kvm_proc.c revision 103385
1104834Sobrien/*-
2104834Sobrien * Copyright (c) 1989, 1992, 1993
3104834Sobrien *	The Regents of the University of California.  All rights reserved.
4104834Sobrien *
5104834Sobrien * This code is derived from software developed by the Computer Systems
6104834Sobrien * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7104834Sobrien * BG 91-66 and contributed to Berkeley.
8104834Sobrien *
9104834Sobrien * Redistribution and use in source and binary forms, with or without
10104834Sobrien * modification, are permitted provided that the following conditions
11104834Sobrien * are met:
12104834Sobrien * 1. Redistributions of source code must retain the above copyright
13104834Sobrien *    notice, this list of conditions and the following disclaimer.
14104834Sobrien * 2. Redistributions in binary form must reproduce the above copyright
15104834Sobrien *    notice, this list of conditions and the following disclaimer in the
16104834Sobrien *    documentation and/or other materials provided with the distribution.
17104834Sobrien * 3. All advertising materials mentioning features or use of this software
18104834Sobrien *    must display the following acknowledgement:
19104834Sobrien *	This product includes software developed by the University of
20104834Sobrien *	California, Berkeley and its contributors.
21104834Sobrien * 4. Neither the name of the University nor the names of its contributors
22104834Sobrien *    may be used to endorse or promote products derived from this software
23104834Sobrien *    without specific prior written permission.
24104834Sobrien *
25104834Sobrien * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26104834Sobrien * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 103385 2002-09-16 08:22:57Z bde $");
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/file.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <unistd.h>
67#include <nlist.h>
68#include <kvm.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <vm/swap_pager.h>
73
74#include <sys/sysctl.h>
75
76#include <limits.h>
77#include <memory.h>
78#include <paths.h>
79
80#include "kvm_private.h"
81
82#define KREAD(kd, addr, obj) \
83	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84
85/*
86 * Read proc's from memory file into buffer bp, which has space to hold
87 * at most maxcnt procs.
88 */
89static int
90kvm_proclist(kd, what, arg, p, bp, maxcnt)
91	kvm_t *kd;
92	int what, arg;
93	struct proc *p;
94	struct kinfo_proc *bp;
95	int maxcnt;
96{
97	int cnt = 0;
98	struct kinfo_proc kinfo_proc, *kp;
99	struct pgrp pgrp;
100	struct session sess;
101	struct tty tty;
102	struct vmspace vmspace;
103	struct procsig procsig;
104	struct pstats pstats;
105	struct ucred ucred;
106	struct thread mtd;
107	struct kse mke;
108	struct ksegrp mkg;
109	struct proc proc;
110	struct proc pproc;
111	struct timeval tv;
112
113	kp = &kinfo_proc;
114	kp->ki_structsize = sizeof(kinfo_proc);
115	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
116		memset(kp, 0, sizeof *kp);
117		if (KREAD(kd, (u_long)p, &proc)) {
118			_kvm_err(kd, kd->program, "can't read proc at %x", p);
119			return (-1);
120		}
121		if (proc.p_state != PRS_ZOMBIE) {
122			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
123			    &mtd)) {
124				_kvm_err(kd, kd->program,
125				    "can't read thread at %x",
126				    TAILQ_FIRST(&proc.p_threads));
127				return (-1);
128			}
129			if (proc.p_flag & P_KSES == 0) {
130				if (KREAD(kd,
131				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
132				    &mkg)) {
133					_kvm_err(kd, kd->program,
134					    "can't read ksegrp at %x",
135					    TAILQ_FIRST(&proc.p_ksegrps));
136					return (-1);
137				}
138				if (KREAD(kd,
139				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
140					_kvm_err(kd, kd->program,
141					    "can't read kse at %x",
142					    TAILQ_FIRST(&mkg.kg_kseq));
143					return (-1);
144				}
145			}
146		}
147		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
148			kp->ki_ruid = ucred.cr_ruid;
149			kp->ki_svuid = ucred.cr_svuid;
150			kp->ki_rgid = ucred.cr_rgid;
151			kp->ki_svgid = ucred.cr_svgid;
152			kp->ki_ngroups = ucred.cr_ngroups;
153			bcopy(ucred.cr_groups, kp->ki_groups,
154			    NGROUPS * sizeof(gid_t));
155			kp->ki_uid = ucred.cr_uid;
156		}
157
158		switch(what) {
159
160		case KERN_PROC_PID:
161			if (proc.p_pid != (pid_t)arg)
162				continue;
163			break;
164
165		case KERN_PROC_UID:
166			if (kp->ki_uid != (uid_t)arg)
167				continue;
168			break;
169
170		case KERN_PROC_RUID:
171			if (kp->ki_ruid != (uid_t)arg)
172				continue;
173			break;
174		}
175		/*
176		 * We're going to add another proc to the set.  If this
177		 * will overflow the buffer, assume the reason is because
178		 * nprocs (or the proc list) is corrupt and declare an error.
179		 */
180		if (cnt >= maxcnt) {
181			_kvm_err(kd, kd->program, "nprocs corrupt");
182			return (-1);
183		}
184		/*
185		 * gather kinfo_proc
186		 */
187		kp->ki_paddr = p;
188		kp->ki_addr = proc.p_uarea;
189		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
190		kp->ki_args = proc.p_args;
191		kp->ki_tracep = proc.p_tracep;
192		kp->ki_textvp = proc.p_textvp;
193		kp->ki_fd = proc.p_fd;
194		kp->ki_vmspace = proc.p_vmspace;
195		if (proc.p_procsig != NULL) {
196			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
197				_kvm_err(kd, kd->program,
198				    "can't read procsig at %x", proc.p_procsig);
199				return (-1);
200			}
201			kp->ki_sigignore = procsig.ps_sigignore;
202			kp->ki_sigcatch = procsig.ps_sigcatch;
203		}
204		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
205			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
206				_kvm_err(kd, kd->program,
207				    "can't read stats at %x", proc.p_stats);
208				return (-1);
209			}
210			kp->ki_start = pstats.p_start;
211			kp->ki_rusage = pstats.p_ru;
212			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
213			    pstats.p_cru.ru_stime.tv_sec;
214			kp->ki_childtime.tv_usec =
215			    pstats.p_cru.ru_utime.tv_usec +
216			    pstats.p_cru.ru_stime.tv_usec;
217		}
218		if (proc.p_oppid)
219			kp->ki_ppid = proc.p_oppid;
220		else if (proc.p_pptr) {
221			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
222				_kvm_err(kd, kd->program,
223				    "can't read pproc at %x", proc.p_pptr);
224				return (-1);
225			}
226			kp->ki_ppid = pproc.p_pid;
227		} else
228			kp->ki_ppid = 0;
229		if (proc.p_pgrp == NULL)
230			goto nopgrp;
231		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
232			_kvm_err(kd, kd->program, "can't read pgrp at %x",
233				 proc.p_pgrp);
234			return (-1);
235		}
236		kp->ki_pgid = pgrp.pg_id;
237		kp->ki_jobc = pgrp.pg_jobc;
238		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
239			_kvm_err(kd, kd->program, "can't read session at %x",
240				pgrp.pg_session);
241			return (-1);
242		}
243		kp->ki_sid = sess.s_sid;
244		(void)memcpy(kp->ki_login, sess.s_login,
245						sizeof(kp->ki_login));
246		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
247		if (sess.s_leader == p)
248			kp->ki_kiflag |= KI_SLEADER;
249		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
250			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
251				_kvm_err(kd, kd->program,
252					 "can't read tty at %x", sess.s_ttyp);
253				return (-1);
254			}
255			kp->ki_tdev = tty.t_dev;
256			if (tty.t_pgrp != NULL) {
257				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
258					_kvm_err(kd, kd->program,
259						 "can't read tpgrp at %x",
260						tty.t_pgrp);
261					return (-1);
262				}
263				kp->ki_tpgid = pgrp.pg_id;
264			} else
265				kp->ki_tpgid = -1;
266			if (tty.t_session != NULL) {
267				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
268					_kvm_err(kd, kd->program,
269					    "can't read session at %x",
270					    tty.t_session);
271					return (-1);
272				}
273				kp->ki_tsid = sess.s_sid;
274			}
275		} else {
276nopgrp:
277			kp->ki_tdev = NODEV;
278		}
279		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
280			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
281			    kp->ki_wmesg, WMESGLEN);
282
283#ifdef sparc
284		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
285		    (char *)&kp->ki_rssize,
286		    sizeof(kp->ki_rssize));
287		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
288		    (char *)&kp->ki_tsize,
289		    3 * sizeof(kp->ki_rssize));	/* XXX */
290#else
291		(void)kvm_read(kd, (u_long)proc.p_vmspace,
292		    (char *)&vmspace, sizeof(vmspace));
293		kp->ki_size = vmspace.vm_map.size;
294		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
295		kp->ki_swrss = vmspace.vm_swrss;
296		kp->ki_tsize = vmspace.vm_tsize;
297		kp->ki_dsize = vmspace.vm_dsize;
298		kp->ki_ssize = vmspace.vm_ssize;
299#endif
300
301		switch (what) {
302
303		case KERN_PROC_PGRP:
304			if (kp->ki_pgid != (pid_t)arg)
305				continue;
306			break;
307
308		case KERN_PROC_TTY:
309			if ((proc.p_flag & P_CONTROLT) == 0 ||
310			     kp->ki_tdev != (dev_t)arg)
311				continue;
312			break;
313		}
314		if (proc.p_comm[0] != 0) {
315			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
316			kp->ki_comm[MAXCOMLEN] = 0;
317		}
318		if ((proc.p_state != PRS_ZOMBIE) &&
319		    (mtd.td_blocked != 0)) {
320			kp->ki_kiflag |= KI_MTXBLOCK;
321			if (mtd.td_mtxname)
322				(void)kvm_read(kd,
323				    (u_long)mtd.td_mtxname,
324				    kp->ki_mtxname, MTXNAMELEN);
325			kp->ki_mtxname[MTXNAMELEN] = 0;
326		}
327		bintime2timeval(&proc.p_runtime, &tv);
328		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
329		kp->ki_pid = proc.p_pid;
330		kp->ki_siglist = proc.p_siglist;
331		kp->ki_sigmask = proc.p_sigmask;
332		kp->ki_xstat = proc.p_xstat;
333		kp->ki_acflag = proc.p_acflag;
334		kp->ki_lock = proc.p_lock;
335		if (proc.p_state != PRS_ZOMBIE) {
336			kp->ki_swtime = proc.p_swtime;
337			kp->ki_flag = proc.p_flag;
338			kp->ki_sflag = proc.p_sflag;
339			kp->ki_traceflag = proc.p_traceflag;
340			if (proc.p_state == PRS_NORMAL) {
341				if (TD_ON_RUNQ(&mtd) ||
342				    TD_CAN_RUN(&mtd) ||
343				    TD_IS_RUNNING(&mtd)) {
344					kp->ki_stat = SRUN;
345				} else if (mtd.td_state ==
346				    TDS_INHIBITED) {
347					if (P_SHOULDSTOP(&proc)) {
348						kp->ki_stat = SSTOP;
349					} else if (
350					    TD_IS_SLEEPING(&mtd)) {
351						kp->ki_stat = SSLEEP;
352					} else if (TD_ON_MUTEX(&mtd)) {
353						kp->ki_stat = SMTX;
354					} else {
355						kp->ki_stat = SWAIT;
356					}
357				}
358			} else {
359				kp->ki_stat = SIDL;
360			}
361			/* Stuff from the thread */
362			kp->ki_pri.pri_level = mtd.td_priority;
363			kp->ki_pri.pri_native = mtd.td_base_pri;
364			kp->ki_lastcpu = mtd.td_lastcpu;
365			kp->ki_wchan = mtd.td_wchan;
366
367			if (!(proc.p_flag & P_KSES)) {
368				/* stuff from the ksegrp */
369				kp->ki_slptime = mkg.kg_slptime;
370				kp->ki_pri.pri_class = mkg.kg_pri_class;
371				kp->ki_pri.pri_user = mkg.kg_user_pri;
372				kp->ki_nice = mkg.kg_nice;
373				kp->ki_estcpu = mkg.kg_estcpu;
374
375				/* Stuff from the kse */
376				kp->ki_pctcpu = mke.ke_pctcpu;
377				kp->ki_rqindex = mke.ke_rqindex;
378				kp->ki_oncpu = mke.ke_oncpu;
379			} else {
380				kp->ki_oncpu = -1;
381				kp->ki_lastcpu = -1;
382				kp->ki_tdflags = -1;
383				/* All the rest are 0 for now */
384			}
385		} else {
386			kp->ki_stat = SZOMB;
387		}
388		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
389		++bp;
390		++cnt;
391	}
392	return (cnt);
393}
394
395/*
396 * Build proc info array by reading in proc list from a crash dump.
397 * Return number of procs read.  maxcnt is the max we will read.
398 */
399static int
400kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
401	kvm_t *kd;
402	int what, arg;
403	u_long a_allproc;
404	u_long a_zombproc;
405	int maxcnt;
406{
407	struct kinfo_proc *bp = kd->procbase;
408	int acnt, zcnt;
409	struct proc *p;
410
411	if (KREAD(kd, a_allproc, &p)) {
412		_kvm_err(kd, kd->program, "cannot read allproc");
413		return (-1);
414	}
415	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
416	if (acnt < 0)
417		return (acnt);
418
419	if (KREAD(kd, a_zombproc, &p)) {
420		_kvm_err(kd, kd->program, "cannot read zombproc");
421		return (-1);
422	}
423	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
424	if (zcnt < 0)
425		zcnt = 0;
426
427	return (acnt + zcnt);
428}
429
430struct kinfo_proc *
431kvm_getprocs(kd, op, arg, cnt)
432	kvm_t *kd;
433	int op, arg;
434	int *cnt;
435{
436	int mib[4], st, nprocs;
437	size_t size;
438
439	if (kd->procbase != 0) {
440		free((void *)kd->procbase);
441		/*
442		 * Clear this pointer in case this call fails.  Otherwise,
443		 * kvm_close() will free it again.
444		 */
445		kd->procbase = 0;
446	}
447	if (ISALIVE(kd)) {
448		size = 0;
449		mib[0] = CTL_KERN;
450		mib[1] = KERN_PROC;
451		mib[2] = op;
452		mib[3] = arg;
453		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
454		if (st == -1) {
455			_kvm_syserr(kd, kd->program, "kvm_getprocs");
456			return (0);
457		}
458		/*
459		 * We can't continue with a size of 0 because we pass
460		 * it to realloc() (via _kvm_realloc()), and passing 0
461		 * to realloc() results in undefined behavior.
462		 */
463		if (size == 0) {
464			/*
465			 * XXX: We should probably return an invalid,
466			 * but non-NULL, pointer here so any client
467			 * program trying to dereference it will
468			 * crash.  However, _kvm_freeprocs() calls
469			 * free() on kd->procbase if it isn't NULL,
470			 * and free()'ing a junk pointer isn't good.
471			 * Then again, _kvm_freeprocs() isn't used
472			 * anywhere . . .
473			 */
474			kd->procbase = _kvm_malloc(kd, 1);
475			goto liveout;
476		}
477		do {
478			size += size / 10;
479			kd->procbase = (struct kinfo_proc *)
480			    _kvm_realloc(kd, kd->procbase, size);
481			if (kd->procbase == 0)
482				return (0);
483			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
484			    kd->procbase, &size, NULL, 0);
485		} while (st == -1 && errno == ENOMEM);
486		if (st == -1) {
487			_kvm_syserr(kd, kd->program, "kvm_getprocs");
488			return (0);
489		}
490		/*
491		 * We have to check the size again because sysctl()
492		 * may "round up" oldlenp if oldp is NULL; hence it
493		 * might've told us that there was data to get when
494		 * there really isn't any.
495		 */
496		if (size > 0 &&
497		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
498			_kvm_err(kd, kd->program,
499			    "kinfo_proc size mismatch (expected %d, got %d)",
500			    sizeof(struct kinfo_proc),
501			    kd->procbase->ki_structsize);
502			return (0);
503		}
504liveout:
505		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
506	} else {
507		struct nlist nl[4], *p;
508
509		nl[0].n_name = "_nprocs";
510		nl[1].n_name = "_allproc";
511		nl[2].n_name = "_zombproc";
512		nl[3].n_name = 0;
513
514		if (kvm_nlist(kd, nl) != 0) {
515			for (p = nl; p->n_type != 0; ++p)
516				;
517			_kvm_err(kd, kd->program,
518				 "%s: no such symbol", p->n_name);
519			return (0);
520		}
521		if (KREAD(kd, nl[0].n_value, &nprocs)) {
522			_kvm_err(kd, kd->program, "can't read nprocs");
523			return (0);
524		}
525		size = nprocs * sizeof(struct kinfo_proc);
526		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
527		if (kd->procbase == 0)
528			return (0);
529
530		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
531				      nl[2].n_value, nprocs);
532#ifdef notdef
533		size = nprocs * sizeof(struct kinfo_proc);
534		(void)realloc(kd->procbase, size);
535#endif
536	}
537	*cnt = nprocs;
538	return (kd->procbase);
539}
540
541void
542_kvm_freeprocs(kd)
543	kvm_t *kd;
544{
545	if (kd->procbase) {
546		free(kd->procbase);
547		kd->procbase = 0;
548	}
549}
550
551void *
552_kvm_realloc(kd, p, n)
553	kvm_t *kd;
554	void *p;
555	size_t n;
556{
557	void *np = (void *)realloc(p, n);
558
559	if (np == 0) {
560		free(p);
561		_kvm_err(kd, kd->program, "out of memory");
562	}
563	return (np);
564}
565
566#ifndef MAX
567#define MAX(a, b) ((a) > (b) ? (a) : (b))
568#endif
569
570/*
571 * Read in an argument vector from the user address space of process kp.
572 * addr if the user-space base address of narg null-terminated contiguous
573 * strings.  This is used to read in both the command arguments and
574 * environment strings.  Read at most maxcnt characters of strings.
575 */
576static char **
577kvm_argv(kd, kp, addr, narg, maxcnt)
578	kvm_t *kd;
579	struct kinfo_proc *kp;
580	u_long addr;
581	int narg;
582	int maxcnt;
583{
584	char *np, *cp, *ep, *ap;
585	u_long oaddr = -1;
586	int len, cc;
587	char **argv;
588
589	/*
590	 * Check that there aren't an unreasonable number of agruments,
591	 * and that the address is in user space.
592	 */
593	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
594		return (0);
595
596	/*
597	 * kd->argv : work space for fetching the strings from the target
598	 *            process's space, and is converted for returning to caller
599	 */
600	if (kd->argv == 0) {
601		/*
602		 * Try to avoid reallocs.
603		 */
604		kd->argc = MAX(narg + 1, 32);
605		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
606						sizeof(*kd->argv));
607		if (kd->argv == 0)
608			return (0);
609	} else if (narg + 1 > kd->argc) {
610		kd->argc = MAX(2 * kd->argc, narg + 1);
611		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
612						sizeof(*kd->argv));
613		if (kd->argv == 0)
614			return (0);
615	}
616	/*
617	 * kd->argspc : returned to user, this is where the kd->argv
618	 *              arrays are left pointing to the collected strings.
619	 */
620	if (kd->argspc == 0) {
621		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
622		if (kd->argspc == 0)
623			return (0);
624		kd->arglen = PAGE_SIZE;
625	}
626	/*
627	 * kd->argbuf : used to pull in pages from the target process.
628	 *              the strings are copied out of here.
629	 */
630	if (kd->argbuf == 0) {
631		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
632		if (kd->argbuf == 0)
633			return (0);
634	}
635
636	/* Pull in the target process'es argv vector */
637	cc = sizeof(char *) * narg;
638	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
639		return (0);
640	/*
641	 * ap : saved start address of string we're working on in kd->argspc
642	 * np : pointer to next place to write in kd->argspc
643	 * len: length of data in kd->argspc
644	 * argv: pointer to the argv vector that we are hunting around the
645	 *       target process space for, and converting to addresses in
646	 *       our address space (kd->argspc).
647	 */
648	ap = np = kd->argspc;
649	argv = kd->argv;
650	len = 0;
651	/*
652	 * Loop over pages, filling in the argument vector.
653	 * Note that the argv strings could be pointing *anywhere* in
654	 * the user address space and are no longer contiguous.
655	 * Note that *argv is modified when we are going to fetch a string
656	 * that crosses a page boundary.  We copy the next part of the string
657	 * into to "np" and eventually convert the pointer.
658	 */
659	while (argv < kd->argv + narg && *argv != 0) {
660
661		/* get the address that the current argv string is on */
662		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
663
664		/* is it the same page as the last one? */
665		if (addr != oaddr) {
666			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
667			    PAGE_SIZE)
668				return (0);
669			oaddr = addr;
670		}
671
672		/* offset within the page... kd->argbuf */
673		addr = (u_long)*argv & (PAGE_SIZE - 1);
674
675		/* cp = start of string, cc = count of chars in this chunk */
676		cp = kd->argbuf + addr;
677		cc = PAGE_SIZE - addr;
678
679		/* dont get more than asked for by user process */
680		if (maxcnt > 0 && cc > maxcnt - len)
681			cc = maxcnt - len;
682
683		/* pointer to end of string if we found it in this page */
684		ep = memchr(cp, '\0', cc);
685		if (ep != 0)
686			cc = ep - cp + 1;
687		/*
688		 * at this point, cc is the count of the chars that we are
689		 * going to retrieve this time. we may or may not have found
690		 * the end of it.  (ep points to the null if the end is known)
691		 */
692
693		/* will we exceed the malloc/realloced buffer? */
694		if (len + cc > kd->arglen) {
695			int off;
696			char **pp;
697			char *op = kd->argspc;
698
699			kd->arglen *= 2;
700			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
701							  kd->arglen);
702			if (kd->argspc == 0)
703				return (0);
704			/*
705			 * Adjust argv pointers in case realloc moved
706			 * the string space.
707			 */
708			off = kd->argspc - op;
709			for (pp = kd->argv; pp < argv; pp++)
710				*pp += off;
711			ap += off;
712			np += off;
713		}
714		/* np = where to put the next part of the string in kd->argspc*/
715		/* np is kinda redundant.. could use "kd->argspc + len" */
716		memcpy(np, cp, cc);
717		np += cc;	/* inc counters */
718		len += cc;
719
720		/*
721		 * if end of string found, set the *argv pointer to the
722		 * saved beginning of string, and advance. argv points to
723		 * somewhere in kd->argv..  This is initially relative
724		 * to the target process, but when we close it off, we set
725		 * it to point in our address space.
726		 */
727		if (ep != 0) {
728			*argv++ = ap;
729			ap = np;
730		} else {
731			/* update the address relative to the target process */
732			*argv += cc;
733		}
734
735		if (maxcnt > 0 && len >= maxcnt) {
736			/*
737			 * We're stopping prematurely.  Terminate the
738			 * current string.
739			 */
740			if (ep == 0) {
741				*np = '\0';
742				*argv++ = ap;
743			}
744			break;
745		}
746	}
747	/* Make sure argv is terminated. */
748	*argv = 0;
749	return (kd->argv);
750}
751
752static void
753ps_str_a(p, addr, n)
754	struct ps_strings *p;
755	u_long *addr;
756	int *n;
757{
758	*addr = (u_long)p->ps_argvstr;
759	*n = p->ps_nargvstr;
760}
761
762static void
763ps_str_e(p, addr, n)
764	struct ps_strings *p;
765	u_long *addr;
766	int *n;
767{
768	*addr = (u_long)p->ps_envstr;
769	*n = p->ps_nenvstr;
770}
771
772/*
773 * Determine if the proc indicated by p is still active.
774 * This test is not 100% foolproof in theory, but chances of
775 * being wrong are very low.
776 */
777static int
778proc_verify(curkp)
779	struct kinfo_proc *curkp;
780{
781	struct kinfo_proc newkp;
782	int mib[4];
783	size_t len;
784
785	mib[0] = CTL_KERN;
786	mib[1] = KERN_PROC;
787	mib[2] = KERN_PROC_PID;
788	mib[3] = curkp->ki_pid;
789	len = sizeof(newkp);
790	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
791		return (0);
792	return (curkp->ki_pid == newkp.ki_pid &&
793	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
794}
795
796static char **
797kvm_doargv(kd, kp, nchr, info)
798	kvm_t *kd;
799	struct kinfo_proc *kp;
800	int nchr;
801	void (*info)(struct ps_strings *, u_long *, int *);
802{
803	char **ap;
804	u_long addr;
805	int cnt;
806	static struct ps_strings arginfo;
807	static u_long ps_strings;
808	size_t len;
809
810	if (ps_strings == NULL) {
811		len = sizeof(ps_strings);
812		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
813		    0) == -1)
814			ps_strings = PS_STRINGS;
815	}
816
817	/*
818	 * Pointers are stored at the top of the user stack.
819	 */
820	if (kp->ki_stat == SZOMB ||
821	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
822		      sizeof(arginfo)) != sizeof(arginfo))
823		return (0);
824
825	(*info)(&arginfo, &addr, &cnt);
826	if (cnt == 0)
827		return (0);
828	ap = kvm_argv(kd, kp, addr, cnt, nchr);
829	/*
830	 * For live kernels, make sure this process didn't go away.
831	 */
832	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
833		ap = 0;
834	return (ap);
835}
836
837/*
838 * Get the command args.  This code is now machine independent.
839 */
840char **
841kvm_getargv(kd, kp, nchr)
842	kvm_t *kd;
843	const struct kinfo_proc *kp;
844	int nchr;
845{
846	int oid[4];
847	int i;
848	size_t bufsz;
849	static unsigned long buflen;
850	static char *buf, *p;
851	static char **bufp;
852	static int argc;
853
854	if (!ISALIVE(kd)) {
855		_kvm_err(kd, kd->program,
856		    "cannot read user space from dead kernel");
857		return (0);
858	}
859
860	if (!buflen) {
861		bufsz = sizeof(buflen);
862		i = sysctlbyname("kern.ps_arg_cache_limit",
863		    &buflen, &bufsz, NULL, 0);
864		if (i == -1) {
865			buflen = 0;
866		} else {
867			buf = malloc(buflen);
868			if (buf == NULL)
869				buflen = 0;
870			argc = 32;
871			bufp = malloc(sizeof(char *) * argc);
872		}
873	}
874	if (buf != NULL) {
875		oid[0] = CTL_KERN;
876		oid[1] = KERN_PROC;
877		oid[2] = KERN_PROC_ARGS;
878		oid[3] = kp->ki_pid;
879		bufsz = buflen;
880		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
881		if (i == 0 && bufsz > 0) {
882			i = 0;
883			p = buf;
884			do {
885				bufp[i++] = p;
886				p += strlen(p) + 1;
887				if (i >= argc) {
888					argc += argc;
889					bufp = realloc(bufp,
890					    sizeof(char *) * argc);
891				}
892			} while (p < buf + bufsz);
893			bufp[i++] = 0;
894			return (bufp);
895		}
896	}
897	if (kp->ki_flag & P_SYSTEM)
898		return (NULL);
899	return (kvm_doargv(kd, kp, nchr, ps_str_a));
900}
901
902char **
903kvm_getenvv(kd, kp, nchr)
904	kvm_t *kd;
905	const struct kinfo_proc *kp;
906	int nchr;
907{
908	return (kvm_doargv(kd, kp, nchr, ps_str_e));
909}
910
911/*
912 * Read from user space.  The user context is given by p.
913 */
914ssize_t
915kvm_uread(kd, kp, uva, buf, len)
916	kvm_t *kd;
917	struct kinfo_proc *kp;
918	u_long uva;
919	char *buf;
920	size_t len;
921{
922	char *cp;
923	char procfile[MAXPATHLEN];
924	ssize_t amount;
925	int fd;
926
927	if (!ISALIVE(kd)) {
928		_kvm_err(kd, kd->program,
929		    "cannot read user space from dead kernel");
930		return (0);
931	}
932
933	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
934	fd = open(procfile, O_RDONLY, 0);
935	if (fd < 0) {
936		_kvm_err(kd, kd->program, "cannot open %s", procfile);
937		close(fd);
938		return (0);
939	}
940
941	cp = buf;
942	while (len > 0) {
943		errno = 0;
944		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
945			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
946			    uva, procfile);
947			break;
948		}
949		amount = read(fd, cp, len);
950		if (amount < 0) {
951			_kvm_syserr(kd, kd->program, "error reading %s",
952			    procfile);
953			break;
954		}
955		if (amount == 0) {
956			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
957			break;
958		}
959		cp += amount;
960		uva += amount;
961		len -= amount;
962	}
963
964	close(fd);
965	return ((ssize_t)(cp - buf));
966}
967