refclock_msfees.c revision 132451
1/* refclock_ees - clock driver for the EES M201 receiver */
2
3#ifdef HAVE_CONFIG_H
4#include <config.h>
5#endif
6
7#if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
8
9/* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10 * were removed as the code was overly hairy, they weren't in use
11 * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
12 */
13
14#include "ntpd.h"
15#include "ntp_io.h"
16#include "ntp_refclock.h"
17#include "ntp_unixtime.h"
18#include "ntp_calendar.h"
19
20#include <ctype.h>
21#if defined(HAVE_BSD_TTYS)
22#include <sgtty.h>
23#endif /* HAVE_BSD_TTYS */
24#if defined(HAVE_SYSV_TTYS)
25#include <termio.h>
26#endif /* HAVE_SYSV_TTYS */
27#if defined(HAVE_TERMIOS)
28#include <termios.h>
29#endif
30#if defined(STREAM)
31#include <stropts.h>
32#endif
33
34#ifdef HAVE_SYS_TERMIOS_H
35# include <sys/termios.h>
36#endif
37#ifdef HAVE_SYS_PPSCLOCK_H
38# include <sys/ppsclock.h>
39#endif
40
41#include "ntp_stdlib.h"
42
43/*
44	fudgefactor	= fudgetime1;
45	os_delay	= fudgetime2;
46	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
47	stratumtouse	= fudgeval1 & 0xf
48	debug		= fudgeval2;
49	sloppyclockflag	= flags & CLK_FLAG1;
50		1	  log smoothing summary when processing sample
51		4	  dump the buffer from the clock
52		8	  EIOGETKD the last n uS time stamps
53	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
54	ees->dump_vals	= flags & CLK_FLAG3;
55	ees->usealldata	= flags & CLK_FLAG4;
56
57
58	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
59	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
60	bug->values[2] = (u_long)ees->status;
61	bug->values[3] = (u_long)ees->lastevent;
62	bug->values[4] = (u_long)ees->reason;
63	bug->values[5] = (u_long)ees->nsamples;
64	bug->values[6] = (u_long)ees->codestate;
65	bug->values[7] = (u_long)ees->day;
66	bug->values[8] = (u_long)ees->hour;
67	bug->values[9] = (u_long)ees->minute;
68	bug->values[10] = (u_long)ees->second;
69	bug->values[11] = (u_long)ees->tz;
70	bug->values[12] = ees->yearstart;
71	bug->values[13] = (ees->leaphold > current_time) ?
72				ees->leaphold - current_time : 0;
73	bug->values[14] = inherent_delay[unit].l_uf;
74	bug->values[15] = offset_fudge[unit].l_uf;
75
76	bug->times[0] = ees->reftime;
77	bug->times[1] = ees->arrvtime;
78	bug->times[2] = ees->lastsampletime;
79	bug->times[3] = ees->offset;
80	bug->times[4] = ees->lowoffset;
81	bug->times[5] = ees->highoffset;
82	bug->times[6] = inherent_delay[unit];
83	bug->times[8] = os_delay[unit];
84	bug->times[7] = fudgefactor[unit];
85	bug->times[9] = offset_fudge[unit];
86	bug->times[10]= ees->yearstart, 0;
87	*/
88
89/* This should support the use of an EES M201 receiver with RS232
90 * output (modified to transmit time once per second).
91 *
92 * For the format of the message sent by the clock, see the EESM_
93 * definitions below.
94 *
95 * It appears to run free for an integral number of minutes, until the error
96 * reaches 4mS, at which point it steps at second = 01.
97 * It appears that sometimes it steps 4mS (say at 7 min interval),
98 * then the next minute it decides that it was an error, so steps back.
99 * On the next minute it steps forward again :-(
100 * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
101 * or 9.5uS/S then 3990.5uS at a 7min re-sync,
102 * at which point it may lose the "00" second time stamp.
103 * I assume that the most accurate time is just AFTER the re-sync.
104 * Hence remember the last cycle interval,
105 *
106 * Can run in any one of:
107 *
108 *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
109 *	(sun)		*in the interupt code*, so as to avoid problems with
110 *			the STREAMS scheduling.
111 *
112 * It appears that it goes 16.5 uS slow each second, then every 4 mins it
113 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
114 */
115
116/* Definitions */
117#ifndef	MAXUNITS
118#define	MAXUNITS	4	/* maximum number of EES units permitted */
119#endif
120
121#ifndef	EES232
122#define	EES232	"/dev/ees%d"	/* Device to open to read the data */
123#endif
124
125/* Other constant stuff */
126#ifndef	EESPRECISION
127#define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
128#endif
129#ifndef	EESREFID
130#define	EESREFID	"MSF\0"		/* String to identify the clock */
131#endif
132#ifndef	EESHSREFID
133#define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
134#endif
135
136/* Description of clock */
137#define	EESDESCRIPTION		"EES M201 MSF Receiver"
138
139/* Speed we run the clock port at. If this is changed the UARTDELAY
140 * value should be recomputed to suit.
141 */
142#ifndef	SPEED232
143#define	SPEED232	B9600	/* 9600 baud */
144#endif
145
146/* What is the inherent delay for this mode of working, i.e. when is the
147 * data time stamped.
148 */
149#define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
150#define	BITS_TO_L_FP(bits, baud) \
151(((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
152#define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
153#define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
154
155#ifndef	STREAM_PP1
156#define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
157#endif
158#ifndef	STREAM_PP2
159#define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
160#endif
161
162     /* Offsets of the bytes of the serial line code.  The clock gives
163 * local time with a GMT/BST indication. The EESM_ definitions
164 * give offsets into ees->lastcode.
165 */
166#define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
167#define EESM_SEC	 1	/* seconds in BCD			    */
168#define EESM_MIN	 2	/* minutes in BCD			    */
169#define EESM_HOUR	 3	/* hours in BCD				    */
170#define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
171#define EESM_DAY	 5	/* day of month in BCD			    */
172#define EESM_MON	 6	/* month in BCD				    */
173#define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
174#define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
175#define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
176#define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
177				/* followed by a frame alignment byte (0xff) /
178				/  which is not put into the lastcode buffer*/
179
180/* Length of the serial time code, in characters.  The first length
181 * is less the frame alignment byte.
182 */
183#define	LENEESPRT	(EESM_MSFOK+1)
184#define	LENEESCODE	(LENEESPRT+1)
185
186     /* Code state. */
187#define	EESCS_WAIT	0       /* waiting for start of timecode */
188#define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
189
190     /* Default fudge factor and character to receive */
191#define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
192#ifndef	DEFOSTIME
193#define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
194#endif
195#define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
196
197     /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
198 * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
199 * as the estimated offset, otherwise average the remainder.
200 */
201#define	FULLSHIFT	6			/* NCODES root 2 */
202#define NCODES		(1<< FULLSHIFT)		/* 64 */
203#define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
204
205     /* Towards the high ( Why ?) end of half */
206#define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
207
208     /* Leap hold time.  After a leap second the clock will no longer be
209 * reliable until it resynchronizes.  Hope 40 minutes is enough. */
210#define	EESLEAPHOLD	(40 * 60)
211
212#define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
213#define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
214#define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
215#define	EES_STEP_NOTES	50	/* Only do a limited number */
216#define	MAX_STEP	16	/* Max number of steps to remember */
217
218     /* debug is a bit mask of debugging that is wanted */
219#define	DB_SYSLOG_SMPLI		0x0001
220#define	DB_SYSLOG_SMPLE		0x0002
221#define	DB_SYSLOG_SMTHI		0x0004
222#define	DB_SYSLOG_NSMTHE	0x0008
223#define	DB_SYSLOG_NSMTHI	0x0010
224#define	DB_SYSLOG_SMTHE		0x0020
225#define	DB_PRINT_EV		0x0040
226#define	DB_PRINT_CDT		0x0080
227#define	DB_PRINT_CDTC		0x0100
228#define	DB_SYSLOG_KEEPD		0x0800
229#define	DB_SYSLOG_KEEPE		0x1000
230#define	DB_LOG_DELTAS		0x2000
231#define	DB_PRINT_DELTAS		0x4000
232#define	DB_LOG_AWAITMORE	0x8000
233#define	DB_LOG_SAMPLES		0x10000
234#define	DB_NO_PPS		0x20000
235#define	DB_INC_PPS		0x40000
236#define	DB_DUMP_DELTAS		0x80000
237
238     struct eesunit {			/* EES unit control structure. */
239	     struct peer *peer;		/* associated peer structure */
240	     struct refclockio io;		/* given to the I/O handler */
241	     l_fp	reftime;		/* reference time */
242	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
243	     l_fp	arrvtime;		/* Time at which pkt arrived */
244	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
245	     l_fp	offset;			/* chosen offset        (for clkbug) */
246	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
247	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
248	     char	lastcode[LENEESCODE+6];	/* last time code we received */
249	     u_long	lasttime;		/* last time clock heard from */
250	     u_long	clocklastgood;		/* last time good radio seen */
251	     u_char	lencode;		/* length of code in buffer */
252	     u_char	nsamples;		/* number of samples we've collected */
253	     u_char	codestate;		/* state of 232 code reception */
254	     u_char	unit;			/* unit number for this guy */
255	     u_char	status;			/* clock status */
256	     u_char	lastevent;		/* last clock event */
257	     u_char	reason;			/* reason for last abort */
258	     u_char	hour;			/* hour of day */
259	     u_char	minute;			/* minute of hour */
260	     u_char	second;			/* seconds of minute */
261	     char	tz;			/* timezone from clock */
262	     u_char	ttytype;		/* method used */
263	     u_char	dump_vals;		/* Should clock values be dumped */
264	     u_char	usealldata;		/* Use ALL samples */
265	     u_short	day;			/* day of year from last code */
266	     u_long	yearstart;		/* start of current year */
267	     u_long	leaphold;		/* time of leap hold expiry */
268	     u_long	badformat;		/* number of bad format codes */
269	     u_long	baddata;		/* number of invalid time codes */
270	     u_long	timestarted;		/* time we started this */
271	     long	last_pps_no;		/* The serial # of the last PPS */
272	     char	fix_pending;		/* Is a "sync to time" pending ? */
273	     /* Fine tuning - compensate for 4 mS ramping .... */
274	     l_fp	last_l;			/* last time stamp */
275	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
276	     int	best_av_step;		/* Best guess at average step */
277	     char	best_av_step_count;	/* # of steps over used above */
278	     char	this_step;		/* Current pos in buffer */
279	     int	last_step_late;		/* How late the last step was (0-59) */
280	     long	jump_fsecs;		/* # of fractions of a sec last jump */
281	     u_long	last_step;		/* time of last step */
282	     int	last_step_secs;		/* Number of seconds in last step */
283	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
284     };
285#define	last_sec	last_l.l_ui
286#define	last_sfsec	last_l.l_f
287#define	this_uisec	((ees->arrvtime).l_ui)
288#define	this_sfsec	((ees->arrvtime).l_f)
289#define	msec(x)		((x) / (1<<22))
290#define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
291#define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
292
293/* Bitmask for what methods to try to use -- currently only PPS enabled */
294#define	T_CBREAK	1
295#define	T_PPS		8
296/* macros to test above */
297#define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
298#define	is_pps(x)	((x)->ttytype & T_PPS)
299#define	is_any(x)	((x)->ttytype)
300
301#define	CODEREASON	20	/* reason codes */
302
303/* Data space for the unit structures.  Note that we allocate these on
304 * the fly, but never give them back. */
305static struct eesunit *eesunits[MAXUNITS];
306static u_char unitinuse[MAXUNITS];
307
308/* Keep the fudge factors separately so they can be set even
309 * when no clock is configured. */
310static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
311static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
312static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
313static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
314static u_char stratumtouse[MAXUNITS];
315static u_char sloppyclockflag[MAXUNITS];
316
317static int deltas[60];
318
319static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
320static l_fp onesec; /* = { 1, 0 }; */
321
322#ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
323#define	DUMP_BUF_SIZE	10112
324#endif
325
326/* ees_reset - reset the count back to zero */
327#define	ees_reset(ees) (ees)->nsamples = 0; \
328(ees)->codestate = EESCS_WAIT
329
330/* ees_event - record and report an event */
331#define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
332ees_report_event((ees), (evcode))
333
334     /* Find the precision of the system clock by reading it */
335#define	USECS	1000000
336#define	MINSTEP	5	/* some systems increment uS on each call */
337#define	MAXLOOPS (USECS/9)
338
339/*
340 * Function prototypes
341 */
342
343static	int	msfees_start	P((int unit, struct peer *peer));
344static	void	msfees_shutdown	P((int unit, struct peer *peer));
345static	void	msfees_poll	P((int unit, struct peer *peer));
346static	void	msfees_init	P((void));
347static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
348static	void	ees_report_event P((struct eesunit *ees, int code));
349static	void	ees_receive	P((struct recvbuf *rbufp));
350static	void	ees_process	P((struct eesunit *ees));
351#ifdef QSORT_USES_VOID_P
352static	int	offcompare	P((const void *va, const void *vb));
353#else
354static	int	offcompare	P((const l_fp *a, const l_fp *b));
355#endif /* QSORT_USES_VOID_P */
356
357
358/*
359 * Transfer vector
360 */
361struct	refclock refclock_msfees = {
362	msfees_start,		/* start up driver */
363	msfees_shutdown,	/* shut down driver */
364	msfees_poll,		/* transmit poll message */
365	noentry,		/* not used */
366	msfees_init,		/* initialize driver */
367	noentry,		/* not used */
368	NOFLAGS			/* not used */
369};
370
371
372static void
373dump_buf(
374	l_fp *coffs,
375	int from,
376	int to,
377	char *text
378	)
379{
380	char buff[DUMP_BUF_SIZE + 80];
381	int i;
382	register char *ptr = buff;
383
384	sprintf(ptr, text);
385	for (i=from; i<to; i++)
386	{	while (*ptr) ptr++;
387	if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
388	sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
389	}
390	msyslog(LOG_DEBUG, "D: %s", buff);
391}
392
393/* msfees_init - initialize internal ees driver data */
394static void
395msfees_init(void)
396{
397	register int i;
398	/* Just zero the data arrays */
399	memset((char *)eesunits, 0, sizeof eesunits);
400	memset((char *)unitinuse, 0, sizeof unitinuse);
401
402	acceptable_slop.l_ui = 0;
403	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
404
405	onesec.l_ui = 1;
406	onesec.l_uf = 0;
407
408	/* Initialize fudge factors to default. */
409	for (i = 0; i < MAXUNITS; i++) {
410		fudgefactor[i].l_ui	= 0;
411		fudgefactor[i].l_uf	= DEFFUDGETIME;
412		os_delay[i].l_ui	= 0;
413		os_delay[i].l_uf	= DEFOSTIME;
414		inherent_delay[i].l_ui	= 0;
415		inherent_delay[i].l_uf	= DEFINHTIME;
416		offset_fudge[i]		= os_delay[i];
417		L_ADD(&offset_fudge[i], &fudgefactor[i]);
418		L_ADD(&offset_fudge[i], &inherent_delay[i]);
419		stratumtouse[i]		= 0;
420		sloppyclockflag[i]	= 0;
421	}
422}
423
424
425/* msfees_start - open the EES devices and initialize data for processing */
426static int
427msfees_start(
428	int unit,
429	struct peer *peer
430	)
431{
432	register struct eesunit *ees;
433	register int i;
434	int fd232 = -1;
435	char eesdev[20];
436	struct termios ttyb, *ttyp;
437	struct refclockproc *pp;
438	pp = peer->procptr;
439
440	if (unit >= MAXUNITS) {
441		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
442			unit, MAXUNITS-1);
443		return 0;
444	}
445	if (unitinuse[unit]) {
446		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
447		return 0;
448	}
449
450	/* Unit okay, attempt to open the devices.  We do them both at
451	 * once to make sure we can */
452	(void) sprintf(eesdev, EES232, unit);
453
454	fd232 = open(eesdev, O_RDWR, 0777);
455	if (fd232 == -1) {
456		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
457		return 0;
458	}
459
460#ifdef	TIOCEXCL
461	/* Set for exclusive use */
462	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
463		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
464		goto screwed;
465	}
466#endif
467
468	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
469
470	/* Set port characteristics.  If we don't have a STREAMS module or
471	 * a clock line discipline, cooked mode is just usable, even though it
472	 * strips the top bit.  The only EES byte which uses the top
473	 * bit is the year, and we don't use that anyway. If we do
474	 * have the line discipline, we choose raw mode, and the
475	 * line discipline code will block up the messages.
476	 */
477
478	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
479
480	ttyp = &ttyb;
481	if (tcgetattr(fd232, ttyp) < 0) {
482		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
483		goto screwed;
484	}
485
486	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
487	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
488	ttyp->c_oflag = 0;
489	ttyp->c_lflag = ICANON;
490	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
491	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
492		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
493		goto screwed;
494	}
495
496	if (tcflush(fd232, TCIOFLUSH) < 0) {
497		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
498		goto screwed;
499	}
500
501	inherent_delay[unit].l_uf = INH_DELAY_PPS;
502
503	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
504	offset_fudge[unit] = os_delay[unit];
505	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
506	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
507
508	/* Looks like this might succeed.  Find memory for the structure.
509	 * Look to see if there are any unused ones, if not we malloc() one.
510	 */
511	if (eesunits[unit] != 0) /* The one we want is okay */
512	    ees = eesunits[unit];
513	else {
514		/* Look for an unused, but allocated struct */
515		for (i = 0; i < MAXUNITS; i++) {
516			if (!unitinuse[i] && eesunits[i] != 0)
517			    break;
518		}
519
520		if (i < MAXUNITS) {	/* Reclaim this one */
521			ees = eesunits[i];
522			eesunits[i] = 0;
523		}			/* no spare -- make a new one */
524		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
525	}
526	memset((char *)ees, 0, sizeof(struct eesunit));
527	eesunits[unit] = ees;
528
529	/* Set up the structures */
530	ees->peer	= peer;
531	ees->unit	= (u_char)unit;
532	ees->timestarted= current_time;
533	ees->ttytype	= 0;
534	ees->io.clock_recv= ees_receive;
535	ees->io.srcclock= (caddr_t)ees;
536	ees->io.datalen	= 0;
537	ees->io.fd	= fd232;
538
539	/* Okay.  Push one of the two (linked into the kernel, or dynamically
540	 * loaded) STREAMS module, and give it to the I/O code to start
541	 * receiving stuff.
542	 */
543
544#ifdef STREAM
545	{
546		int rc1;
547		/* Pop any existing onews first ... */
548		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
549
550		/* Now try pushing either of the possible modules */
551		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
552		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
553			msyslog(LOG_ERR,
554				"ees clock: Push of `%s' and `%s' to %s failed %m",
555				STREAM_PP1, STREAM_PP2, eesdev);
556			goto screwed;
557		}
558		else {
559			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
560				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
561					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
562			ees->ttytype |= T_PPS;
563		}
564	}
565#endif /* STREAM */
566
567	/* Add the clock */
568	if (!io_addclock(&ees->io)) {
569		/* Oh shit.  Just close and return. */
570		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
571		goto screwed;
572	}
573
574
575	/* All done.  Initialize a few random peer variables, then
576	 * return success. */
577	peer->precision	= sys_precision;
578	peer->stratum	= stratumtouse[unit];
579	if (stratumtouse[unit] <= 1) {
580		memcpy((char *)&pp->refid, EESREFID, 4);
581		if (unit > 0 && unit < 10)
582		    ((char *)&pp->refid)[3] = '0' + unit;
583	} else {
584		peer->refid = htonl(EESHSREFID);
585	}
586	unitinuse[unit] = 1;
587	pp->unitptr = (caddr_t) &eesunits[unit];
588	pp->clockdesc = EESDESCRIPTION;
589	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
590	return (1);
591
592    screwed:
593	if (fd232 != -1)
594	    (void) close(fd232);
595	return (0);
596}
597
598
599/* msfees_shutdown - shut down a EES clock */
600static void
601msfees_shutdown(
602	int unit,
603	struct peer *peer
604	)
605{
606	register struct eesunit *ees;
607
608	if (unit >= MAXUNITS) {
609		msyslog(LOG_ERR,
610			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
611			unit, MAXUNITS);
612		return;
613	}
614	if (!unitinuse[unit]) {
615		msyslog(LOG_ERR,
616			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
617		return;
618	}
619
620	/* Tell the I/O module to turn us off.  We're history. */
621	ees = eesunits[unit];
622	io_closeclock(&ees->io);
623	unitinuse[unit] = 0;
624}
625
626
627/* ees_report_event - note the occurance of an event */
628static void
629ees_report_event(
630	struct eesunit *ees,
631	int code
632	)
633{
634	if (ees->status != (u_char)code) {
635		ees->status = (u_char)code;
636		if (code != CEVNT_NOMINAL)
637		    ees->lastevent = (u_char)code;
638		/* Should report event to trap handler in here.
639		 * Soon...
640		 */
641	}
642}
643
644
645/* ees_receive - receive data from the serial interface on an EES clock */
646static void
647ees_receive(
648	struct recvbuf *rbufp
649	)
650{
651	register int n_sample;
652	register int day;
653	register struct eesunit *ees;
654	register u_char *dpt;		/* Data PoinTeR: move along ... */
655	register u_char *dpend;		/* Points just *after* last data char */
656	register char *cp;
657	l_fp tmp;
658	int call_pps_sample = 0;
659	l_fp pps_arrvstamp;
660	int	sincelast;
661	int	pps_step = 0;
662	int	suspect_4ms_step = 0;
663	struct ppsclockev ppsclockev;
664	long *ptr = (long *) &ppsclockev;
665	int rc;
666	int request;
667#ifdef HAVE_CIOGETEV
668	request = CIOGETEV;
669#endif
670#ifdef HAVE_TIOCGPPSEV
671	request = TIOCGPPSEV;
672#endif
673
674	/* Get the clock this applies to and a pointer to the data */
675	ees = (struct eesunit *)rbufp->recv_srcclock;
676	dpt = (u_char *)&rbufp->recv_space;
677	dpend = dpt + rbufp->recv_length;
678	if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
679	    printf("[%d] ", rbufp->recv_length);
680
681	/* Check out our state and process appropriately */
682	switch (ees->codestate) {
683	    case EESCS_WAIT:
684		/* Set an initial guess at the timestamp as the recv time.
685		 * If just running in CBREAK mode, we can't improve this.
686		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
687		 * then we will do better later ....
688		 */
689		ees->arrvtime = rbufp->recv_time;
690		ees->codestate = EESCS_GOTSOME;
691		ees->lencode = 0;
692		/*FALLSTHROUGH*/
693
694	    case EESCS_GOTSOME:
695		cp = &(ees->lastcode[ees->lencode]);
696
697		/* Gobble the bytes until the final (possibly stripped) 0xff */
698		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
699			*cp++ = (char)*dpt++;
700			ees->lencode++;
701			/* Oh dear -- too many bytes .. */
702			if (ees->lencode > LENEESPRT) {
703				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
704					msyslog(LOG_INFO,
705						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
706						ees->lencode, dpend - dpt, LENEESPRT,
707#define D(x) (ees->lastcode[x])
708						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
709						D(7), D(8), D(9), D(10), D(11), D(12));
710#undef	D
711				ees->badformat++;
712				ees->reason = CODEREASON + 1;
713				ees_event(ees, CEVNT_BADREPLY);
714				ees_reset(ees);
715				return;
716			}
717		}
718		/* Gave up because it was end of the buffer, rather than ff */
719		if (dpt == dpend) {
720			/* Incomplete.  Wait for more. */
721			if (debug & DB_LOG_AWAITMORE)
722			    msyslog(LOG_INFO,
723				    "I: ees clock %d: %p == %p: await more",
724				    ees->unit, dpt, dpend);
725			return;
726		}
727
728		/* This shouldn't happen ... ! */
729		if ((*dpt & 0x7f) != 0x7f) {
730			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
731			ees->badformat++;
732			ees->reason = CODEREASON + 2;
733			ees_event(ees, CEVNT_BADREPLY);
734			ees_reset(ees);
735			return;
736		}
737
738		/* Skip the 0xff */
739		dpt++;
740
741		/* Finally, got a complete buffer.  Mainline code will
742		 * continue on. */
743		cp = ees->lastcode;
744		break;
745
746	    default:
747		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
748			ees->unit, ees->codestate);
749		ees->reason = CODEREASON + 5;
750		ees_event(ees, CEVNT_FAULT);
751		ees_reset(ees);
752		return;
753	}
754
755	/* Boy!  After all that crap, the lastcode buffer now contains
756	 * something we hope will be a valid time code.  Do length
757	 * checks and sanity checks on constant data.
758	 */
759	ees->codestate = EESCS_WAIT;
760	ees->lasttime = current_time;
761	if (ees->lencode != LENEESPRT) {
762		ees->badformat++;
763		ees->reason = CODEREASON + 6;
764		ees_event(ees, CEVNT_BADREPLY);
765		ees_reset(ees);
766		return;
767	}
768
769	cp = ees->lastcode;
770
771	/* Check that centisecond is zero */
772	if (cp[EESM_CSEC] != 0) {
773		ees->baddata++;
774		ees->reason = CODEREASON + 7;
775		ees_event(ees, CEVNT_BADREPLY);
776		ees_reset(ees);
777		return;
778	}
779
780	/* Check flag formats */
781	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
782		ees->badformat++;
783		ees->reason = CODEREASON + 8;
784		ees_event(ees, CEVNT_BADREPLY);
785		ees_reset(ees);
786		return;
787	}
788
789	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
790		ees->badformat++;
791		ees->reason = CODEREASON + 9;
792		ees_event(ees, CEVNT_BADREPLY);
793		ees_reset(ees);
794		return;
795	}
796
797	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
798		ees->badformat++;
799		ees->reason = CODEREASON + 10;
800		ees_event(ees, CEVNT_BADREPLY);
801		ees_reset(ees);
802		return;
803	}
804
805	/* So far, so good.  Compute day, hours, minutes, seconds,
806	 * time zone.  Do range checks on these.
807	 */
808
809#define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
810#define istrue(x)	((x)?1:0)
811
812	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
813	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
814	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
815
816	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
817
818	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
819
820		/*  Add in lengths of all previous months.  Add one more
821		    if it is a leap year and after February.
822		*/
823	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
824	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
825	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
826	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
827	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
828	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
829	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
830	    case  5:	day += APR;			  /*FALLSTHROUGH*/
831	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
832	    case  3:	day += FEB;
833		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
834	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
835	    case  1:	break;
836	    default:	ees->baddata++;
837		ees->reason = CODEREASON + 11;
838		ees_event(ees, CEVNT_BADDATE);
839		ees_reset(ees);
840		return;
841	}
842
843	ees->day     = day;
844
845	/* Get timezone. The clocktime routine wants the number
846	 * of hours to add to the delivered time to get UT.
847	 * Currently -1 if BST flag set, 0 otherwise.  This
848	 * is the place to tweak things if double summer time
849	 * ever happens.
850	 */
851	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
852
853	if (ees->day > 366 || ees->day < 1 ||
854	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
855		ees->baddata++;
856		ees->reason = CODEREASON + 12;
857		ees_event(ees, CEVNT_BADDATE);
858		ees_reset(ees);
859		return;
860	}
861
862	n_sample = ees->nsamples;
863
864	/* Now, compute the reference time value: text -> tmp.l_ui */
865	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
866		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
867		       &tmp.l_ui)) {
868		ees->baddata++;
869		ees->reason = CODEREASON + 13;
870		ees_event(ees, CEVNT_BADDATE);
871		ees_reset(ees);
872		return;
873	}
874	tmp.l_uf = 0;
875
876	/*  DON'T use ees->arrvtime -- it may be < reftime */
877	ees->lastsampletime = tmp;
878
879	/* If we are synchronised to the radio, update the reference time.
880	 * Also keep a note of when clock was last good.
881	 */
882	if (istrue(cp[EESM_MSFOK])) {
883		ees->reftime = tmp;
884		ees->clocklastgood = current_time;
885	}
886
887
888	/* Compute the offset.  For the fractional part of the
889	 * offset we use the expected delay for the message.
890	 */
891	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
892	ees->codeoffsets[n_sample].l_uf = 0;
893
894	/* Number of seconds since the last step */
895	sincelast = this_uisec - ees->last_step;
896
897	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
898
899	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
900	if (debug & DB_PRINT_EV) fprintf(stderr,
901					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
902					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
903					 rc, errno, ptr[0], ptr[1], ptr[2]);
904
905	/* If we managed to get the time of arrival, process the info */
906	if (rc >= 0) {
907		int conv = -1;
908		pps_step = ppsclockev.serial - ees->last_pps_no;
909
910		/* Possible that PPS triggered, but text message didn't */
911		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
912		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
913		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
914
915		/* allow for single loss of PPS only */
916		if (pps_step != 1 && pps_step != 2)
917		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
918			    ppsclockev.serial, ees->last_pps_no, pps_step);
919		else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
920		    fprintf(stderr, "buftvtots failed\n");
921		else {	/* if ((ABS(time difference) - 0.25) < 0)
922			 * then believe it ...
923			 */
924			l_fp diff;
925			diff = pps_arrvstamp;
926			conv = 0;
927			L_SUB(&diff, &ees->arrvtime);
928			if (debug & DB_PRINT_CDT)
929			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
930				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
931				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
932				   (long)diff.l_ui, (long)diff.l_uf,
933				   ctime(&(ppsclockev.tv.tv_sec)));
934			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
935			L_SUB(&diff, &acceptable_slop);
936			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
937				ees->arrvtime = pps_arrvstamp;
938				conv++;
939				call_pps_sample++;
940			}
941			/* Some loss of some signals around sec = 1 */
942			else if (ees->second == 1) {
943				diff = pps_arrvstamp;
944				L_ADD(&diff, &onesec);
945				L_SUB(&diff, &ees->arrvtime);
946				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
947				L_SUB(&diff, &acceptable_slop);
948				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
949					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
950					pps_arrvstamp.l_uf,
951					ees->arrvtime.l_uf,
952					diff.l_ui, diff.l_uf,
953					(int)ppsclockev.tv.tv_usec,
954					ctime(&(ppsclockev.tv.tv_sec)));
955				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
956					suspect_4ms_step |= 2;
957					ees->arrvtime = pps_arrvstamp;
958					L_ADD(&ees->arrvtime, &onesec);
959					conv++;
960					call_pps_sample++;
961				}
962			}
963		}
964		ees->last_pps_no = ppsclockev.serial;
965		if (debug & DB_PRINT_CDTC)
966		    printf(
967			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
968			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
969			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
970			    call_pps_sample, pps_step);
971	}
972
973	/* See if there has been a 4ms jump at a minute boundry */
974	{	l_fp	delta;
975#define	delta_isec	delta.l_ui
976#define	delta_ssec	delta.l_i
977#define	delta_sfsec	delta.l_f
978	long	delta_f_abs;
979
980	delta.l_i = ees->arrvtime.l_i;
981	delta.l_f = ees->arrvtime.l_f;
982
983	L_SUB(&delta, &ees->last_l);
984	delta_f_abs = delta_sfsec;
985	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
986
987	/* Dump the deltas each minute */
988	if (debug & DB_DUMP_DELTAS)
989	{	if (/*0 <= ees->second && */
990		ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
991	/* Dump on second 1, as second 0 sometimes missed */
992	if (ees->second == 1) {
993		char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
994		char *cptr=text;
995		int i;
996		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
997			sprintf(cptr, " %d.%04d",
998				msec(deltas[i]), subms(deltas[i]));
999			while (*cptr) cptr++;
1000		}
1001		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1002			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1003			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1004			text+1);
1005		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1006	}
1007	}
1008
1009	/* Lets see if we have a 4 mS step at a minute boundaary */
1010	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1011		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1012		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1013		(sincelast < 0 || sincelast > 122)
1014		) {	/* 4ms jump at min boundry */
1015		int old_sincelast;
1016		int count=0;
1017		int sum = 0;
1018		/* Yes -- so compute the ramp time */
1019		if (ees->last_step == 0) sincelast = 0;
1020		old_sincelast = sincelast;
1021
1022		/* First time in, just set "ees->last_step" */
1023		if(ees->last_step) {
1024			int other_step = 0;
1025			int third_step = 0;
1026			int this_step = (sincelast + (60 /2)) / 60;
1027			int p_step = ees->this_step;
1028			int p;
1029			ees->last_steps[p_step] = this_step;
1030			p= p_step;
1031			p_step++;
1032			if (p_step >= LAST_STEPS) p_step = 0;
1033			ees->this_step = p_step;
1034				/* Find the "average" interval */
1035			while (p != p_step) {
1036				int this = ees->last_steps[p];
1037				if (this == 0) break;
1038				if (this != this_step) {
1039					if (other_step == 0 && (
1040						this== (this_step +2) ||
1041						this== (this_step -2) ||
1042						this== (this_step +1) ||
1043						this== (this_step -1)))
1044					    other_step = this;
1045					if (other_step != this) {
1046						int idelta = (this_step - other_step);
1047						if (idelta < 0) idelta = - idelta;
1048						if (third_step == 0 && (
1049							(idelta == 1) ? (
1050								this == (other_step +1) ||
1051								this == (other_step -1) ||
1052								this == (this_step +1) ||
1053								this == (this_step -1))
1054							:
1055							(
1056								this == (this_step + other_step)/2
1057								)
1058							)) third_step = this;
1059						if (third_step != this) break;
1060					}
1061				}
1062				sum += this;
1063				p--;
1064				if (p < 0) p += LAST_STEPS;
1065				count++;
1066			}
1067			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1068			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1069#define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1070			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1071				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1072				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1073			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1074			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1075			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1076#undef SV
1077			ees->jump_fsecs = delta_sfsec;
1078			ees->using_ramp = 1;
1079			if (sincelast > 170)
1080			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1081			else ees->last_step_late = 30;
1082			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1083			if (ees->last_step_late < 0) ees->last_step_late = 0;
1084			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1085			sincelast = 0;
1086		}
1087		else {	/* First time in -- just save info */
1088			ees->last_step_late = 30;
1089			ees->jump_fsecs = delta_sfsec;
1090			ees->using_ramp = 1;
1091			sum = 4 * 60;
1092		}
1093		ees->last_step = this_uisec;
1094		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1095		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1096		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1097		       ees->last_step_secs);
1098		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1099			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1100			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1101		if (sum) ees->last_step_secs = sum;
1102	}
1103	/* OK, so not a 4ms step at a minute boundry */
1104	else {
1105		if (suspect_4ms_step) msyslog(LOG_ERR,
1106					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1107					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1108					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1109					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1110					      (int)msec(delta_f_abs),
1111					      (int)subms(delta_f_abs),
1112					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1113					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1114					      ees->second,
1115					      sincelast);
1116		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1117			static int ees_step_notes = EES_STEP_NOTES;
1118			if (ees_step_notes > 0) {
1119				ees_step_notes--;
1120				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1121				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1122				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1123				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1124					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1125			}
1126		}
1127	}
1128	}
1129	ees->last_l = ees->arrvtime;
1130
1131	/* IF we have found that it's ramping
1132	 * && it's within twice the expected ramp period
1133	 * && there is a non zero step size (avoid /0 !)
1134	 * THEN we twiddle things
1135	 */
1136	if (ees->using_ramp &&
1137	    sincelast < (ees->last_step_secs)*2 &&
1138	    ees->last_step_secs)
1139	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1140	long	fsecs;
1141	l_fp	inc;
1142
1143	/* Ramp time may vary, so may ramp for longer than last time */
1144	if (sec_of_ramp > (ees->last_step_secs + 120))
1145	    sec_of_ramp =  ees->last_step_secs;
1146
1147	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1148	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1149
1150	if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1151					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1152					   DB_LOG_DELTAS,
1153					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1154					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1155	if (debug & DB_PRINT_DELTAS) printf(
1156		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1157		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1158		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1159
1160	/* Must sign extend the result */
1161	inc.l_i = (fsecs < 0) ? -1 : 0;
1162	inc.l_f = fsecs;
1163	if (debug & DB_INC_PPS)
1164	{	L_SUB(&pps_arrvstamp, &inc);
1165	L_SUB(&ees->arrvtime, &inc);
1166	}
1167	else
1168	{	L_ADD(&pps_arrvstamp, &inc);
1169	L_ADD(&ees->arrvtime, &inc);
1170	}
1171	}
1172	else {
1173		if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1174						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1175						   DB_LOG_DELTAS,
1176						   ees->unit, ees->using_ramp,
1177						   sincelast,
1178						   (ees->last_step_secs)*2,
1179						   ees->last_step_secs);
1180		if (debug & DB_PRINT_DELTAS) printf(
1181			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1182			DB_LOG_DELTAS,
1183			ees->unit, ees->using_ramp,
1184			sincelast,
1185			(ees->last_step_secs)*2,
1186			ees->last_step_secs);
1187	}
1188
1189	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1190	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1191
1192	if (call_pps_sample && !(debug & DB_NO_PPS)) {
1193		/* Sigh -- it expects its args negated */
1194		L_NEG(&pps_arrvstamp);
1195		/*
1196		 * I had to disable this here, since it appears there is no pointer to the
1197		 * peer structure.
1198		 *
1199		 (void) pps_sample(peer, &pps_arrvstamp);
1200		*/
1201	}
1202
1203	/* Subtract off the local clock time stamp */
1204	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1205	if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1206					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1207					    ees->unit, DB_LOG_DELTAS, n_sample,
1208					    ees->codeoffsets[n_sample].l_f,
1209					    ees->codeoffsets[n_sample].l_f / 4295,
1210					    pps_arrvstamp.l_f,
1211					    pps_arrvstamp.l_f /4295,
1212					    (debug & DB_NO_PPS) ? " [no PPS]" : "");
1213
1214	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1215
1216	/* Done! */
1217}
1218
1219
1220/* offcompare - auxiliary comparison routine for offset sort */
1221
1222#ifdef QSORT_USES_VOID_P
1223static int
1224offcompare(
1225	const void *va,
1226	const void *vb
1227	)
1228{
1229	const l_fp *a = (const l_fp *)va;
1230	const l_fp *b = (const l_fp *)vb;
1231	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1232}
1233#else
1234static int
1235offcompare(
1236	const l_fp *a,
1237	const l_fp *b
1238	)
1239{
1240	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1241}
1242#endif /* QSORT_USES_VOID_P */
1243
1244
1245/* ees_process - process a pile of samples from the clock */
1246static void
1247ees_process(
1248	struct eesunit *ees
1249	)
1250{
1251	static int last_samples = -1;
1252	register int i, j;
1253	register int noff;
1254	register l_fp *coffs = ees->codeoffsets;
1255	l_fp offset, tmp;
1256	double dispersion;	/* ++++ */
1257	int lostsync, isinsync;
1258	int samples = ees->nsamples;
1259	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1260	int samplereduce = (samples + 1) / 2;
1261	double doffset;
1262
1263	/* Reset things to zero so we don't have to worry later */
1264	ees_reset(ees);
1265
1266	if (sloppyclockflag[ees->unit]) {
1267		samplelog = (samples <  2) ? 0 :
1268			(samples <  5) ? 1 :
1269			(samples <  9) ? 2 :
1270			(samples < 17) ? 3 :
1271			(samples < 33) ? 4 : 5;
1272		samplereduce = (1 << samplelog);
1273	}
1274
1275	if (samples != last_samples &&
1276	    ((samples != (last_samples-1)) || samples < 3)) {
1277		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1278			samples, last_samples, samplereduce);
1279		last_samples = samples;
1280	}
1281	if (samples < 1) return;
1282
1283	/* If requested, dump the raw data we have in the buffer */
1284	if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw  data  is:");
1285
1286	/* Sort the offsets, trim off the extremes, then choose one. */
1287	qsort((char *) coffs, (size_t)samples, sizeof(l_fp), offcompare);
1288
1289	noff = samples;
1290	i = 0;
1291	while ((noff - i) > samplereduce) {
1292		/* Trim off the sample which is further away
1293		 * from the median.  We work this out by doubling
1294		 * the median, subtracting off the end samples, and
1295		 * looking at the sign of the answer, using the
1296		 * identity (c-b)-(b-a) == 2*b-a-c
1297		 */
1298		tmp = coffs[(noff + i)/2];
1299		L_ADD(&tmp, &tmp);
1300		L_SUB(&tmp, &coffs[i]);
1301		L_SUB(&tmp, &coffs[noff-1]);
1302		if (L_ISNEG(&tmp)) noff--; else i++;
1303	}
1304
1305	/* If requested, dump the reduce data we have in the buffer */
1306	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1307
1308	/* What we do next depends on the setting of the sloppy clock flag.
1309	 * If it is on, average the remainder to derive our estimate.
1310	 * Otherwise, just pick a representative value from the remaining stuff
1311	 */
1312	if (sloppyclockflag[ees->unit]) {
1313		offset.l_ui = offset.l_uf = 0;
1314		for (j = i; j < noff; j++)
1315		    L_ADD(&offset, &coffs[j]);
1316		for (j = samplelog; j > 0; j--)
1317		    L_RSHIFTU(&offset);
1318	}
1319	else offset = coffs[i+BESTSAMPLE];
1320
1321	/* Compute the dispersion as the difference between the
1322	 * lowest and highest offsets that remain in the
1323	 * consideration list.
1324	 *
1325	 * It looks like MOST clocks have MOD (max error), so halve it !
1326	 */
1327	tmp = coffs[noff-1];
1328	L_SUB(&tmp, &coffs[i]);
1329#define	FRACT_SEC(n) ((1 << 30) / (n/2))
1330	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1331	if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1332		(debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1333		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1334		debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1335		offset.l_f / 4295, offset.l_f,
1336		(dispersion * 1526) / 100,
1337		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1338		FRACT_SEC(10) / 4295,
1339		(coffs[0].l_f) / 4295,
1340		i,
1341		(coffs[i].l_f) / 4295,
1342		(coffs[samples/2].l_f) / 4295,
1343		(coffs[i+BESTSAMPLE].l_f) / 4295,
1344		noff-1,
1345		(coffs[noff-1].l_f) / 4295,
1346		(coffs[samples-1].l_f) / 4295);
1347
1348	/* Are we playing silly wotsits ?
1349	 * If we are using all data, see if there is a "small" delta,
1350	 * and if so, blurr this with 3/4 of the delta from the last value
1351	 */
1352	if (ees->usealldata && ees->offset.l_uf) {
1353		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1354
1355		/* is the delta small enough ? */
1356		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1357			int samd = (64 * 4) / samples;
1358			long new;
1359			if (samd < 2) samd = 2;
1360			new = offset.l_uf + ((diff * (samd -1)) / samd);
1361
1362			/* Sign change -> need to fix up int part */
1363			if ((new & 0x80000000) !=
1364			    (((long) offset.l_uf) & 0x80000000))
1365			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1366					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1367						new & 0x80000000,
1368						((long) offset.l_uf) & 0x80000000,
1369						new, (long) offset.l_uf,
1370						(new < 0) ? -1 : 1);
1371				offset.l_ui += (new < 0) ? -1 : 1;
1372			}
1373			dispersion /= 4;
1374			if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1375				(debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1376				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1377				debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1378				((long) offset.l_uf) / 4295, new / 4295,
1379				(dispersion * 1526) / 100);
1380			offset.l_uf = (unsigned long) new;
1381		}
1382		else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1383			(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1384			"[%x] No smooth as delta not %d < %ld < %d",
1385			debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1386			- FRACT_SEC(100), diff, FRACT_SEC(100));
1387	}
1388	else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1389		(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1390		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1391		debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1392		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1393		offset.l_f, ees->offset.l_f - offset.l_f);
1394
1395	/* Collect offset info for debugging info */
1396	ees->offset = offset;
1397	ees->lowoffset = coffs[i];
1398	ees->highoffset = coffs[noff-1];
1399
1400	/* Determine synchronization status.  Can be unsync'd either
1401	 * by a report from the clock or by a leap hold.
1402	 *
1403	 * Loss of the radio signal for a short time does not cause
1404	 * us to go unsynchronised, since the receiver keeps quite
1405	 * good time on its own.  The spec says 20ms in 4 hours; the
1406	 * observed drift in our clock (Cambridge) is about a second
1407	 * a day, but even that keeps us within the inherent tolerance
1408	 * of the clock for about 15 minutes. Observation shows that
1409	 * the typical "short" outage is 3 minutes, so to allow us
1410	 * to ride out those, we will give it 5 minutes.
1411	 */
1412	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1413	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1414
1415	/* Done.  Use time of last good, synchronised code as the
1416	 * reference time, and lastsampletime as the receive time.
1417	 */
1418	if (ees->fix_pending) {
1419		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1420			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1421		ees->fix_pending = 0;
1422	}
1423	LFPTOD(&offset, doffset);
1424	refclock_receive(ees->peer);
1425	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1426}
1427
1428/* msfees_poll - called by the transmit procedure */
1429static void
1430msfees_poll(
1431	int unit,
1432	struct peer *peer
1433	)
1434{
1435	if (unit >= MAXUNITS) {
1436		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1437			unit);
1438		return;
1439	}
1440	if (!unitinuse[unit]) {
1441		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1442			unit);
1443		return;
1444	}
1445
1446	ees_process(eesunits[unit]);
1447
1448	if ((current_time - eesunits[unit]->lasttime) > 150)
1449	    ees_event(eesunits[unit], CEVNT_FAULT);
1450}
1451
1452
1453#else
1454int refclock_msfees_bs;
1455#endif /* REFCLOCK */
1456