kvm_proc.c revision 103216
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 103216 2002-09-11 08:13:56Z julian $
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 103216 2002-09-11 08:13:56Z julian $");
42
43#if defined(LIBC_SCCS) && !defined(lint)
44static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45#endif /* LIBC_SCCS and not lint */
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/file.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <unistd.h>
67#include <nlist.h>
68#include <kvm.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <vm/swap_pager.h>
73
74#include <sys/sysctl.h>
75
76#include <limits.h>
77#include <memory.h>
78#include <paths.h>
79
80#include "kvm_private.h"
81
82#if used
83static char *
84kvm_readswap(kd, p, va, cnt)
85	kvm_t *kd;
86	const struct proc *p;
87	u_long va;
88	u_long *cnt;
89{
90#ifdef __FreeBSD__
91	/* XXX Stubbed out, our vm system is differnet */
92	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
93	return(0);
94#endif	/* __FreeBSD__ */
95}
96#endif
97
98#define KREAD(kd, addr, obj) \
99	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
100
101/*
102 * Read proc's from memory file into buffer bp, which has space to hold
103 * at most maxcnt procs.
104 */
105static int
106kvm_proclist(kd, what, arg, p, bp, maxcnt)
107	kvm_t *kd;
108	int what, arg;
109	struct proc *p;
110	struct kinfo_proc *bp;
111	int maxcnt;
112{
113	int cnt = 0;
114	struct kinfo_proc kinfo_proc, *kp;
115	struct pgrp pgrp;
116	struct session sess;
117	struct tty tty;
118	struct vmspace vmspace;
119	struct procsig procsig;
120	struct pstats pstats;
121	struct ucred ucred;
122	struct thread mtd;
123	struct proc proc;
124	struct proc pproc;
125	struct timeval tv;
126
127	kp = &kinfo_proc;
128	kp->ki_structsize = sizeof(kinfo_proc);
129	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
130		memset(kp, 0, sizeof *kp);
131		if (KREAD(kd, (u_long)p, &proc)) {
132			_kvm_err(kd, kd->program, "can't read proc at %x", p);
133			return (-1);
134		}
135		if (proc.p_state != PRS_ZOMBIE) {
136			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
137			    &mtd)) {
138				_kvm_err(kd, kd->program,
139				    "can't read thread at %x",
140				    TAILQ_FIRST(&proc.p_threads));
141				return (-1);
142			}
143		}
144		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
145			kp->ki_ruid = ucred.cr_ruid;
146			kp->ki_svuid = ucred.cr_svuid;
147			kp->ki_rgid = ucred.cr_rgid;
148			kp->ki_svgid = ucred.cr_svgid;
149			kp->ki_ngroups = ucred.cr_ngroups;
150			bcopy(ucred.cr_groups, kp->ki_groups,
151			    NGROUPS * sizeof(gid_t));
152			kp->ki_uid = ucred.cr_uid;
153		}
154
155		switch(what) {
156
157		case KERN_PROC_PID:
158			if (proc.p_pid != (pid_t)arg)
159				continue;
160			break;
161
162		case KERN_PROC_UID:
163			if (kp->ki_uid != (uid_t)arg)
164				continue;
165			break;
166
167		case KERN_PROC_RUID:
168			if (kp->ki_ruid != (uid_t)arg)
169				continue;
170			break;
171		}
172		/*
173		 * We're going to add another proc to the set.  If this
174		 * will overflow the buffer, assume the reason is because
175		 * nprocs (or the proc list) is corrupt and declare an error.
176		 */
177		if (cnt >= maxcnt) {
178			_kvm_err(kd, kd->program, "nprocs corrupt");
179			return (-1);
180		}
181		/*
182		 * gather kinfo_proc
183		 */
184		kp->ki_paddr = p;
185		kp->ki_addr = proc.p_uarea;
186		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
187		kp->ki_args = proc.p_args;
188		kp->ki_tracep = proc.p_tracep;
189		kp->ki_textvp = proc.p_textvp;
190		kp->ki_fd = proc.p_fd;
191		kp->ki_vmspace = proc.p_vmspace;
192		if (proc.p_procsig != NULL) {
193			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
194				_kvm_err(kd, kd->program,
195				    "can't read procsig at %x", proc.p_procsig);
196				return (-1);
197			}
198			kp->ki_sigignore = procsig.ps_sigignore;
199			kp->ki_sigcatch = procsig.ps_sigcatch;
200		}
201		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
202			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
203				_kvm_err(kd, kd->program,
204				    "can't read stats at %x", proc.p_stats);
205				return (-1);
206			}
207			kp->ki_start = pstats.p_start;
208			kp->ki_rusage = pstats.p_ru;
209			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
210			    pstats.p_cru.ru_stime.tv_sec;
211			kp->ki_childtime.tv_usec =
212			    pstats.p_cru.ru_utime.tv_usec +
213			    pstats.p_cru.ru_stime.tv_usec;
214		}
215		if (proc.p_oppid)
216			kp->ki_ppid = proc.p_oppid;
217		else if (proc.p_pptr) {
218			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
219				_kvm_err(kd, kd->program,
220				    "can't read pproc at %x", proc.p_pptr);
221				return (-1);
222			}
223			kp->ki_ppid = pproc.p_pid;
224		} else
225			kp->ki_ppid = 0;
226		if (proc.p_pgrp == NULL)
227			goto nopgrp;
228		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
229			_kvm_err(kd, kd->program, "can't read pgrp at %x",
230				 proc.p_pgrp);
231			return (-1);
232		}
233		kp->ki_pgid = pgrp.pg_id;
234		kp->ki_jobc = pgrp.pg_jobc;
235		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
236			_kvm_err(kd, kd->program, "can't read session at %x",
237				pgrp.pg_session);
238			return (-1);
239		}
240		kp->ki_sid = sess.s_sid;
241		(void)memcpy(kp->ki_login, sess.s_login,
242						sizeof(kp->ki_login));
243		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
244		if (sess.s_leader == p)
245			kp->ki_kiflag |= KI_SLEADER;
246		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
247			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
248				_kvm_err(kd, kd->program,
249					 "can't read tty at %x", sess.s_ttyp);
250				return (-1);
251			}
252			kp->ki_tdev = tty.t_dev;
253			if (tty.t_pgrp != NULL) {
254				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
255					_kvm_err(kd, kd->program,
256						 "can't read tpgrp at %x",
257						tty.t_pgrp);
258					return (-1);
259				}
260				kp->ki_tpgid = pgrp.pg_id;
261			} else
262				kp->ki_tpgid = -1;
263			if (tty.t_session != NULL) {
264				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
265					_kvm_err(kd, kd->program,
266					    "can't read session at %x",
267					    tty.t_session);
268					return (-1);
269				}
270				kp->ki_tsid = sess.s_sid;
271			}
272		} else {
273nopgrp:
274			kp->ki_tdev = NODEV;
275		}
276		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
277			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
278			    kp->ki_wmesg, WMESGLEN);
279
280#ifdef sparc
281		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
282		    (char *)&kp->ki_rssize,
283		    sizeof(kp->ki_rssize));
284		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
285		    (char *)&kp->ki_tsize,
286		    3 * sizeof(kp->ki_rssize));	/* XXX */
287#else
288		(void)kvm_read(kd, (u_long)proc.p_vmspace,
289		    (char *)&vmspace, sizeof(vmspace));
290		kp->ki_size = vmspace.vm_map.size;
291		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
292		kp->ki_swrss = vmspace.vm_swrss;
293		kp->ki_tsize = vmspace.vm_tsize;
294		kp->ki_dsize = vmspace.vm_dsize;
295		kp->ki_ssize = vmspace.vm_ssize;
296#endif
297
298		switch (what) {
299
300		case KERN_PROC_PGRP:
301			if (kp->ki_pgid != (pid_t)arg)
302				continue;
303			break;
304
305		case KERN_PROC_TTY:
306			if ((proc.p_flag & P_CONTROLT) == 0 ||
307			     kp->ki_tdev != (dev_t)arg)
308				continue;
309			break;
310		}
311		if (proc.p_comm[0] != 0) {
312			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
313			kp->ki_comm[MAXCOMLEN] = 0;
314		}
315		if ((proc.p_state != PRS_ZOMBIE) &&
316		    (mtd.td_blocked != 0)) {
317			kp->ki_kiflag |= KI_MTXBLOCK;
318			if (mtd.td_mtxname)
319				(void)kvm_read(kd,
320				    (u_long)mtd.td_mtxname,
321				    kp->ki_mtxname, MTXNAMELEN);
322			kp->ki_mtxname[MTXNAMELEN] = 0;
323		}
324		bintime2timeval(&proc.p_runtime, &tv);
325		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
326		kp->ki_pid = proc.p_pid;
327		kp->ki_siglist = proc.p_siglist;
328		kp->ki_sigmask = proc.p_sigmask;
329		kp->ki_xstat = proc.p_xstat;
330		kp->ki_acflag = proc.p_acflag;
331		if (proc.p_state != PRS_ZOMBIE) {
332			kp->ki_pctcpu = proc.p_kse.ke_pctcpu;
333			kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;
334			kp->ki_slptime = proc.p_ksegrp.kg_slptime;
335			kp->ki_swtime = proc.p_swtime;
336			kp->ki_flag = proc.p_flag;
337			kp->ki_sflag = proc.p_sflag;
338			kp->ki_wchan = mtd.td_wchan;
339			kp->ki_traceflag = proc.p_traceflag;
340			if (proc.p_state == PRS_NORMAL) {
341				if (TD_ON_RUNQ(&mtd) ||
342				    TD_CAN_RUN(&mtd) ||
343				    TD_IS_RUNNING(&mtd)) {
344					kp->ki_stat = SRUN;
345				} else if (mtd.td_state == TDS_INHIBITED) {
346					if (P_SHOULDSTOP(&proc)) {
347						kp->ki_stat = SSTOP;
348					} else if (TD_IS_SLEEPING(&mtd)) {
349						kp->ki_stat = SSLEEP;
350					} else if (TD_ON_MUTEX(&mtd)) {
351						kp->ki_stat = SMTX;
352					} else {
353						kp->ki_stat = SWAIT;
354					}
355				}
356			} else {
357				kp->ki_stat = SIDL;
358			}
359			kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class;
360			kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri;
361			kp->ki_pri.pri_level = mtd.td_priority;
362			kp->ki_pri.pri_native = mtd.td_base_pri;
363			kp->ki_nice = proc.p_ksegrp.kg_nice;
364			kp->ki_lock = proc.p_lock;
365			kp->ki_rqindex = proc.p_kse.ke_rqindex;
366			kp->ki_oncpu = proc.p_kse.ke_oncpu;
367			kp->ki_lastcpu = mtd.td_lastcpu;
368		} else {
369			kp->ki_stat = SZOMB;
370		}
371		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
372		++bp;
373		++cnt;
374	}
375	return (cnt);
376}
377
378/*
379 * Build proc info array by reading in proc list from a crash dump.
380 * Return number of procs read.  maxcnt is the max we will read.
381 */
382static int
383kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
384	kvm_t *kd;
385	int what, arg;
386	u_long a_allproc;
387	u_long a_zombproc;
388	int maxcnt;
389{
390	struct kinfo_proc *bp = kd->procbase;
391	int acnt, zcnt;
392	struct proc *p;
393
394	if (KREAD(kd, a_allproc, &p)) {
395		_kvm_err(kd, kd->program, "cannot read allproc");
396		return (-1);
397	}
398	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
399	if (acnt < 0)
400		return (acnt);
401
402	if (KREAD(kd, a_zombproc, &p)) {
403		_kvm_err(kd, kd->program, "cannot read zombproc");
404		return (-1);
405	}
406	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
407	if (zcnt < 0)
408		zcnt = 0;
409
410	return (acnt + zcnt);
411}
412
413struct kinfo_proc *
414kvm_getprocs(kd, op, arg, cnt)
415	kvm_t *kd;
416	int op, arg;
417	int *cnt;
418{
419	int mib[4], st, nprocs;
420	size_t size;
421
422	if (kd->procbase != 0) {
423		free((void *)kd->procbase);
424		/*
425		 * Clear this pointer in case this call fails.  Otherwise,
426		 * kvm_close() will free it again.
427		 */
428		kd->procbase = 0;
429	}
430	if (ISALIVE(kd)) {
431		size = 0;
432		mib[0] = CTL_KERN;
433		mib[1] = KERN_PROC;
434		mib[2] = op;
435		mib[3] = arg;
436		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
437		if (st == -1) {
438			_kvm_syserr(kd, kd->program, "kvm_getprocs");
439			return (0);
440		}
441		/*
442		 * We can't continue with a size of 0 because we pass
443		 * it to realloc() (via _kvm_realloc()), and passing 0
444		 * to realloc() results in undefined behavior.
445		 */
446		if (size == 0) {
447			/*
448			 * XXX: We should probably return an invalid,
449			 * but non-NULL, pointer here so any client
450			 * program trying to dereference it will
451			 * crash.  However, _kvm_freeprocs() calls
452			 * free() on kd->procbase if it isn't NULL,
453			 * and free()'ing a junk pointer isn't good.
454			 * Then again, _kvm_freeprocs() isn't used
455			 * anywhere . . .
456			 */
457			kd->procbase = _kvm_malloc(kd, 1);
458			goto liveout;
459		}
460		do {
461			size += size / 10;
462			kd->procbase = (struct kinfo_proc *)
463			    _kvm_realloc(kd, kd->procbase, size);
464			if (kd->procbase == 0)
465				return (0);
466			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
467			    kd->procbase, &size, NULL, 0);
468		} while (st == -1 && errno == ENOMEM);
469		if (st == -1) {
470			_kvm_syserr(kd, kd->program, "kvm_getprocs");
471			return (0);
472		}
473		/*
474		 * We have to check the size again because sysctl()
475		 * may "round up" oldlenp if oldp is NULL; hence it
476		 * might've told us that there was data to get when
477		 * there really isn't any.
478		 */
479		if (size > 0 &&
480		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
481			_kvm_err(kd, kd->program,
482			    "kinfo_proc size mismatch (expected %d, got %d)",
483			    sizeof(struct kinfo_proc),
484			    kd->procbase->ki_structsize);
485			return (0);
486		}
487liveout:
488		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
489	} else {
490		struct nlist nl[4], *p;
491
492		nl[0].n_name = "_nprocs";
493		nl[1].n_name = "_allproc";
494		nl[2].n_name = "_zombproc";
495		nl[3].n_name = 0;
496
497		if (kvm_nlist(kd, nl) != 0) {
498			for (p = nl; p->n_type != 0; ++p)
499				;
500			_kvm_err(kd, kd->program,
501				 "%s: no such symbol", p->n_name);
502			return (0);
503		}
504		if (KREAD(kd, nl[0].n_value, &nprocs)) {
505			_kvm_err(kd, kd->program, "can't read nprocs");
506			return (0);
507		}
508		size = nprocs * sizeof(struct kinfo_proc);
509		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
510		if (kd->procbase == 0)
511			return (0);
512
513		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
514				      nl[2].n_value, nprocs);
515#ifdef notdef
516		size = nprocs * sizeof(struct kinfo_proc);
517		(void)realloc(kd->procbase, size);
518#endif
519	}
520	*cnt = nprocs;
521	return (kd->procbase);
522}
523
524void
525_kvm_freeprocs(kd)
526	kvm_t *kd;
527{
528	if (kd->procbase) {
529		free(kd->procbase);
530		kd->procbase = 0;
531	}
532}
533
534void *
535_kvm_realloc(kd, p, n)
536	kvm_t *kd;
537	void *p;
538	size_t n;
539{
540	void *np = (void *)realloc(p, n);
541
542	if (np == 0) {
543		free(p);
544		_kvm_err(kd, kd->program, "out of memory");
545	}
546	return (np);
547}
548
549#ifndef MAX
550#define MAX(a, b) ((a) > (b) ? (a) : (b))
551#endif
552
553/*
554 * Read in an argument vector from the user address space of process kp.
555 * addr if the user-space base address of narg null-terminated contiguous
556 * strings.  This is used to read in both the command arguments and
557 * environment strings.  Read at most maxcnt characters of strings.
558 */
559static char **
560kvm_argv(kd, kp, addr, narg, maxcnt)
561	kvm_t *kd;
562	struct kinfo_proc *kp;
563	u_long addr;
564	int narg;
565	int maxcnt;
566{
567	char *np, *cp, *ep, *ap;
568	u_long oaddr = -1;
569	int len, cc;
570	char **argv;
571
572	/*
573	 * Check that there aren't an unreasonable number of agruments,
574	 * and that the address is in user space.
575	 */
576	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
577		return (0);
578
579	/*
580	 * kd->argv : work space for fetching the strings from the target
581	 *            process's space, and is converted for returning to caller
582	 */
583	if (kd->argv == 0) {
584		/*
585		 * Try to avoid reallocs.
586		 */
587		kd->argc = MAX(narg + 1, 32);
588		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
589						sizeof(*kd->argv));
590		if (kd->argv == 0)
591			return (0);
592	} else if (narg + 1 > kd->argc) {
593		kd->argc = MAX(2 * kd->argc, narg + 1);
594		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
595						sizeof(*kd->argv));
596		if (kd->argv == 0)
597			return (0);
598	}
599	/*
600	 * kd->argspc : returned to user, this is where the kd->argv
601	 *              arrays are left pointing to the collected strings.
602	 */
603	if (kd->argspc == 0) {
604		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
605		if (kd->argspc == 0)
606			return (0);
607		kd->arglen = PAGE_SIZE;
608	}
609	/*
610	 * kd->argbuf : used to pull in pages from the target process.
611	 *              the strings are copied out of here.
612	 */
613	if (kd->argbuf == 0) {
614		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
615		if (kd->argbuf == 0)
616			return (0);
617	}
618
619	/* Pull in the target process'es argv vector */
620	cc = sizeof(char *) * narg;
621	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
622		return (0);
623	/*
624	 * ap : saved start address of string we're working on in kd->argspc
625	 * np : pointer to next place to write in kd->argspc
626	 * len: length of data in kd->argspc
627	 * argv: pointer to the argv vector that we are hunting around the
628	 *       target process space for, and converting to addresses in
629	 *       our address space (kd->argspc).
630	 */
631	ap = np = kd->argspc;
632	argv = kd->argv;
633	len = 0;
634	/*
635	 * Loop over pages, filling in the argument vector.
636	 * Note that the argv strings could be pointing *anywhere* in
637	 * the user address space and are no longer contiguous.
638	 * Note that *argv is modified when we are going to fetch a string
639	 * that crosses a page boundary.  We copy the next part of the string
640	 * into to "np" and eventually convert the pointer.
641	 */
642	while (argv < kd->argv + narg && *argv != 0) {
643
644		/* get the address that the current argv string is on */
645		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
646
647		/* is it the same page as the last one? */
648		if (addr != oaddr) {
649			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
650			    PAGE_SIZE)
651				return (0);
652			oaddr = addr;
653		}
654
655		/* offset within the page... kd->argbuf */
656		addr = (u_long)*argv & (PAGE_SIZE - 1);
657
658		/* cp = start of string, cc = count of chars in this chunk */
659		cp = kd->argbuf + addr;
660		cc = PAGE_SIZE - addr;
661
662		/* dont get more than asked for by user process */
663		if (maxcnt > 0 && cc > maxcnt - len)
664			cc = maxcnt - len;
665
666		/* pointer to end of string if we found it in this page */
667		ep = memchr(cp, '\0', cc);
668		if (ep != 0)
669			cc = ep - cp + 1;
670		/*
671		 * at this point, cc is the count of the chars that we are
672		 * going to retrieve this time. we may or may not have found
673		 * the end of it.  (ep points to the null if the end is known)
674		 */
675
676		/* will we exceed the malloc/realloced buffer? */
677		if (len + cc > kd->arglen) {
678			int off;
679			char **pp;
680			char *op = kd->argspc;
681
682			kd->arglen *= 2;
683			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
684							  kd->arglen);
685			if (kd->argspc == 0)
686				return (0);
687			/*
688			 * Adjust argv pointers in case realloc moved
689			 * the string space.
690			 */
691			off = kd->argspc - op;
692			for (pp = kd->argv; pp < argv; pp++)
693				*pp += off;
694			ap += off;
695			np += off;
696		}
697		/* np = where to put the next part of the string in kd->argspc*/
698		/* np is kinda redundant.. could use "kd->argspc + len" */
699		memcpy(np, cp, cc);
700		np += cc;	/* inc counters */
701		len += cc;
702
703		/*
704		 * if end of string found, set the *argv pointer to the
705		 * saved beginning of string, and advance. argv points to
706		 * somewhere in kd->argv..  This is initially relative
707		 * to the target process, but when we close it off, we set
708		 * it to point in our address space.
709		 */
710		if (ep != 0) {
711			*argv++ = ap;
712			ap = np;
713		} else {
714			/* update the address relative to the target process */
715			*argv += cc;
716		}
717
718		if (maxcnt > 0 && len >= maxcnt) {
719			/*
720			 * We're stopping prematurely.  Terminate the
721			 * current string.
722			 */
723			if (ep == 0) {
724				*np = '\0';
725				*argv++ = ap;
726			}
727			break;
728		}
729	}
730	/* Make sure argv is terminated. */
731	*argv = 0;
732	return (kd->argv);
733}
734
735static void
736ps_str_a(p, addr, n)
737	struct ps_strings *p;
738	u_long *addr;
739	int *n;
740{
741	*addr = (u_long)p->ps_argvstr;
742	*n = p->ps_nargvstr;
743}
744
745static void
746ps_str_e(p, addr, n)
747	struct ps_strings *p;
748	u_long *addr;
749	int *n;
750{
751	*addr = (u_long)p->ps_envstr;
752	*n = p->ps_nenvstr;
753}
754
755/*
756 * Determine if the proc indicated by p is still active.
757 * This test is not 100% foolproof in theory, but chances of
758 * being wrong are very low.
759 */
760static int
761proc_verify(curkp)
762	struct kinfo_proc *curkp;
763{
764	struct kinfo_proc newkp;
765	int mib[4];
766	size_t len;
767
768	mib[0] = CTL_KERN;
769	mib[1] = KERN_PROC;
770	mib[2] = KERN_PROC_PID;
771	mib[3] = curkp->ki_pid;
772	len = sizeof(newkp);
773	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
774		return (0);
775	return (curkp->ki_pid == newkp.ki_pid &&
776	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
777}
778
779static char **
780kvm_doargv(kd, kp, nchr, info)
781	kvm_t *kd;
782	struct kinfo_proc *kp;
783	int nchr;
784	void (*info)(struct ps_strings *, u_long *, int *);
785{
786	char **ap;
787	u_long addr;
788	int cnt;
789	static struct ps_strings arginfo;
790	static u_long ps_strings;
791	size_t len;
792
793	if (ps_strings == NULL) {
794		len = sizeof(ps_strings);
795		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
796		    0) == -1)
797			ps_strings = PS_STRINGS;
798	}
799
800	/*
801	 * Pointers are stored at the top of the user stack.
802	 */
803	if (kp->ki_stat == SZOMB ||
804	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
805		      sizeof(arginfo)) != sizeof(arginfo))
806		return (0);
807
808	(*info)(&arginfo, &addr, &cnt);
809	if (cnt == 0)
810		return (0);
811	ap = kvm_argv(kd, kp, addr, cnt, nchr);
812	/*
813	 * For live kernels, make sure this process didn't go away.
814	 */
815	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
816		ap = 0;
817	return (ap);
818}
819
820/*
821 * Get the command args.  This code is now machine independent.
822 */
823char **
824kvm_getargv(kd, kp, nchr)
825	kvm_t *kd;
826	const struct kinfo_proc *kp;
827	int nchr;
828{
829	int oid[4];
830	int i;
831	size_t bufsz;
832	static unsigned long buflen;
833	static char *buf, *p;
834	static char **bufp;
835	static int argc;
836
837	if (!ISALIVE(kd)) {
838		_kvm_err(kd, kd->program,
839		    "cannot read user space from dead kernel");
840		return (0);
841	}
842
843	if (!buflen) {
844		bufsz = sizeof(buflen);
845		i = sysctlbyname("kern.ps_arg_cache_limit",
846		    &buflen, &bufsz, NULL, 0);
847		if (i == -1) {
848			buflen = 0;
849		} else {
850			buf = malloc(buflen);
851			if (buf == NULL)
852				buflen = 0;
853			argc = 32;
854			bufp = malloc(sizeof(char *) * argc);
855		}
856	}
857	if (buf != NULL) {
858		oid[0] = CTL_KERN;
859		oid[1] = KERN_PROC;
860		oid[2] = KERN_PROC_ARGS;
861		oid[3] = kp->ki_pid;
862		bufsz = buflen;
863		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
864		if (i == 0 && bufsz > 0) {
865			i = 0;
866			p = buf;
867			do {
868				bufp[i++] = p;
869				p += strlen(p) + 1;
870				if (i >= argc) {
871					argc += argc;
872					bufp = realloc(bufp,
873					    sizeof(char *) * argc);
874				}
875			} while (p < buf + bufsz);
876			bufp[i++] = 0;
877			return (bufp);
878		}
879	}
880	if (kp->ki_flag & P_SYSTEM)
881		return (NULL);
882	return (kvm_doargv(kd, kp, nchr, ps_str_a));
883}
884
885char **
886kvm_getenvv(kd, kp, nchr)
887	kvm_t *kd;
888	const struct kinfo_proc *kp;
889	int nchr;
890{
891	return (kvm_doargv(kd, kp, nchr, ps_str_e));
892}
893
894/*
895 * Read from user space.  The user context is given by p.
896 */
897ssize_t
898kvm_uread(kd, kp, uva, buf, len)
899	kvm_t *kd;
900	struct kinfo_proc *kp;
901	u_long uva;
902	char *buf;
903	size_t len;
904{
905	char *cp;
906	char procfile[MAXPATHLEN];
907	ssize_t amount;
908	int fd;
909
910	if (!ISALIVE(kd)) {
911		_kvm_err(kd, kd->program,
912		    "cannot read user space from dead kernel");
913		return (0);
914	}
915
916	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
917	fd = open(procfile, O_RDONLY, 0);
918	if (fd < 0) {
919		_kvm_err(kd, kd->program, "cannot open %s", procfile);
920		close(fd);
921		return (0);
922	}
923
924	cp = buf;
925	while (len > 0) {
926		errno = 0;
927		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
928			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
929			    uva, procfile);
930			break;
931		}
932		amount = read(fd, cp, len);
933		if (amount < 0) {
934			_kvm_syserr(kd, kd->program, "error reading %s",
935			    procfile);
936			break;
937		}
938		if (amount == 0) {
939			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
940			break;
941		}
942		cp += amount;
943		uva += amount;
944		len -= amount;
945	}
946
947	close(fd);
948	return ((ssize_t)(cp - buf));
949}
950