bn_sqrt.c revision 109998
1/* crypto/bn/bn_mod.c */
2/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4/* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 *    software must display the following acknowledgment:
21 *    "This product includes software developed by the OpenSSL Project
22 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 *    endorse or promote products derived from this software without
26 *    prior written permission. For written permission, please contact
27 *    openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 *    nor may "OpenSSL" appear in their names without prior written
31 *    permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 *    acknowledgment:
35 *    "This product includes software developed by the OpenSSL Project
36 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com).  This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58#include "cryptlib.h"
59#include "bn_lcl.h"
60
61
62BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63/* Returns 'ret' such that
64 *      ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * 'p' must be prime!
68 * If 'a' is not a square, this is not necessarily detected by
69 * the algorithms; a bogus result must be expected in this case.
70 */
71	{
72	BIGNUM *ret = in;
73	int err = 1;
74	int r;
75	BIGNUM *b, *q, *t, *x, *y;
76	int e, i, j;
77
78	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
79		{
80		if (BN_abs_is_word(p, 2))
81			{
82			if (ret == NULL)
83				ret = BN_new();
84			if (ret == NULL)
85				goto end;
86			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
87				{
88				BN_free(ret);
89				return NULL;
90				}
91			return ret;
92			}
93
94		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
95		return(NULL);
96		}
97
98	if (BN_is_zero(a) || BN_is_one(a))
99		{
100		if (ret == NULL)
101			ret = BN_new();
102		if (ret == NULL)
103			goto end;
104		if (!BN_set_word(ret, BN_is_one(a)))
105			{
106			BN_free(ret);
107			return NULL;
108			}
109		return ret;
110		}
111
112#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
113	r = BN_kronecker(a, p, ctx);
114	if (r < -1) return NULL;
115	if (r == -1)
116		{
117		BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
118		return(NULL);
119		}
120#endif
121
122	BN_CTX_start(ctx);
123	b = BN_CTX_get(ctx);
124	q = BN_CTX_get(ctx);
125	t = BN_CTX_get(ctx);
126	x = BN_CTX_get(ctx);
127	y = BN_CTX_get(ctx);
128	if (y == NULL) goto end;
129
130	if (ret == NULL)
131		ret = BN_new();
132	if (ret == NULL) goto end;
133
134	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
135	e = 1;
136	while (!BN_is_bit_set(p, e))
137		e++;
138	/* we'll set  q  later (if needed) */
139
140	if (e == 1)
141		{
142		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
143		 * modulo  (|p|-1)/2,  and square roots can be computed
144		 * directly by modular exponentiation.
145		 * We have
146		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
147		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
148		 */
149		if (!BN_rshift(q, p, 2)) goto end;
150		q->neg = 0;
151		if (!BN_add_word(q, 1)) goto end;
152		if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
153		err = 0;
154		goto end;
155		}
156
157	if (e == 2)
158		{
159		/* |p| == 5  (mod 8)
160		 *
161		 * In this case  2  is always a non-square since
162		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
163		 * So if  a  really is a square, then  2*a  is a non-square.
164		 * Thus for
165		 *      b := (2*a)^((|p|-5)/8),
166		 *      i := (2*a)*b^2
167		 * we have
168		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169		 *         = (2*a)^((p-1)/2)
170		 *         = -1;
171		 * so if we set
172		 *      x := a*b*(i-1),
173		 * then
174		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175		 *         = a^2 * b^2 * (-2*i)
176		 *         = a*(-i)*(2*a*b^2)
177		 *         = a*(-i)*i
178		 *         = a.
179		 *
180		 * (This is due to A.O.L. Atkin,
181		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
182		 * November 1992.)
183		 */
184
185		/* make sure that  a  is reduced modulo p */
186		if (a->neg || BN_ucmp(a, p) >= 0)
187			{
188			if (!BN_nnmod(x, a, p, ctx)) goto end;
189			a = x; /* use x as temporary variable */
190			}
191
192		/* t := 2*a */
193		if (!BN_mod_lshift1_quick(t, a, p)) goto end;
194
195		/* b := (2*a)^((|p|-5)/8) */
196		if (!BN_rshift(q, p, 3)) goto end;
197		q->neg = 0;
198		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
199
200		/* y := b^2 */
201		if (!BN_mod_sqr(y, b, p, ctx)) goto end;
202
203		/* t := (2*a)*b^2 - 1*/
204		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
205		if (!BN_sub_word(t, 1)) goto end;
206
207		/* x = a*b*t */
208		if (!BN_mod_mul(x, a, b, p, ctx)) goto end;
209		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
210
211		if (!BN_copy(ret, x)) goto end;
212		err = 0;
213		goto end;
214		}
215
216	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
217	 * First, find some  y  that is not a square. */
218	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
219	q->neg = 0;
220	i = 2;
221	do
222		{
223		/* For efficiency, try small numbers first;
224		 * if this fails, try random numbers.
225		 */
226		if (i < 22)
227			{
228			if (!BN_set_word(y, i)) goto end;
229			}
230		else
231			{
232			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
233			if (BN_ucmp(y, p) >= 0)
234				{
235				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
236				}
237			/* now 0 <= y < |p| */
238			if (BN_is_zero(y))
239				if (!BN_set_word(y, i)) goto end;
240			}
241
242		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
243		if (r < -1) goto end;
244		if (r == 0)
245			{
246			/* m divides p */
247			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
248			goto end;
249			}
250		}
251	while (r == 1 && ++i < 82);
252
253	if (r != -1)
254		{
255		/* Many rounds and still no non-square -- this is more likely
256		 * a bug than just bad luck.
257		 * Even if  p  is not prime, we should have found some  y
258		 * such that r == -1.
259		 */
260		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
261		goto end;
262		}
263
264	/* Here's our actual 'q': */
265	if (!BN_rshift(q, q, e)) goto end;
266
267	/* Now that we have some non-square, we can find an element
268	 * of order  2^e  by computing its q'th power. */
269	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
270	if (BN_is_one(y))
271		{
272		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
273		goto end;
274		}
275
276	/* Now we know that (if  p  is indeed prime) there is an integer
277	 * k,  0 <= k < 2^e,  such that
278	 *
279	 *      a^q * y^k == 1   (mod p).
280	 *
281	 * As  a^q  is a square and  y  is not,  k  must be even.
282	 * q+1  is even, too, so there is an element
283	 *
284	 *     X := a^((q+1)/2) * y^(k/2),
285	 *
286	 * and it satisfies
287	 *
288	 *     X^2 = a^q * a     * y^k
289	 *         = a,
290	 *
291	 * so it is the square root that we are looking for.
292	 */
293
294	/* t := (q-1)/2  (note that  q  is odd) */
295	if (!BN_rshift1(t, q)) goto end;
296
297	/* x := a^((q-1)/2) */
298	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
299		{
300		if (!BN_nnmod(t, a, p, ctx)) goto end;
301		if (BN_is_zero(t))
302			{
303			/* special case: a == 0  (mod p) */
304			if (!BN_zero(ret)) goto end;
305			err = 0;
306			goto end;
307			}
308		else
309			if (!BN_one(x)) goto end;
310		}
311	else
312		{
313		if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
314		if (BN_is_zero(x))
315			{
316			/* special case: a == 0  (mod p) */
317			if (!BN_zero(ret)) goto end;
318			err = 0;
319			goto end;
320			}
321		}
322
323	/* b := a*x^2  (= a^q) */
324	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
325	if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
326
327	/* x := a*x    (= a^((q+1)/2)) */
328	if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
329
330	while (1)
331		{
332		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
333		 * where  E  refers to the original value of  e,  which we
334		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
335		 *
336		 * We have  a*b = x^2,
337		 *    y^2^(e-1) = -1,
338		 *    b^2^(e-1) = 1.
339		 */
340
341		if (BN_is_one(b))
342			{
343			if (!BN_copy(ret, x)) goto end;
344			err = 0;
345			goto end;
346			}
347
348
349		/* find smallest  i  such that  b^(2^i) = 1 */
350		i = 1;
351		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
352		while (!BN_is_one(t))
353			{
354			i++;
355			if (i == e)
356				{
357				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
358				goto end;
359				}
360			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
361			}
362
363
364		/* t := y^2^(e - i - 1) */
365		if (!BN_copy(t, y)) goto end;
366		for (j = e - i - 1; j > 0; j--)
367			{
368			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
369			}
370		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
371		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
372		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
373		e = i;
374		}
375
376 end:
377	if (err)
378		{
379		if (ret != NULL && ret != in)
380			{
381			BN_clear_free(ret);
382			}
383		ret = NULL;
384		}
385	BN_CTX_end(ctx);
386	return ret;
387	}
388