bn_sqrt.c revision 256281
1/* crypto/bn/bn_sqrt.c */
2/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4/* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 *    software must display the following acknowledgment:
21 *    "This product includes software developed by the OpenSSL Project
22 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 *    endorse or promote products derived from this software without
26 *    prior written permission. For written permission, please contact
27 *    openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 *    nor may "OpenSSL" appear in their names without prior written
31 *    permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 *    acknowledgment:
35 *    "This product includes software developed by the OpenSSL Project
36 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com).  This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58#include "cryptlib.h"
59#include "bn_lcl.h"
60
61
62BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63/* Returns 'ret' such that
64 *      ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * 'p' must be prime!
68 */
69	{
70	BIGNUM *ret = in;
71	int err = 1;
72	int r;
73	BIGNUM *A, *b, *q, *t, *x, *y;
74	int e, i, j;
75
76	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77		{
78		if (BN_abs_is_word(p, 2))
79			{
80			if (ret == NULL)
81				ret = BN_new();
82			if (ret == NULL)
83				goto end;
84			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85				{
86				if (ret != in)
87					BN_free(ret);
88				return NULL;
89				}
90			bn_check_top(ret);
91			return ret;
92			}
93
94		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
95		return(NULL);
96		}
97
98	if (BN_is_zero(a) || BN_is_one(a))
99		{
100		if (ret == NULL)
101			ret = BN_new();
102		if (ret == NULL)
103			goto end;
104		if (!BN_set_word(ret, BN_is_one(a)))
105			{
106			if (ret != in)
107				BN_free(ret);
108			return NULL;
109			}
110		bn_check_top(ret);
111		return ret;
112		}
113
114	BN_CTX_start(ctx);
115	A = BN_CTX_get(ctx);
116	b = BN_CTX_get(ctx);
117	q = BN_CTX_get(ctx);
118	t = BN_CTX_get(ctx);
119	x = BN_CTX_get(ctx);
120	y = BN_CTX_get(ctx);
121	if (y == NULL) goto end;
122
123	if (ret == NULL)
124		ret = BN_new();
125	if (ret == NULL) goto end;
126
127	/* A = a mod p */
128	if (!BN_nnmod(A, a, p, ctx)) goto end;
129
130	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
131	e = 1;
132	while (!BN_is_bit_set(p, e))
133		e++;
134	/* we'll set  q  later (if needed) */
135
136	if (e == 1)
137		{
138		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
139		 * modulo  (|p|-1)/2,  and square roots can be computed
140		 * directly by modular exponentiation.
141		 * We have
142		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
143		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
144		 */
145		if (!BN_rshift(q, p, 2)) goto end;
146		q->neg = 0;
147		if (!BN_add_word(q, 1)) goto end;
148		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
149		err = 0;
150		goto vrfy;
151		}
152
153	if (e == 2)
154		{
155		/* |p| == 5  (mod 8)
156		 *
157		 * In this case  2  is always a non-square since
158		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
159		 * So if  a  really is a square, then  2*a  is a non-square.
160		 * Thus for
161		 *      b := (2*a)^((|p|-5)/8),
162		 *      i := (2*a)*b^2
163		 * we have
164		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
165		 *         = (2*a)^((p-1)/2)
166		 *         = -1;
167		 * so if we set
168		 *      x := a*b*(i-1),
169		 * then
170		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
171		 *         = a^2 * b^2 * (-2*i)
172		 *         = a*(-i)*(2*a*b^2)
173		 *         = a*(-i)*i
174		 *         = a.
175		 *
176		 * (This is due to A.O.L. Atkin,
177		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
178		 * November 1992.)
179		 */
180
181		/* t := 2*a */
182		if (!BN_mod_lshift1_quick(t, A, p)) goto end;
183
184		/* b := (2*a)^((|p|-5)/8) */
185		if (!BN_rshift(q, p, 3)) goto end;
186		q->neg = 0;
187		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
188
189		/* y := b^2 */
190		if (!BN_mod_sqr(y, b, p, ctx)) goto end;
191
192		/* t := (2*a)*b^2 - 1*/
193		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
194		if (!BN_sub_word(t, 1)) goto end;
195
196		/* x = a*b*t */
197		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
198		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
199
200		if (!BN_copy(ret, x)) goto end;
201		err = 0;
202		goto vrfy;
203		}
204
205	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
206	 * First, find some  y  that is not a square. */
207	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
208	q->neg = 0;
209	i = 2;
210	do
211		{
212		/* For efficiency, try small numbers first;
213		 * if this fails, try random numbers.
214		 */
215		if (i < 22)
216			{
217			if (!BN_set_word(y, i)) goto end;
218			}
219		else
220			{
221			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
222			if (BN_ucmp(y, p) >= 0)
223				{
224				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
225				}
226			/* now 0 <= y < |p| */
227			if (BN_is_zero(y))
228				if (!BN_set_word(y, i)) goto end;
229			}
230
231		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
232		if (r < -1) goto end;
233		if (r == 0)
234			{
235			/* m divides p */
236			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
237			goto end;
238			}
239		}
240	while (r == 1 && ++i < 82);
241
242	if (r != -1)
243		{
244		/* Many rounds and still no non-square -- this is more likely
245		 * a bug than just bad luck.
246		 * Even if  p  is not prime, we should have found some  y
247		 * such that r == -1.
248		 */
249		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
250		goto end;
251		}
252
253	/* Here's our actual 'q': */
254	if (!BN_rshift(q, q, e)) goto end;
255
256	/* Now that we have some non-square, we can find an element
257	 * of order  2^e  by computing its q'th power. */
258	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
259	if (BN_is_one(y))
260		{
261		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
262		goto end;
263		}
264
265	/* Now we know that (if  p  is indeed prime) there is an integer
266	 * k,  0 <= k < 2^e,  such that
267	 *
268	 *      a^q * y^k == 1   (mod p).
269	 *
270	 * As  a^q  is a square and  y  is not,  k  must be even.
271	 * q+1  is even, too, so there is an element
272	 *
273	 *     X := a^((q+1)/2) * y^(k/2),
274	 *
275	 * and it satisfies
276	 *
277	 *     X^2 = a^q * a     * y^k
278	 *         = a,
279	 *
280	 * so it is the square root that we are looking for.
281	 */
282
283	/* t := (q-1)/2  (note that  q  is odd) */
284	if (!BN_rshift1(t, q)) goto end;
285
286	/* x := a^((q-1)/2) */
287	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
288		{
289		if (!BN_nnmod(t, A, p, ctx)) goto end;
290		if (BN_is_zero(t))
291			{
292			/* special case: a == 0  (mod p) */
293			BN_zero(ret);
294			err = 0;
295			goto end;
296			}
297		else
298			if (!BN_one(x)) goto end;
299		}
300	else
301		{
302		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
303		if (BN_is_zero(x))
304			{
305			/* special case: a == 0  (mod p) */
306			BN_zero(ret);
307			err = 0;
308			goto end;
309			}
310		}
311
312	/* b := a*x^2  (= a^q) */
313	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
314	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
315
316	/* x := a*x    (= a^((q+1)/2)) */
317	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
318
319	while (1)
320		{
321		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
322		 * where  E  refers to the original value of  e,  which we
323		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
324		 *
325		 * We have  a*b = x^2,
326		 *    y^2^(e-1) = -1,
327		 *    b^2^(e-1) = 1.
328		 */
329
330		if (BN_is_one(b))
331			{
332			if (!BN_copy(ret, x)) goto end;
333			err = 0;
334			goto vrfy;
335			}
336
337
338		/* find smallest  i  such that  b^(2^i) = 1 */
339		i = 1;
340		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
341		while (!BN_is_one(t))
342			{
343			i++;
344			if (i == e)
345				{
346				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
347				goto end;
348				}
349			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
350			}
351
352
353		/* t := y^2^(e - i - 1) */
354		if (!BN_copy(t, y)) goto end;
355		for (j = e - i - 1; j > 0; j--)
356			{
357			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
358			}
359		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
360		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
361		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
362		e = i;
363		}
364
365 vrfy:
366	if (!err)
367		{
368		/* verify the result -- the input might have been not a square
369		 * (test added in 0.9.8) */
370
371		if (!BN_mod_sqr(x, ret, p, ctx))
372			err = 1;
373
374		if (!err && 0 != BN_cmp(x, A))
375			{
376			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
377			err = 1;
378			}
379		}
380
381 end:
382	if (err)
383		{
384		if (ret != NULL && ret != in)
385			{
386			BN_clear_free(ret);
387			}
388		ret = NULL;
389		}
390	BN_CTX_end(ctx);
391	bn_check_top(ret);
392	return ret;
393	}
394