refclock_msfees.c revision 56746
1/* refclock_ees - clock driver for the EES M201 receiver */
2
3#ifdef HAVE_CONFIG_H
4#include <config.h>
5#endif
6
7#if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
8
9/* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10 * were removed as the code was overly hairy, they weren't in use
11 * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
12 */
13
14#include <ctype.h>
15#ifdef HAVE_SYS_TIME_H
16# include <sys/time.h>
17#endif
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_unixtime.h"
23#include "ntp_calendar.h"
24#if defined(HAVE_BSD_TTYS)
25#include <sgtty.h>
26#endif /* HAVE_BSD_TTYS */
27#if defined(HAVE_SYSV_TTYS)
28#include <termio.h>
29#endif /* HAVE_SYSV_TTYS */
30#if defined(HAVE_TERMIOS)
31#include <termios.h>
32#endif
33#if defined(STREAM)
34#include <stropts.h>
35#endif
36
37#ifdef HAVE_SYS_TERMIOS_H
38# include <sys/termios.h>
39#endif
40#ifdef HAVE_SYS_PPSCLOCK_H
41# include <sys/ppsclock.h>
42#endif
43
44#include "ntp_stdlib.h"
45
46/*
47	fudgefactor	= fudgetime1;
48	os_delay	= fudgetime2;
49	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
50	stratumtouse	= fudgeval1 & 0xf
51	debug		= fudgeval2;
52	sloppyclockflag	= flags & CLK_FLAG1;
53		1	  log smoothing summary when processing sample
54		4	  dump the buffer from the clock
55		8	  EIOGETKD the last n uS time stamps
56	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
57	ees->dump_vals	= flags & CLK_FLAG3;
58	ees->usealldata	= flags & CLK_FLAG4;
59
60
61	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
62	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
63	bug->values[2] = (u_long)ees->status;
64	bug->values[3] = (u_long)ees->lastevent;
65	bug->values[4] = (u_long)ees->reason;
66	bug->values[5] = (u_long)ees->nsamples;
67	bug->values[6] = (u_long)ees->codestate;
68	bug->values[7] = (u_long)ees->day;
69	bug->values[8] = (u_long)ees->hour;
70	bug->values[9] = (u_long)ees->minute;
71	bug->values[10] = (u_long)ees->second;
72	bug->values[11] = (u_long)ees->tz;
73	bug->values[12] = ees->yearstart;
74	bug->values[13] = (ees->leaphold > current_time) ?
75				ees->leaphold - current_time : 0;
76	bug->values[14] = inherent_delay[unit].l_uf;
77	bug->values[15] = offset_fudge[unit].l_uf;
78
79	bug->times[0] = ees->reftime;
80	bug->times[1] = ees->arrvtime;
81	bug->times[2] = ees->lastsampletime;
82	bug->times[3] = ees->offset;
83	bug->times[4] = ees->lowoffset;
84	bug->times[5] = ees->highoffset;
85	bug->times[6] = inherent_delay[unit];
86	bug->times[8] = os_delay[unit];
87	bug->times[7] = fudgefactor[unit];
88	bug->times[9] = offset_fudge[unit];
89	bug->times[10]= ees->yearstart, 0;
90	*/
91
92/* This should support the use of an EES M201 receiver with RS232
93 * output (modified to transmit time once per second).
94 *
95 * For the format of the message sent by the clock, see the EESM_
96 * definitions below.
97 *
98 * It appears to run free for an integral number of minutes, until the error
99 * reaches 4mS, at which point it steps at second = 01.
100 * It appears that sometimes it steps 4mS (say at 7 min interval),
101 * then the next minute it decides that it was an error, so steps back.
102 * On the next minute it steps forward again :-(
103 * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
104 * or 9.5uS/S then 3990.5uS at a 7min re-sync,
105 * at which point it may loose the "00" second time stamp.
106 * I assume that the most accurate time is just AFTER the re-sync.
107 * Hence remember the last cycle interval,
108 *
109 * Can run in any one of:
110 *
111 *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
112 *	(sun)		*in the interupt code*, so as to avoid problems with
113 *			the STREAMS scheduling.
114 *
115 * It appears that it goes 16.5 uS slow each second, then every 4 mins it
116 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
117 */
118
119/* Definitions */
120#ifndef	MAXUNITS
121#define	MAXUNITS	4	/* maximum number of EES units permitted */
122#endif
123
124#ifndef	EES232
125#define	EES232	"/dev/ees%d"	/* Device to open to read the data */
126#endif
127
128/* Other constant stuff */
129#ifndef	EESPRECISION
130#define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
131#endif
132#ifndef	EESREFID
133#define	EESREFID	"MSF\0"		/* String to identify the clock */
134#endif
135#ifndef	EESHSREFID
136#define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
137#endif
138
139/* Description of clock */
140#define	EESDESCRIPTION		"EES M201 MSF Receiver"
141
142/* Speed we run the clock port at. If this is changed the UARTDELAY
143 * value should be recomputed to suit.
144 */
145#ifndef	SPEED232
146#define	SPEED232	B9600	/* 9600 baud */
147#endif
148
149/* What is the inherent delay for this mode of working, i.e. when is the
150 * data time stamped.
151 */
152#define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
153#define	BITS_TO_L_FP(bits, baud) \
154(((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
155#define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
156#define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
157
158#ifndef	STREAM_PP1
159#define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
160#endif
161#ifndef	STREAM_PP2
162#define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
163#endif
164
165     /* Offsets of the bytes of the serial line code.  The clock gives
166 * local time with a GMT/BST indication. The EESM_ definitions
167 * give offsets into ees->lastcode.
168 */
169#define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
170#define EESM_SEC	 1	/* seconds in BCD			    */
171#define EESM_MIN	 2	/* minutes in BCD			    */
172#define EESM_HOUR	 3	/* hours in BCD				    */
173#define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
174#define EESM_DAY	 5	/* day of month in BCD			    */
175#define EESM_MON	 6	/* month in BCD				    */
176#define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
177#define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
178#define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
179#define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
180				/* followed by a frame alignment byte (0xff) /
181				/  which is not put into the lastcode buffer*/
182
183/* Length of the serial time code, in characters.  The first length
184 * is less the frame alignment byte.
185 */
186#define	LENEESPRT	(EESM_MSFOK+1)
187#define	LENEESCODE	(LENEESPRT+1)
188
189     /* Code state. */
190#define	EESCS_WAIT	0       /* waiting for start of timecode */
191#define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
192
193     /* Default fudge factor and character to receive */
194#define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
195#ifndef	DEFOSTIME
196#define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
197#endif
198#define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
199
200     /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
201 * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
202 * as the estimated offset, otherwise average the remainder.
203 */
204#define	FULLSHIFT	6			/* NCODES root 2 */
205#define NCODES		(1<< FULLSHIFT)		/* 64 */
206#define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
207
208     /* Towards the high ( Why ?) end of half */
209#define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
210
211     /* Leap hold time.  After a leap second the clock will no longer be
212 * reliable until it resynchronizes.  Hope 40 minutes is enough. */
213#define	EESLEAPHOLD	(40 * 60)
214
215#define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
216#define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
217#define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
218#define	EES_STEP_NOTES	50	/* Only do a limited number */
219#define	MAX_STEP	16	/* Max number of steps to remember */
220
221     /* debug is a bit mask of debugging that is wanted */
222#define	DB_SYSLOG_SMPLI		0x0001
223#define	DB_SYSLOG_SMPLE		0x0002
224#define	DB_SYSLOG_SMTHI		0x0004
225#define	DB_SYSLOG_NSMTHE	0x0008
226#define	DB_SYSLOG_NSMTHI	0x0010
227#define	DB_SYSLOG_SMTHE		0x0020
228#define	DB_PRINT_EV		0x0040
229#define	DB_PRINT_CDT		0x0080
230#define	DB_PRINT_CDTC		0x0100
231#define	DB_SYSLOG_KEEPD		0x0800
232#define	DB_SYSLOG_KEEPE		0x1000
233#define	DB_LOG_DELTAS		0x2000
234#define	DB_PRINT_DELTAS		0x4000
235#define	DB_LOG_AWAITMORE	0x8000
236#define	DB_LOG_SAMPLES		0x10000
237#define	DB_NO_PPS		0x20000
238#define	DB_INC_PPS		0x40000
239#define	DB_DUMP_DELTAS		0x80000
240
241     struct eesunit {			/* EES unit control structure. */
242	     struct peer *peer;		/* associated peer structure */
243	     struct refclockio io;		/* given to the I/O handler */
244	     l_fp	reftime;		/* reference time */
245	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
246	     l_fp	arrvtime;		/* Time at which pkt arrived */
247	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
248	     l_fp	offset;			/* chosen offset        (for clkbug) */
249	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
250	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
251	     char	lastcode[LENEESCODE+6];	/* last time code we received */
252	     u_long	lasttime;		/* last time clock heard from */
253	     u_long	clocklastgood;		/* last time good radio seen */
254	     u_char	lencode;		/* length of code in buffer */
255	     u_char	nsamples;		/* number of samples we've collected */
256	     u_char	codestate;		/* state of 232 code reception */
257	     u_char	unit;			/* unit number for this guy */
258	     u_char	status;			/* clock status */
259	     u_char	lastevent;		/* last clock event */
260	     u_char	reason;			/* reason for last abort */
261	     u_char	hour;			/* hour of day */
262	     u_char	minute;			/* minute of hour */
263	     u_char	second;			/* seconds of minute */
264	     char	tz;			/* timezone from clock */
265	     u_char	ttytype;		/* method used */
266	     u_char	dump_vals;		/* Should clock values be dumped */
267	     u_char	usealldata;		/* Use ALL samples */
268	     u_short	day;			/* day of year from last code */
269	     u_long	yearstart;		/* start of current year */
270	     u_long	leaphold;		/* time of leap hold expiry */
271	     u_long	badformat;		/* number of bad format codes */
272	     u_long	baddata;		/* number of invalid time codes */
273	     u_long	timestarted;		/* time we started this */
274	     long	last_pps_no;		/* The serial # of the last PPS */
275	     char	fix_pending;		/* Is a "sync to time" pending ? */
276	     /* Fine tuning - compensate for 4 mS ramping .... */
277	     l_fp	last_l;			/* last time stamp */
278	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
279	     int	best_av_step;		/* Best guess at average step */
280	     char	best_av_step_count;	/* # of steps over used above */
281	     char	this_step;		/* Current pos in buffer */
282	     int	last_step_late;		/* How late the last step was (0-59) */
283	     long	jump_fsecs;		/* # of fractions of a sec last jump */
284	     u_long	last_step;		/* time of last step */
285	     int	last_step_secs;		/* Number of seconds in last step */
286	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
287     };
288#define	last_sec	last_l.l_ui
289#define	last_sfsec	last_l.l_f
290#define	this_uisec	((ees->arrvtime).l_ui)
291#define	this_sfsec	((ees->arrvtime).l_f)
292#define	msec(x)		((x) / (1<<22))
293#define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
294#define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
295
296/* Bitmask for what methods to try to use -- currently only PPS enabled */
297#define	T_CBREAK	1
298#define	T_PPS		8
299/* macros to test above */
300#define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
301#define	is_pps(x)	((x)->ttytype & T_PPS)
302#define	is_any(x)	((x)->ttytype)
303
304#define	CODEREASON	20	/* reason codes */
305
306/* Data space for the unit structures.  Note that we allocate these on
307 * the fly, but never give them back. */
308static struct eesunit *eesunits[MAXUNITS];
309static u_char unitinuse[MAXUNITS];
310
311/* Keep the fudge factors separately so they can be set even
312 * when no clock is configured. */
313static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
314static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
315static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
316static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
317static u_char stratumtouse[MAXUNITS];
318static u_char sloppyclockflag[MAXUNITS];
319
320static int deltas[60];
321
322static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
323static l_fp onesec; /* = { 1, 0 }; */
324
325#ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
326#define	DUMP_BUF_SIZE	10112
327#endif
328
329/* ees_reset - reset the count back to zero */
330#define	ees_reset(ees) (ees)->nsamples = 0; \
331(ees)->codestate = EESCS_WAIT
332
333/* ees_event - record and report an event */
334#define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
335ees_report_event((ees), (evcode))
336
337     /* Find the precision of the system clock by reading it */
338#define	USECS	1000000
339#define	MINSTEP	5	/* some systems increment uS on each call */
340#define	MAXLOOPS (USECS/9)
341
342/*
343 * Function prototypes
344 */
345
346static	int	msfees_start	P((int unit, struct peer *peer));
347static	void	msfees_shutdown	P((int unit, struct peer *peer));
348static	void	msfees_poll	P((int unit, struct peer *peer));
349static	void	msfees_init	P((void));
350static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
351static	void	ees_report_event P((struct eesunit *ees, int code));
352static	void	ees_receive	P((struct recvbuf *rbufp));
353static	void	ees_process	P((struct eesunit *ees));
354#ifdef QSORT_USES_VOID_P
355static	int	offcompare	P((const void *va, const void *vb));
356#else
357static	int	offcompare	P((const l_fp *a, const l_fp *b));
358#endif /* QSORT_USES_VOID_P */
359
360
361/*
362 * Transfer vector
363 */
364struct	refclock refclock_msfees = {
365	msfees_start,		/* start up driver */
366	msfees_shutdown,	/* shut down driver */
367	msfees_poll,		/* transmit poll message */
368	noentry,		/* not used */
369	msfees_init,		/* initialize driver */
370	noentry,		/* not used */
371	NOFLAGS			/* not used */
372};
373
374
375static void
376dump_buf(
377	l_fp *coffs,
378	int from,
379	int to,
380	char *text
381	)
382{
383	char buff[DUMP_BUF_SIZE + 80];
384	int i;
385	register char *ptr = buff;
386
387	sprintf(ptr, text);
388	for (i=from; i<to; i++)
389	{	while (*ptr) ptr++;
390	if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
391	sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
392	}
393	msyslog(LOG_DEBUG, "D: %s", buff);
394}
395
396/* msfees_init - initialize internal ees driver data */
397static void
398msfees_init(void)
399{
400	register int i;
401	/* Just zero the data arrays */
402	memset((char *)eesunits, 0, sizeof eesunits);
403	memset((char *)unitinuse, 0, sizeof unitinuse);
404
405	acceptable_slop.l_ui = 0;
406	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
407
408	onesec.l_ui = 1;
409	onesec.l_uf = 0;
410
411	/* Initialize fudge factors to default. */
412	for (i = 0; i < MAXUNITS; i++) {
413		fudgefactor[i].l_ui	= 0;
414		fudgefactor[i].l_uf	= DEFFUDGETIME;
415		os_delay[i].l_ui	= 0;
416		os_delay[i].l_uf	= DEFOSTIME;
417		inherent_delay[i].l_ui	= 0;
418		inherent_delay[i].l_uf	= DEFINHTIME;
419		offset_fudge[i]		= os_delay[i];
420		L_ADD(&offset_fudge[i], &fudgefactor[i]);
421		L_ADD(&offset_fudge[i], &inherent_delay[i]);
422		stratumtouse[i]		= 0;
423		sloppyclockflag[i]	= 0;
424	}
425}
426
427
428/* msfees_start - open the EES devices and initialize data for processing */
429static int
430msfees_start(
431	int unit,
432	struct peer *peer
433	)
434{
435	register struct eesunit *ees;
436	register int i;
437	int fd232 = -1;
438	char eesdev[20];
439	struct termios ttyb, *ttyp;
440	struct refclockproc *pp;
441	pp = peer->procptr;
442
443	if (unit >= MAXUNITS) {
444		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
445			unit, MAXUNITS-1);
446		return 0;
447	}
448	if (unitinuse[unit]) {
449		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
450		return 0;
451	}
452
453	/* Unit okay, attempt to open the devices.  We do them both at
454	 * once to make sure we can */
455	(void) sprintf(eesdev, EES232, unit);
456
457	fd232 = open(eesdev, O_RDWR, 0777);
458	if (fd232 == -1) {
459		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
460		return 0;
461	}
462
463#ifdef	TIOCEXCL
464	/* Set for exclusive use */
465	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
466		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
467		goto screwed;
468	}
469#endif
470
471	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
472
473	/* Set port characteristics.  If we don't have a STREAMS module or
474	 * a clock line discipline, cooked mode is just usable, even though it
475	 * strips the top bit.  The only EES byte which uses the top
476	 * bit is the year, and we don't use that anyway. If we do
477	 * have the line discipline, we choose raw mode, and the
478	 * line discipline code will block up the messages.
479	 */
480
481	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
482
483	ttyp = &ttyb;
484	if (tcgetattr(fd232, ttyp) < 0) {
485		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
486		goto screwed;
487	}
488
489	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
490	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
491	ttyp->c_oflag = 0;
492	ttyp->c_lflag = ICANON;
493	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
494	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
495		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
496		goto screwed;
497	}
498
499	if (tcflush(fd232, TCIOFLUSH) < 0) {
500		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
501		goto screwed;
502	}
503
504	inherent_delay[unit].l_uf = INH_DELAY_PPS;
505
506	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
507	offset_fudge[unit] = os_delay[unit];
508	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
509	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
510
511	/* Looks like this might succeed.  Find memory for the structure.
512	 * Look to see if there are any unused ones, if not we malloc() one.
513	 */
514	if (eesunits[unit] != 0) /* The one we want is okay */
515	    ees = eesunits[unit];
516	else {
517		/* Look for an unused, but allocated struct */
518		for (i = 0; i < MAXUNITS; i++) {
519			if (!unitinuse[i] && eesunits[i] != 0)
520			    break;
521		}
522
523		if (i < MAXUNITS) {	/* Reclaim this one */
524			ees = eesunits[i];
525			eesunits[i] = 0;
526		}			/* no spare -- make a new one */
527		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
528	}
529	memset((char *)ees, 0, sizeof(struct eesunit));
530	eesunits[unit] = ees;
531
532	/* Set up the structures */
533	ees->peer	= peer;
534	ees->unit	= (u_char)unit;
535	ees->timestarted= current_time;
536	ees->ttytype	= 0;
537	ees->io.clock_recv= ees_receive;
538	ees->io.srcclock= (caddr_t)ees;
539	ees->io.datalen	= 0;
540	ees->io.fd	= fd232;
541
542	/* Okay.  Push one of the two (linked into the kernel, or dynamically
543	 * loaded) STREAMS module, and give it to the I/O code to start
544	 * receiving stuff.
545	 */
546
547#ifdef STREAM
548	{
549		int rc1;
550		/* Pop any existing onews first ... */
551		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
552
553		/* Now try pushing either of the possible modules */
554		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
555		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
556			msyslog(LOG_ERR,
557				"ees clock: Push of `%s' and `%s' to %s failed %m",
558				STREAM_PP1, STREAM_PP2, eesdev);
559			goto screwed;
560		}
561		else {
562			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
563				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
564					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
565			ees->ttytype |= T_PPS;
566		}
567	}
568#endif /* STREAM */
569
570	/* Add the clock */
571	if (!io_addclock(&ees->io)) {
572		/* Oh shit.  Just close and return. */
573		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
574		goto screwed;
575	}
576
577
578	/* All done.  Initialize a few random peer variables, then
579	 * return success. */
580	peer->precision	= sys_precision;
581	peer->stratum	= stratumtouse[unit];
582	if (stratumtouse[unit] <= 1) {
583		memcpy((char *)&pp->refid, EESREFID, 4);
584		if (unit > 0 && unit < 10)
585		    ((char *)&pp->refid)[3] = '0' + unit;
586	} else {
587		peer->refid = htonl(EESHSREFID);
588	}
589	unitinuse[unit] = 1;
590	pp->unitptr = (caddr_t) &eesunits[unit];
591	pp->clockdesc = EESDESCRIPTION;
592	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
593	return (1);
594
595    screwed:
596	if (fd232 != -1)
597	    (void) close(fd232);
598	return (0);
599}
600
601
602/* msfees_shutdown - shut down a EES clock */
603static void
604msfees_shutdown(
605	int unit,
606	struct peer *peer
607	)
608{
609	register struct eesunit *ees;
610
611	if (unit >= MAXUNITS) {
612		msyslog(LOG_ERR,
613			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
614			unit, MAXUNITS);
615		return;
616	}
617	if (!unitinuse[unit]) {
618		msyslog(LOG_ERR,
619			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
620		return;
621	}
622
623	/* Tell the I/O module to turn us off.  We're history. */
624	ees = eesunits[unit];
625	io_closeclock(&ees->io);
626	unitinuse[unit] = 0;
627}
628
629
630/* ees_report_event - note the occurance of an event */
631static void
632ees_report_event(
633	struct eesunit *ees,
634	int code
635	)
636{
637	if (ees->status != (u_char)code) {
638		ees->status = (u_char)code;
639		if (code != CEVNT_NOMINAL)
640		    ees->lastevent = (u_char)code;
641		/* Should report event to trap handler in here.
642		 * Soon...
643		 */
644	}
645}
646
647
648/* ees_receive - receive data from the serial interface on an EES clock */
649static void
650ees_receive(
651	struct recvbuf *rbufp
652	)
653{
654	register int n_sample;
655	register int day;
656	register struct eesunit *ees;
657	register u_char *dpt;		/* Data PoinTeR: move along ... */
658	register u_char *dpend;		/* Points just *after* last data char */
659	register char *cp;
660	l_fp tmp;
661	int call_pps_sample = 0;
662	l_fp pps_arrvstamp;
663	int	sincelast;
664	int	pps_step = 0;
665	int	suspect_4ms_step = 0;
666	struct ppsclockev ppsclockev;
667	long *ptr = (long *) &ppsclockev;
668	int rc;
669	int request;
670#ifdef HAVE_CIOGETEV
671	request = CIOGETEV;
672#endif
673#ifdef HAVE_TIOCGPPSEV
674	request = TIOCGPPSEV;
675#endif
676
677	/* Get the clock this applies to and a pointer to the data */
678	ees = (struct eesunit *)rbufp->recv_srcclock;
679	dpt = (u_char *)&rbufp->recv_space;
680	dpend = dpt + rbufp->recv_length;
681	if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
682	    printf("[%d] ", rbufp->recv_length);
683
684	/* Check out our state and process appropriately */
685	switch (ees->codestate) {
686	    case EESCS_WAIT:
687		/* Set an initial guess at the timestamp as the recv time.
688		 * If just running in CBREAK mode, we can't improve this.
689		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
690		 * then we will do better later ....
691		 */
692		ees->arrvtime = rbufp->recv_time;
693		ees->codestate = EESCS_GOTSOME;
694		ees->lencode = 0;
695		/*FALLSTHROUGH*/
696
697	    case EESCS_GOTSOME:
698		cp = &(ees->lastcode[ees->lencode]);
699
700		/* Gobble the bytes until the final (possibly stripped) 0xff */
701		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
702			*cp++ = (char)*dpt++;
703			ees->lencode++;
704			/* Oh dear -- too many bytes .. */
705			if (ees->lencode > LENEESPRT) {
706				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
707					msyslog(LOG_INFO,
708						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
709						ees->lencode, dpend - dpt, LENEESPRT,
710#define D(x) (ees->lastcode[x])
711						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
712						D(7), D(8), D(9), D(10), D(11), D(12));
713#undef	D
714				ees->badformat++;
715				ees->reason = CODEREASON + 1;
716				ees_event(ees, CEVNT_BADREPLY);
717				ees_reset(ees);
718				return;
719			}
720		}
721		/* Gave up because it was end of the buffer, rather than ff */
722		if (dpt == dpend) {
723			/* Incomplete.  Wait for more. */
724			if (debug & DB_LOG_AWAITMORE)
725			    msyslog(LOG_INFO,
726				    "I: ees clock %d: %x == %x: await more",
727				    ees->unit, dpt, dpend);
728			return;
729		}
730
731		/* This shouldn't happen ... ! */
732		if ((*dpt & 0x7f) != 0x7f) {
733			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
734			ees->badformat++;
735			ees->reason = CODEREASON + 2;
736			ees_event(ees, CEVNT_BADREPLY);
737			ees_reset(ees);
738			return;
739		}
740
741		/* Skip the 0xff */
742		dpt++;
743
744		/* Finally, got a complete buffer.  Mainline code will
745		 * continue on. */
746		cp = ees->lastcode;
747		break;
748
749	    default:
750		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
751			ees->unit, ees->codestate);
752		ees->reason = CODEREASON + 5;
753		ees_event(ees, CEVNT_FAULT);
754		ees_reset(ees);
755		return;
756	}
757
758	/* Boy!  After all that crap, the lastcode buffer now contains
759	 * something we hope will be a valid time code.  Do length
760	 * checks and sanity checks on constant data.
761	 */
762	ees->codestate = EESCS_WAIT;
763	ees->lasttime = current_time;
764	if (ees->lencode != LENEESPRT) {
765		ees->badformat++;
766		ees->reason = CODEREASON + 6;
767		ees_event(ees, CEVNT_BADREPLY);
768		ees_reset(ees);
769		return;
770	}
771
772	cp = ees->lastcode;
773
774	/* Check that centisecond is zero */
775	if (cp[EESM_CSEC] != 0) {
776		ees->baddata++;
777		ees->reason = CODEREASON + 7;
778		ees_event(ees, CEVNT_BADREPLY);
779		ees_reset(ees);
780		return;
781	}
782
783	/* Check flag formats */
784	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
785		ees->badformat++;
786		ees->reason = CODEREASON + 8;
787		ees_event(ees, CEVNT_BADREPLY);
788		ees_reset(ees);
789		return;
790	}
791
792	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
793		ees->badformat++;
794		ees->reason = CODEREASON + 9;
795		ees_event(ees, CEVNT_BADREPLY);
796		ees_reset(ees);
797		return;
798	}
799
800	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
801		ees->badformat++;
802		ees->reason = CODEREASON + 10;
803		ees_event(ees, CEVNT_BADREPLY);
804		ees_reset(ees);
805		return;
806	}
807
808	/* So far, so good.  Compute day, hours, minutes, seconds,
809	 * time zone.  Do range checks on these.
810	 */
811
812#define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
813#define istrue(x)	((x)?1:0)
814
815	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
816	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
817	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
818
819	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
820
821	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
822
823		/*  Add in lengths of all previous months.  Add one more
824		    if it is a leap year and after February.
825		*/
826	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
827	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
828	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
829	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
830	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
831	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
832	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
833	    case  5:	day += APR;			  /*FALLSTHROUGH*/
834	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
835	    case  3:	day += FEB;
836		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
837	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
838	    case  1:	break;
839	    default:	ees->baddata++;
840		ees->reason = CODEREASON + 11;
841		ees_event(ees, CEVNT_BADDATE);
842		ees_reset(ees);
843		return;
844	}
845
846	ees->day     = day;
847
848	/* Get timezone. The clocktime routine wants the number
849	 * of hours to add to the delivered time to get UT.
850	 * Currently -1 if BST flag set, 0 otherwise.  This
851	 * is the place to tweak things if double summer time
852	 * ever happens.
853	 */
854	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
855
856	if (ees->day > 366 || ees->day < 1 ||
857	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
858		ees->baddata++;
859		ees->reason = CODEREASON + 12;
860		ees_event(ees, CEVNT_BADDATE);
861		ees_reset(ees);
862		return;
863	}
864
865	n_sample = ees->nsamples;
866
867	/* Now, compute the reference time value: text -> tmp.l_ui */
868	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
869		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
870		       &tmp.l_ui)) {
871		ees->baddata++;
872		ees->reason = CODEREASON + 13;
873		ees_event(ees, CEVNT_BADDATE);
874		ees_reset(ees);
875		return;
876	}
877	tmp.l_uf = 0;
878
879	/*  DON'T use ees->arrvtime -- it may be < reftime */
880	ees->lastsampletime = tmp;
881
882	/* If we are synchronised to the radio, update the reference time.
883	 * Also keep a note of when clock was last good.
884	 */
885	if (istrue(cp[EESM_MSFOK])) {
886		ees->reftime = tmp;
887		ees->clocklastgood = current_time;
888	}
889
890
891	/* Compute the offset.  For the fractional part of the
892	 * offset we use the expected delay for the message.
893	 */
894	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
895	ees->codeoffsets[n_sample].l_uf = 0;
896
897	/* Number of seconds since the last step */
898	sincelast = this_uisec - ees->last_step;
899
900	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
901
902	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
903	if (debug & DB_PRINT_EV) fprintf(stderr,
904					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
905					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
906					 rc, errno, ptr[0], ptr[1], ptr[2]);
907
908	/* If we managed to get the time of arrival, process the info */
909	if (rc >= 0) {
910		int conv = -1;
911		pps_step = ppsclockev.serial - ees->last_pps_no;
912
913		/* Possible that PPS triggered, but text message didn't */
914		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
915		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
916		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
917
918		/* allow for single loss of PPS only */
919		if (pps_step != 1 && pps_step != 2)
920		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
921			    ppsclockev.serial, ees->last_pps_no, pps_step);
922		else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
923		    fprintf(stderr, "buftvtots failed\n");
924		else {	/* if ((ABS(time difference) - 0.25) < 0)
925			 * then believe it ...
926			 */
927			l_fp diff;
928			diff = pps_arrvstamp;
929			conv = 0;
930			L_SUB(&diff, &ees->arrvtime);
931			if (debug & DB_PRINT_CDT)
932			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
933				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
934				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
935				   (long)diff.l_ui, (long)diff.l_uf,
936				   ctime(&(ppsclockev.tv.tv_sec)));
937			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
938			L_SUB(&diff, &acceptable_slop);
939			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
940				ees->arrvtime = pps_arrvstamp;
941				conv++;
942				call_pps_sample++;
943			}
944			/* Some loss of some signals around sec = 1 */
945			else if (ees->second == 1) {
946				diff = pps_arrvstamp;
947				L_ADD(&diff, &onesec);
948				L_SUB(&diff, &ees->arrvtime);
949				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
950				L_SUB(&diff, &acceptable_slop);
951				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
952					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
953					pps_arrvstamp.l_uf,
954					ees->arrvtime.l_uf,
955					diff.l_ui, diff.l_uf,
956					(int)ppsclockev.tv.tv_usec,
957					ctime(&(ppsclockev.tv.tv_sec)));
958				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
959					suspect_4ms_step |= 2;
960					ees->arrvtime = pps_arrvstamp;
961					L_ADD(&ees->arrvtime, &onesec);
962					conv++;
963					call_pps_sample++;
964				}
965			}
966		}
967		ees->last_pps_no = ppsclockev.serial;
968		if (debug & DB_PRINT_CDTC)
969		    printf(
970			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
971			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
972			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
973			    call_pps_sample, pps_step);
974	}
975
976	/* See if there has been a 4ms jump at a minute boundry */
977	{	l_fp	delta;
978#define	delta_isec	delta.l_ui
979#define	delta_ssec	delta.l_i
980#define	delta_sfsec	delta.l_f
981	long	delta_f_abs;
982
983	delta.l_i = ees->arrvtime.l_i;
984	delta.l_f = ees->arrvtime.l_f;
985
986	L_SUB(&delta, &ees->last_l);
987	delta_f_abs = delta_sfsec;
988	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
989
990	/* Dump the deltas each minute */
991	if (debug & DB_DUMP_DELTAS)
992	{	if (/*0 <= ees->second && */
993		ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
994	/* Dump on second 1, as second 0 sometimes missed */
995	if (ees->second == 1) {
996		char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
997		char *cptr=text;
998		int i;
999		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
1000			sprintf(cptr, " %d.%04d",
1001				msec(deltas[i]), subms(deltas[i]));
1002			while (*cptr) cptr++;
1003		}
1004		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1005			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1006			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1007			text+1);
1008		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1009	}
1010	}
1011
1012	/* Lets see if we have a 4 mS step at a minute boundaary */
1013	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1014		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1015		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1016		(sincelast < 0 || sincelast > 122)
1017		) {	/* 4ms jump at min boundry */
1018		int old_sincelast;
1019		int count=0;
1020		int sum = 0;
1021		/* Yes -- so compute the ramp time */
1022		if (ees->last_step == 0) sincelast = 0;
1023		old_sincelast = sincelast;
1024
1025		/* First time in, just set "ees->last_step" */
1026		if(ees->last_step) {
1027			int other_step = 0;
1028			int third_step = 0;
1029			int this_step = (sincelast + (60 /2)) / 60;
1030			int p_step = ees->this_step;
1031			int p;
1032			ees->last_steps[p_step] = this_step;
1033			p= p_step;
1034			p_step++;
1035			if (p_step >= LAST_STEPS) p_step = 0;
1036			ees->this_step = p_step;
1037				/* Find the "average" interval */
1038			while (p != p_step) {
1039				int this = ees->last_steps[p];
1040				if (this == 0) break;
1041				if (this != this_step) {
1042					if (other_step == 0 && (
1043						this== (this_step +2) ||
1044						this== (this_step -2) ||
1045						this== (this_step +1) ||
1046						this== (this_step -1)))
1047					    other_step = this;
1048					if (other_step != this) {
1049						int idelta = (this_step - other_step);
1050						if (idelta < 0) idelta = - idelta;
1051						if (third_step == 0 && (
1052							(idelta == 1) ? (
1053								this == (other_step +1) ||
1054								this == (other_step -1) ||
1055								this == (this_step +1) ||
1056								this == (this_step -1))
1057							:
1058							(
1059								this == (this_step + other_step)/2
1060								)
1061							)) third_step = this;
1062						if (third_step != this) break;
1063					}
1064				}
1065				sum += this;
1066				p--;
1067				if (p < 0) p += LAST_STEPS;
1068				count++;
1069			}
1070			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1071			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1072#define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1073			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1074				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1075				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1076			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1077			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1078			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1079#undef SV
1080			ees->jump_fsecs = delta_sfsec;
1081			ees->using_ramp = 1;
1082			if (sincelast > 170)
1083			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1084			else ees->last_step_late = 30;
1085			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1086			if (ees->last_step_late < 0) ees->last_step_late = 0;
1087			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1088			sincelast = 0;
1089		}
1090		else {	/* First time in -- just save info */
1091			ees->last_step_late = 30;
1092			ees->jump_fsecs = delta_sfsec;
1093			ees->using_ramp = 1;
1094			sum = 4 * 60;
1095		}
1096		ees->last_step = this_uisec;
1097		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1098		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1099		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1100		       ees->last_step_secs);
1101		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1102			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1103			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1104		if (sum) ees->last_step_secs = sum;
1105	}
1106	/* OK, so not a 4ms step at a minute boundry */
1107	else {
1108		if (suspect_4ms_step) msyslog(LOG_ERR,
1109					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1110					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1111					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1112					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1113					      (int)msec(delta_f_abs),
1114					      (int)subms(delta_f_abs),
1115					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1116					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1117					      ees->second,
1118					      sincelast);
1119		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1120			static int ees_step_notes = EES_STEP_NOTES;
1121			if (ees_step_notes > 0) {
1122				ees_step_notes--;
1123				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1124				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1125				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1126				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1127					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1128			}
1129		}
1130	}
1131	}
1132	ees->last_l = ees->arrvtime;
1133
1134	/* IF we have found that it's ramping
1135	 * && it's within twice the expected ramp period
1136	 * && there is a non zero step size (avoid /0 !)
1137	 * THEN we twiddle things
1138	 */
1139	if (ees->using_ramp &&
1140	    sincelast < (ees->last_step_secs)*2 &&
1141	    ees->last_step_secs)
1142	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1143	long	fsecs;
1144	l_fp	inc;
1145
1146	/* Ramp time may vary, so may ramp for longer than last time */
1147	if (sec_of_ramp > (ees->last_step_secs + 120))
1148	    sec_of_ramp =  ees->last_step_secs;
1149
1150	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1151	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1152
1153	if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1154					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1155					   DB_LOG_DELTAS,
1156					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1157					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1158	if (debug & DB_PRINT_DELTAS) printf(
1159		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1160		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1161		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1162
1163	/* Must sign extend the result */
1164	inc.l_i = (fsecs < 0) ? -1 : 0;
1165	inc.l_f = fsecs;
1166	if (debug & DB_INC_PPS)
1167	{	L_SUB(&pps_arrvstamp, &inc);
1168	L_SUB(&ees->arrvtime, &inc);
1169	}
1170	else
1171	{	L_ADD(&pps_arrvstamp, &inc);
1172	L_ADD(&ees->arrvtime, &inc);
1173	}
1174	}
1175	else {
1176		if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1177						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1178						   DB_LOG_DELTAS,
1179						   ees->unit, ees->using_ramp,
1180						   sincelast,
1181						   (ees->last_step_secs)*2,
1182						   ees->last_step_secs);
1183		if (debug & DB_PRINT_DELTAS) printf(
1184			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1185			DB_LOG_DELTAS,
1186			ees->unit, ees->using_ramp,
1187			sincelast,
1188			(ees->last_step_secs)*2,
1189			ees->last_step_secs);
1190	}
1191
1192	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1193	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1194
1195	if (call_pps_sample && !(debug & DB_NO_PPS)) {
1196		/* Sigh -- it expects its args negated */
1197		L_NEG(&pps_arrvstamp);
1198		/*
1199		 * I had to disable this here, since it appears there is no pointer to the
1200		 * peer structure.
1201		 *
1202		 (void) pps_sample(peer, &pps_arrvstamp);
1203		*/
1204	}
1205
1206	/* Subtract off the local clock time stamp */
1207	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1208	if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1209					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1210					    ees->unit, DB_LOG_DELTAS, n_sample,
1211					    ees->codeoffsets[n_sample].l_f,
1212					    ees->codeoffsets[n_sample].l_f / 4295,
1213					    pps_arrvstamp.l_f,
1214					    pps_arrvstamp.l_f /4295,
1215					    (debug & DB_NO_PPS) ? " [no PPS]" : "");
1216
1217	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1218
1219	/* Done! */
1220}
1221
1222
1223/* offcompare - auxiliary comparison routine for offset sort */
1224
1225#ifdef QSORT_USES_VOID_P
1226static int
1227offcompare(
1228	const void *va,
1229	const void *vb
1230	)
1231{
1232	const l_fp *a = (const l_fp *)va;
1233	const l_fp *b = (const l_fp *)vb;
1234	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1235}
1236#else
1237static int
1238offcompare(
1239	const l_fp *a,
1240	const l_fp *b
1241	)
1242{
1243	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1244}
1245#endif /* QSORT_USES_VOID_P */
1246
1247
1248/* ees_process - process a pile of samples from the clock */
1249static void
1250ees_process(
1251	struct eesunit *ees
1252	)
1253{
1254	static int last_samples = -1;
1255	register int i, j;
1256	register int noff;
1257	register l_fp *coffs = ees->codeoffsets;
1258	l_fp offset, tmp;
1259	double dispersion;	/* ++++ */
1260	int lostsync, isinsync;
1261	int samples = ees->nsamples;
1262	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1263	int samplereduce = (samples + 1) / 2;
1264	double doffset;
1265
1266	/* Reset things to zero so we don't have to worry later */
1267	ees_reset(ees);
1268
1269	if (sloppyclockflag[ees->unit]) {
1270		samplelog = (samples <  2) ? 0 :
1271			(samples <  5) ? 1 :
1272			(samples <  9) ? 2 :
1273			(samples < 17) ? 3 :
1274			(samples < 33) ? 4 : 5;
1275		samplereduce = (1 << samplelog);
1276	}
1277
1278	if (samples != last_samples &&
1279	    ((samples != (last_samples-1)) || samples < 3)) {
1280		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1281			samples, last_samples, samplereduce);
1282		last_samples = samples;
1283	}
1284	if (samples < 1) return;
1285
1286	/* If requested, dump the raw data we have in the buffer */
1287	if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw  data  is:");
1288
1289	/* Sort the offsets, trim off the extremes, then choose one. */
1290	qsort((char *) coffs, (u_int)samples, sizeof(l_fp), offcompare);
1291
1292	noff = samples;
1293	i = 0;
1294	while ((noff - i) > samplereduce) {
1295		/* Trim off the sample which is further away
1296		 * from the median.  We work this out by doubling
1297		 * the median, subtracting off the end samples, and
1298		 * looking at the sign of the answer, using the
1299		 * identity (c-b)-(b-a) == 2*b-a-c
1300		 */
1301		tmp = coffs[(noff + i)/2];
1302		L_ADD(&tmp, &tmp);
1303		L_SUB(&tmp, &coffs[i]);
1304		L_SUB(&tmp, &coffs[noff-1]);
1305		if (L_ISNEG(&tmp)) noff--; else i++;
1306	}
1307
1308	/* If requested, dump the reduce data we have in the buffer */
1309	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1310
1311	/* What we do next depends on the setting of the sloppy clock flag.
1312	 * If it is on, average the remainder to derive our estimate.
1313	 * Otherwise, just pick a representative value from the remaining stuff
1314	 */
1315	if (sloppyclockflag[ees->unit]) {
1316		offset.l_ui = offset.l_uf = 0;
1317		for (j = i; j < noff; j++)
1318		    L_ADD(&offset, &coffs[j]);
1319		for (j = samplelog; j > 0; j--)
1320		    L_RSHIFTU(&offset);
1321	}
1322	else offset = coffs[i+BESTSAMPLE];
1323
1324	/* Compute the dispersion as the difference between the
1325	 * lowest and highest offsets that remain in the
1326	 * consideration list.
1327	 *
1328	 * It looks like MOST clocks have MOD (max error), so halve it !
1329	 */
1330	tmp = coffs[noff-1];
1331	L_SUB(&tmp, &coffs[i]);
1332#define	FRACT_SEC(n) ((1 << 30) / (n/2))
1333	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1334	if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1335		(debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1336		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1337		debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1338		offset.l_f / 4295, offset.l_f,
1339		(dispersion * 1526) / 100,
1340		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1341		FRACT_SEC(10) / 4295,
1342		(coffs[0].l_f) / 4295,
1343		i,
1344		(coffs[i].l_f) / 4295,
1345		(coffs[samples/2].l_f) / 4295,
1346		(coffs[i+BESTSAMPLE].l_f) / 4295,
1347		noff-1,
1348		(coffs[noff-1].l_f) / 4295,
1349		(coffs[samples-1].l_f) / 4295);
1350
1351	/* Are we playing silly wotsits ?
1352	 * If we are using all data, see if there is a "small" delta,
1353	 * and if so, blurr this with 3/4 of the delta from the last value
1354	 */
1355	if (ees->usealldata && ees->offset.l_uf) {
1356		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1357
1358		/* is the delta small enough ? */
1359		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1360			int samd = (64 * 4) / samples;
1361			long new;
1362			if (samd < 2) samd = 2;
1363			new = offset.l_uf + ((diff * (samd -1)) / samd);
1364
1365			/* Sign change -> need to fix up int part */
1366			if ((new & 0x80000000) !=
1367			    (((long) offset.l_uf) & 0x80000000))
1368			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1369					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1370						new & 0x80000000,
1371						((long) offset.l_uf) & 0x80000000,
1372						new, (long) offset.l_uf,
1373						(new < 0) ? -1 : 1);
1374				offset.l_ui += (new < 0) ? -1 : 1;
1375			}
1376			dispersion /= 4;
1377			if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1378				(debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1379				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1380				debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1381				((long) offset.l_uf) / 4295, new / 4295,
1382				(dispersion * 1526) / 100);
1383			offset.l_uf = (unsigned long) new;
1384		}
1385		else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1386			(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1387			"[%x] No smooth as delta not %d < %ld < %d",
1388			debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1389			- FRACT_SEC(100), diff, FRACT_SEC(100));
1390	}
1391	else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1392		(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1393		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1394		debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1395		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1396		offset.l_f, ees->offset.l_f - offset.l_f);
1397
1398	/* Collect offset info for debugging info */
1399	ees->offset = offset;
1400	ees->lowoffset = coffs[i];
1401	ees->highoffset = coffs[noff-1];
1402
1403	/* Determine synchronization status.  Can be unsync'd either
1404	 * by a report from the clock or by a leap hold.
1405	 *
1406	 * Loss of the radio signal for a short time does not cause
1407	 * us to go unsynchronised, since the receiver keeps quite
1408	 * good time on its own.  The spec says 20ms in 4 hours; the
1409	 * observed drift in our clock (Cambridge) is about a second
1410	 * a day, but even that keeps us within the inherent tolerance
1411	 * of the clock for about 15 minutes. Observation shows that
1412	 * the typical "short" outage is 3 minutes, so to allow us
1413	 * to ride out those, we will give it 5 minutes.
1414	 */
1415	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1416	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1417
1418	/* Done.  Use time of last good, synchronised code as the
1419	 * reference time, and lastsampletime as the receive time.
1420	 */
1421	if (ees->fix_pending) {
1422		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1423			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1424		ees->fix_pending = 0;
1425	}
1426	LFPTOD(&offset, doffset);
1427	refclock_receive(ees->peer);
1428	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1429}
1430
1431/* msfees_poll - called by the transmit procedure */
1432static void
1433msfees_poll(
1434	int unit,
1435	struct peer *peer
1436	)
1437{
1438	if (unit >= MAXUNITS) {
1439		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1440			unit);
1441		return;
1442	}
1443	if (!unitinuse[unit]) {
1444		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1445			unit);
1446		return;
1447	}
1448
1449	ees_process(eesunits[unit]);
1450
1451	if ((current_time - eesunits[unit]->lasttime) > 150)
1452	    ees_event(eesunits[unit], CEVNT_FAULT);
1453}
1454
1455
1456#else
1457int refclock_msfees_bs;
1458#endif /* REFCLOCK */
1459