;
940	while (len > 0) {
941		errno = 0;
942		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
943			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
944			    uva, procfile);
945			break;
946		}
947		amount = read(fd, cp, len);
948		if (amount < 0) {
949			_kvm_syserr(kd, kd->program, "error reading %s",
950			    procfile);
951			break;
952		}
953		if (amount == 0) {
954			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
955			break;
956		}
957		cp += amount;
958		uva += amount;
959		len -= amount;
960	}
961
962	close(fd);
963	return ((ssize_t)(cp - buf));
964}
965