refclock_irig.c revision 56746
1/*
2 * refclock_irig - audio IRIG-B/E demodulator/decoder
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_IRIG)
9
10#include <stdio.h>
11#include <ctype.h>
12#include <sys/time.h>
13#include <math.h>
14#ifdef HAVE_SYS_IOCTL_H
15#include <sys/ioctl.h>
16#endif /* HAVE_SYS_IOCTL_H */
17
18#include "ntpd.h"
19#include "ntp_io.h"
20#include "ntp_refclock.h"
21#include "ntp_calendar.h"
22#include "ntp_stdlib.h"
23#include "audio.h"
24
25/*
26 * Audio IRIG-B/E demodulator/decoder
27 *
28 * This driver receives, demodulates and decodes IRIG-B/E signals when
29 * connected to the audio codec /dev/audio. The IRIG signal format is an
30 * amplitude-modulated carrier with pulse-width modulated data bits. For
31 * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
32 * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
33 * driver automatically recognizes which format is in use.
34 *
35 * The program processes 8000-Hz mu-law companded samples using separate
36 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
37 * detector and automatic threshold corrector. Cycle crossings relative
38 * to the corrected slice level determine the width of each pulse and
39 * its value - zero, one or position identifier. The data encode 20 BCD
40 * digits which determine the second, minute, hour and day of the year
41 * and sometimes the year and synchronization condition. The comb filter
42 * exponentially averages the corresponding samples of successive baud
43 * intervals in order to reliably identify the reference carrier cycle.
44 * A type-II phase-lock loop (PLL) performs additional integration and
45 * interpolation to accurately determine the zero crossing of that
46 * cycle, which determines the reference timestamp. A pulse-width
47 * discriminator demodulates the data pulses, which are then encoded as
48 * the BCD digits of the timecode.
49 *
50 * The timecode and reference timestamp are updated once each second
51 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
52 * saved for later processing. At poll intervals of 64 s, the saved
53 * samples are processed by a trimmed-mean filter and used to update the
54 * system clock.
55 *
56 * An automatic gain control feature provides protection against
57 * overdriven or underdriven input signal amplitudes. It is designed to
58 * maintain adequate demodulator signal amplitude while avoiding
59 * occasional noise spikes. In order to assure reliable capture, the
60 * decompanded input signal amplitude must be greater than 100 units and
61 * the codec sample frequency error less than 250 PPM (.025 percent).
62 *
63 * The program performs a number of error checks to protect against
64 * overdriven or underdriven input signal levels, incorrect signal
65 * format or improper hardware configuration. Specifically, if any of
66 * the following errors occur for a time measurement, the data are
67 * rejected.
68 *
69 * o The peak carrier amplitude is less than DRPOUT (100). This usually
70 *   means dead IRIG signal source, broken cable or wrong input port.
71 *
72 * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
73 *   usually means broken codec hardware or wrong codec configuration.
74 *
75 * o The modulation index is less than MODMIN (0.5). This usually means
76 *   overdriven IRIG signal or wrong IRIG format.
77 *
78 * o A frame synchronization error has occurred. This usually means wrong
79 *   IRIG signal format or the IRIG signal source has lost
80 *   synchronization (signature control).
81 *
82 * o A data decoding error has occurred. This usually means wrong IRIG
83 *   signal format.
84 *
85 * o The current second of the day is not exactly one greater than the
86 *   previous one. This usually means a very noisy IRIG signal or
87 *   insufficient CPU resources.
88 *
89 * o An audio codec error (overrun) occurred. This usually means
90 *   insufficient CPU resources, as sometimes happens with Sun SPARC
91 *   IPCs when doing something useful.
92 *
93 * Note that additional checks are done elsewhere in the reference clock
94 * interface routines.
95 *
96 * Debugging aids
97 *
98 * The timecode format used for debugging and data recording includes
99 * data helpful in diagnosing problems with the IRIG signal and codec
100 * connections. With debugging enabled (-d -d -d on the ntpd command
101 * line), the driver produces one line for each timecode in the
102 * following format:
103 *
104 * 00 1 98 23 19:26:52 721 143 0.694 47 20 0.083 66.5 3094572411.00027
105 *
106 * The most recent line is also written to the clockstats file at 64-s
107 * intervals.
108 *
109 * The first field contains the error flags in hex, where the hex bits
110 * are interpreted as below. This is followed by the IRIG status
111 * indicator, year of century, day of year and time of day. The status
112 * indicator and year are not produced by some IRIG devices. Following
113 * these fields are the signal amplitude (0-8100), codec gain (0-255),
114 * field phase (0-79), time constant (2-20), modulation index (0-1),
115 * carrier phase error (0+-0.5) and carrier frequency error (PPM). The
116 * last field is the on-time timestamp in NTP format.
117 *
118 * The fraction part of the on-time timestamp is a good indicator of how
119 * well the driver is doing. With an UltrSPARC 30, this thing can keep
120 * the clock within a few tens of microseconds relative to the IRIG-B
121 * signal. Accuracy with IRIG-E is about ten times worse.
122 *
123 * Unlike other drivers, which can have multiple instantiations, this
124 * one supports only one. It does not seem likely that more than one
125 * audio codec would be useful in a single machine. More than one would
126 * probably chew up too much CPU time anyway.
127 *
128 * Fudge factors
129 *
130 * Fudge flag2 selects the audio input port, where 0 is the mike port
131 * (default) and 1 is the line-in port. It does not seem useful to
132 * select the compact disc player port. Fudge flag3 enables audio
133 * monitoring of the input signal. For this purpose, the speaker volume
134 * must be set before the driver is started. Fudge flag4 causes the
135 * debugging output described above to be recorded in the clockstats
136 * file. Any of these flags can be changed during operation with the
137 * ntpdc program.
138 */
139
140/*
141 * Interface definitions
142 */
143#define	PRECISION	(-17)	/* precision assumed (about 10 us) */
144#define	REFID		"IRIG"	/* reference ID */
145#define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
146
147#define SECOND		8000	/* nominal sample rate (Hz) */
148#define BAUD		80	/* samples per baud interval */
149#define OFFSET		128	/* companded sample offset */
150#define SIZE		256	/* decompanding table size */
151#define CYCLE		8	/* samples per carrier cycle */
152#define SUBFLD		10	/* bits per subfield */
153#define FIELD		10	/* subfields per field */
154#define MINTC		2	/* min PLL time constant */
155#define MAXTC		20	/* max PLL time constant max */
156#define	MAXSIG		6000.	/* maximum signal level */
157#define DRPOUT		100.	/* dropout signal level */
158#define MODMIN		0.5	/* minimum modulation index */
159#define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
160#define PI		3.1415926535 /* the real thing */
161
162/*
163 * Experimentally determined fudge factors
164 */
165#define IRIG_B		.0019		/* IRIG-B phase delay */
166#define IRIG_E		.0019		/* IRIG-E phase delay */
167
168/*
169 * Data bit definitions
170 */
171#define BIT0		0	/* zero */
172#define BIT1		1	/* one */
173#define BITP		2	/* position identifier */
174
175/*
176 * Error flags (up->errflg)
177 */
178#define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
179#define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
180#define IRIG_ERR_MOD	0x04	/* low modulation index */
181#define IRIG_ERR_SYNCH	0x08	/* frame synch error */
182#define IRIG_ERR_DECODE	0x10	/* frame decoding error */
183#define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
184#define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
185
186/*
187 * IRIG unit control structure
188 */
189struct irigunit {
190	u_char	timecode[21];	/* timecode string */
191	l_fp	timestamp;	/* audio sample timestamp */
192	l_fp	tick;		/* audio sample increment */
193	double	comp[SIZE];	/* decompanding table */
194	double	integ[BAUD];	/* baud integrator */
195	double	phase, freq;	/* logical clock phase and frequency */
196	double	zxing;		/* phase detector integrator */
197	double	yxing;		/* phase detector display */
198	double	modndx;		/* modulation index */
199	double	irig_b;		/* IRIG-B signal amplitude */
200	double	irig_e;		/* IRIG-E signal amplitude */
201	int	errflg;		/* error flags */
202	int	bufcnt;		/* samples in buffer */
203	int	bufptr;		/* buffer index pointer */
204	int	pollcnt;	/* poll counter */
205	int	port;		/* codec port */
206	int	gain;		/* codec gain */
207	int	clipcnt;	/* sample clipped count */
208	int	seccnt;		/* second interval counter */
209	int	decim;		/* sample decimation factor */
210
211	/*
212	 * RF variables
213	 */
214	double	hpf[5];		/* IRIG-B filter shift register */
215	double	lpf[5];		/* IRIG-E filter shift register */
216	double	intmin, intmax;	/* integrated envelope min and max */
217	double	envmax;		/* peak amplitude */
218	double	envmin;		/* noise amplitude */
219	double	maxsignal;	/* integrated peak amplitude */
220	double	noise;		/* integrated noise amplitude */
221	double	lastenv[CYCLE];	/* last cycle amplitudes */
222	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
223	double	lastsig;	/* last carrier sample */
224	double	xxing;		/* phase detector interpolated output */
225	double	fdelay;		/* filter delay */
226	int	envphase;	/* envelope phase */
227	int	envptr;		/* envelope phase pointer */
228	int	carphase;	/* carrier phase */
229	int	envsw;		/* envelope state */
230	int	envxing;	/* envelope slice crossing */
231	int	tc;		/* time constant */
232	int	tcount;		/* time constant counter */
233	int	badcnt;		/* decimation interval counter */
234
235	/*
236	 * Decoder variables
237	 */
238	l_fp	montime;	/* reference timestamp for eyeball */
239	int	timecnt;	/* timecode counter */
240	int	pulse;		/* cycle counter */
241	int	cycles;		/* carrier cycles */
242	int	dcycles;	/* data cycles */
243	int	xptr;		/* translate table pointer */
244	int	lastbit;	/* last code element length */
245	int	second;		/* previous second */
246	int	fieldcnt;	/* subfield count in field */
247	int	bits;		/* demodulated bits */
248	int	bitcnt;		/* bit count in subfield */
249};
250
251/*
252 * Function prototypes
253 */
254static	int	irig_start	P((int, struct peer *));
255static	void	irig_shutdown	P((int, struct peer *));
256static	void	irig_receive	P((struct recvbuf *));
257static	void	irig_poll	P((int, struct peer *));
258
259/*
260 * More function prototypes
261 */
262static	void	irig_base	P((struct peer *, double));
263static	void	irig_rf		P((struct peer *, double));
264static	void	irig_decode	P((struct peer *, int));
265static	void	irig_gain	P((struct peer *));
266
267/*
268 * Transfer vector
269 */
270struct	refclock refclock_irig = {
271	irig_start,		/* start up driver */
272	irig_shutdown,		/* shut down driver */
273	irig_poll,		/* transmit poll message */
274	noentry,		/* not used (old irig_control) */
275	noentry,		/* initialize driver (not used) */
276	noentry,		/* not used (old irig_buginfo) */
277	NOFLAGS			/* not used */
278};
279
280/*
281 * Global variables
282 */
283static char	hexchar[] = {	/* really quick decoding table */
284	'0', '8', '4', 'c',		/* 0000 0001 0010 0011 */
285	'2', 'a', '6', 'e',		/* 0100 0101 0110 0111 */
286	'1', '9', '5', 'd',		/* 1000 1001 1010 1011 */
287	'3', 'b', '7', 'f'		/* 1100 1101 1110 1111 */
288};
289
290
291/*
292 * irig_start - open the devices and initialize data for processing
293 */
294static int
295irig_start(
296	int	unit,		/* instance number (not used) */
297	struct peer *peer	/* peer structure pointer */
298	)
299{
300	struct refclockproc *pp;
301	struct irigunit *up;
302
303	/*
304	 * Local variables
305	 */
306	int	fd;		/* file descriptor */
307	int	i;		/* index */
308	double	step;		/* codec adjustment */
309
310	/*
311	 * Open audio device
312	 */
313	fd = audio_init();
314	if (fd < 0)
315		return (0);
316#ifdef DEBUG
317	if (debug)
318		audio_show();
319#endif
320
321	/*
322	 * Allocate and initialize unit structure
323	 */
324	if (!(up = (struct irigunit *)
325	      emalloc(sizeof(struct irigunit)))) {
326		(void) close(fd);
327		return (0);
328	}
329	memset((char *)up, 0, sizeof(struct irigunit));
330	pp = peer->procptr;
331	pp->unitptr = (caddr_t)up;
332	pp->io.clock_recv = irig_receive;
333	pp->io.srcclock = (caddr_t)peer;
334	pp->io.datalen = 0;
335	pp->io.fd = fd;
336	if (!io_addclock(&pp->io)) {
337		(void)close(fd);
338		free(up);
339		return (0);
340	}
341
342	/*
343	 * Initialize miscellaneous variables
344	 */
345	peer->precision = PRECISION;
346	pp->clockdesc = DESCRIPTION;
347	memcpy((char *)&pp->refid, REFID, 4);
348	up->tc = MINTC;
349	up->decim = 1;
350	up->fdelay = IRIG_B;
351	up->gain = 127;
352	up->pollcnt = 2;
353
354	/*
355	 * The companded samples are encoded sign-magnitude. The table
356	 * contains all the 256 values in the interest of speed.
357	 */
358	up->comp[0] = up->comp[OFFSET] = 0.;
359	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
360	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
361	step = 2.;
362	for (i = 3; i < OFFSET; i++) {
363		up->comp[i] = up->comp[i - 1] + step;
364		up->comp[OFFSET + i] = -up->comp[i];
365                if (i % 16 == 0)
366		    step *= 2.;
367	}
368	DTOLFP(1. / SECOND, &up->tick);
369	return (1);
370}
371
372
373/*
374 * irig_shutdown - shut down the clock
375 */
376static void
377irig_shutdown(
378	int	unit,		/* instance number (not used) */
379	struct peer *peer	/* peer structure pointer */
380	)
381{
382	struct refclockproc *pp;
383	struct irigunit *up;
384
385	pp = peer->procptr;
386	up = (struct irigunit *)pp->unitptr;
387	io_closeclock(&pp->io);
388	free(up);
389}
390
391
392/*
393 * irig_receive - receive data from the audio device
394 *
395 * This routine reads input samples and adjusts the logical clock to
396 * track the irig clock by dropping or duplicating codec samples.
397 */
398static void
399irig_receive(
400	struct recvbuf *rbufp	/* receive buffer structure pointer */
401	)
402{
403	struct peer *peer;
404	struct refclockproc *pp;
405	struct irigunit *up;
406
407	/*
408	 * Local variables
409	 */
410	double	sample;		/* codec sample */
411	u_char	*dpt;		/* buffer pointer */
412	l_fp	ltemp;		/* l_fp temp */
413
414	peer = (struct peer *)rbufp->recv_srcclock;
415	pp = peer->procptr;
416	up = (struct irigunit *)pp->unitptr;
417
418	/*
419	 * Main loop - read until there ain't no more. Note codec
420	 * samples are bit-inverted.
421	 */
422	up->timestamp = rbufp->recv_time;
423	up->bufcnt = rbufp->recv_length;
424	DTOLFP((double)up->bufcnt / SECOND, &ltemp);
425	L_SUB(&up->timestamp, &ltemp);
426	dpt = rbufp->recv_buffer;
427	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
428		sample = up->comp[~*dpt++ & 0xff];
429
430		/*
431		 * Clip noise spikes greater than MAXSIG. If no clips,
432		 * increase the gain a tad; if the clips are too high,
433		 * decrease a tad. Choose either IRIG-B or IRIG-E
434		 * according to the energy at the respective filter
435		 * output.
436		 */
437		if (sample > MAXSIG) {
438			sample = MAXSIG;
439			up->clipcnt++;
440		} else if (sample < -MAXSIG) {
441			sample = -MAXSIG;
442			up->clipcnt++;
443		}
444
445		/*
446		 * Variable frequency oscillator. A phase change of one
447		 * unit produces a change of 360 degrees; a frequency
448		 * change of one unit produces a change of 1 Hz.
449		 */
450		up->phase += up->freq / SECOND;
451		if (up->phase >= .5) {
452			up->phase -= 1.;
453		} else if (up->phase < -.5) {
454			up->phase += 1.;
455			irig_rf(peer, sample);
456			irig_rf(peer, sample);
457		} else {
458			irig_rf(peer, sample);
459		}
460		L_ADD(&up->timestamp, &up->tick);
461
462		/*
463		 * Once each second, determine the IRIG format, codec
464		 * port and gain.
465		 */
466		up->seccnt = (up->seccnt + 1) % SECOND;
467		if (up->seccnt == 0) {
468			if (up->irig_b > up->irig_e) {
469				up->decim = 1;
470				up->fdelay = IRIG_B;
471			} else {
472				up->decim = 10;
473				up->fdelay = IRIG_E;
474			}
475			if (pp->sloppyclockflag & CLK_FLAG2)
476			    up->port = 2;
477			else
478			    up->port = 1;
479			irig_gain(peer);
480			up->irig_b = up->irig_e = 0;
481		}
482	}
483
484	/*
485	 * Squawk to the monitor speaker if enabled.
486	 */
487	if (pp->sloppyclockflag & CLK_FLAG3)
488	    if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
489		      (u_int)up->bufcnt) < 0)
490		perror("irig:");
491}
492
493/*
494 * irig_rf - RF processing
495 *
496 * This routine filters the RF signal using a highpass filter for IRIG-B
497 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
498 * decimated by a factor of ten. The lowpass filter functions also as a
499 * decimation filter in this case. Note that the codec filters function
500 * as roofing filters to attenuate both the high and low ends of the
501 * passband. IIR filter coefficients were determined using Matlab Signal
502 * Processing Toolkit.
503 */
504static void
505irig_rf(
506	struct peer *peer,	/* peer structure pointer */
507	double	sample		/* current signal sample */
508	)
509{
510	struct refclockproc *pp;
511	struct irigunit *up;
512
513	/*
514	 * Local variables
515	 */
516	double	irig_b, irig_e;	/* irig filter outputs */
517
518	pp = peer->procptr;
519	up = (struct irigunit *)pp->unitptr;
520
521	/*
522	 * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
523	 * passband ripple, -50 dB stopband ripple, phase delay -.0022
524	 * s)
525	 */
526	irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
527	irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
528	irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
529	irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
530	up->hpf[0] = sample - irig_b;
531	irig_b = up->hpf[0] * 4.335855e-01
532	    + up->hpf[1] * -1.695859e+00
533	    + up->hpf[2] * 2.525004e+00
534	    + up->hpf[3] * -1.695859e+00
535	    + up->hpf[4] * 4.335855e-01;
536	up->irig_b += irig_b * irig_b;
537
538	/*
539	 * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
540	 * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
541	 */
542	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
543	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
544	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
545	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
546	up->lpf[0] = sample - irig_e;
547	irig_e = up->lpf[0] * 3.215696e-03
548	    + up->lpf[1] * -1.174951e-02
549	    + up->lpf[2] * 1.712074e-02
550	    + up->lpf[3] * -1.174951e-02
551	    + up->lpf[4] * 3.215696e-03;
552	up->irig_e += irig_e * irig_e;
553
554	/*
555	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
556	 */
557	up->badcnt = (up->badcnt + 1) % up->decim;
558	if (up->badcnt == 0) {
559		if (up->decim == 1)
560		    irig_base(peer, irig_b);
561		else
562		    irig_base(peer, irig_e);
563	}
564}
565
566/*
567 * irig_base - baseband processing
568 *
569 * This routine processes the baseband signal and demodulates the AM
570 * carrier using a synchronous detector. It then synchronizes to the
571 * data frame at the baud rate and decodes the data pulses.
572 */
573static void
574irig_base(
575	struct peer *peer,	/* peer structure pointer */
576	double	sample		/* current signal sample */
577	)
578{
579	struct refclockproc *pp;
580	struct irigunit *up;
581
582	/*
583	 * Local variables
584	 */
585	double	lope;		/* integrator output */
586	double	env;		/* envelope detector output */
587	double	dtemp;		/* double temp */
588	int	i;		/* index temp */
589
590	pp = peer->procptr;
591	up = (struct irigunit *)pp->unitptr;
592
593	/*
594	 * Synchronous baud integrator. Corresponding samples of current
595	 * and past baud intervals are integrated to refine the envelope
596	 * amplitude and phase estimate. We keep one cycle of both the
597	 * raw and integrated data for later use.
598	 */
599	up->envphase = (up->envphase + 1) % BAUD;
600	up->carphase = (up->carphase + 1) % CYCLE;
601	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
602	    (5 * up->tc);
603	lope = up->integ[up->envphase];
604	up->lastenv[up->carphase] = sample;
605	up->lastint[up->carphase] = lope;
606
607	/*
608	 * Phase detector. Sample amplitudes are integrated over the
609	 * baud interval. Cycle phase is determined from these
610	 * amplitudes using an eight-sample cyclic buffer. A phase
611	 * change of 360 degrees produces an output change of one unit.
612	 */
613	if (up->lastsig > 0 && lope <= 0) {
614		up->xxing = lope / (up->lastsig - lope);
615		up->zxing += (up->carphase - 4 + up->xxing) / 8.;
616	}
617	up->lastsig = lope;
618
619	/*
620	 * Update signal/noise estimates and PLL phase/frequency.
621	 */
622	if (up->envphase == 0) {
623
624		/*
625		 * Update envelope signal and noise estimates and mess
626		 * with error bits.
627		 */
628		up->maxsignal = up->intmax;
629		up->noise = up->intmin;
630		if (up->maxsignal < DRPOUT)
631		    up->errflg |= IRIG_ERR_AMP;
632		if (up->intmax > 0)
633		    up->modndx = (up->intmax - up->intmin) / up->intmax;
634 		else
635		    up->modndx = 0;
636		if (up->modndx < MODMIN)
637		    up->errflg |= IRIG_ERR_MOD;
638		up->intmin = 1e6; up->intmax = 0;
639		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
640				  IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
641			up->tc = MINTC;
642			up->tcount = 0;
643		}
644
645		/*
646		 * Update PLL phase and frequency. The PLL time constant
647		 * is set initially to stabilize the frequency within a
648		 * minute or two, then increases to the maximum. The
649		 * frequency is clamped so that the PLL capture range
650		 * cannot be exceeded.
651		 */
652		dtemp = up->zxing * up->decim / BAUD;
653		up->yxing = dtemp;
654		up->zxing = 0.;
655		up->phase += dtemp / up->tc;
656		up->freq += dtemp / (4. * up->tc * up->tc);
657		if (up->freq > MAXFREQ) {
658			up->freq = MAXFREQ;
659			up->errflg |= IRIG_ERR_FREQ;
660		} else if (up->freq < -MAXFREQ) {
661			up->freq = -MAXFREQ;
662			up->errflg |= IRIG_ERR_FREQ;
663		}
664	}
665
666	/*
667	 * Synchronous demodulator. There are eight samples in the cycle
668	 * and ten cycles in the baud interval. The amplitude of each
669	 * cycle is determined at the last sample in the cycle. The
670	 * beginning of the data pulse is determined from the integrated
671	 * samples, while the end of the pulse is determined from the
672	 * raw samples. The raw data bits are demodulated relative to
673	 * the slice level and left-shifted in the decoding register.
674	 */
675	if (up->carphase != 7)
676	    return;
677	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
678	lope = (up->lastint[2] - up->lastint[6]) / 2.;
679	if (lope > up->intmax)
680	    up->intmax = lope;
681	if (lope < up->intmin)
682	    up->intmin = lope;
683
684	/*
685	 * Pulse code demodulator and reference timestamp. The decoder
686	 * looks for a sequence of ten bits; the first two bits must be
687	 * one, the last two bits must be zero. Frame synch is asserted
688	 * when three correct frames have been found.
689	 */
690	up->pulse = (up->pulse + 1) % 10;
691	if (up->pulse == 1)
692	    up->envmax = env;
693	else if (up->pulse == 9)
694	    up->envmin = env;
695	up->dcycles <<= 1;
696	if (env >= (up->envmax + up->envmin) / 2.)
697	    up->dcycles |= 1;
698	up->cycles <<= 1;
699	if (lope >= (up->maxsignal + up->noise) / 2.)
700	    up->cycles |= 1;
701	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
702		l_fp ltemp;
703		int bitz;
704
705		/*
706		 * The PLL time constant starts out small, in order to
707		 * sustain a frequency tolerance of 250 PPM. It
708		 * gradually increases as the loop settles down. Note
709		 * that small wiggles are not believed, unless they
710		 * persist for lots of samples.
711		 */
712		if (up->pulse != 9)
713		    up->errflg |= IRIG_ERR_SYNCH;
714		up->pulse = 9;
715		dtemp = BAUD - up->zxing;
716		i = up->envxing - up->envphase;
717		if (i < 0)
718		    i -= i;
719		if (i <= 1) {
720			up->tcount++;
721			if (up->tcount > 50 * up->tc) {
722				up->tc++;
723				if (up->tc > MAXTC)
724				    up->tc = MAXTC;
725				up->tcount = 0;
726				up->envxing = up->envphase;
727			} else {
728				dtemp -= up->envxing - up->envphase;
729			}
730		} else {
731			up->tcount = 0;
732			up->envxing = up->envphase;
733		}
734
735		/*
736		 * Determine a reference timestamp, accounting for the
737		 * codec delay and filter delay. Note the timestamp is
738		 * for the previous frame, so we have to backtrack for
739		 * this plus the delay since the last carrier positive
740		 * zero crossing.
741		 */
742		DTOLFP(up->decim * (dtemp / SECOND + 1.) + up->fdelay,
743		       &ltemp);
744		pp->lastrec = up->timestamp;
745		L_SUB(&pp->lastrec, &ltemp);
746
747		/*
748		 * The data bits are collected in ten-bit frames. The
749		 * first two and last two bits are determined by frame
750		 * sync and ignored here; the resulting patterns
751		 * represent zero (0-1 bits), one (2-4 bits) and
752		 * position identifier (5-6 bits). The remaining
753		 * patterns represent errors and are treated as zeros.
754		 */
755		bitz = up->dcycles & 0xfc;
756		switch(bitz) {
757
758		    case 0x00:
759		    case 0x80:
760			irig_decode(peer, BIT0);
761			break;
762
763		    case 0xc0:
764		    case 0xe0:
765		    case 0xf0:
766			irig_decode(peer, BIT1);
767			break;
768
769		    case 0xf8:
770		    case 0xfc:
771			irig_decode(peer, BITP);
772			break;
773
774		    default:
775			irig_decode(peer, 0);
776			up->errflg |= IRIG_ERR_DECODE;
777		}
778	}
779}
780
781
782/*
783 * irig_decode - decode the data
784 *
785 * This routine assembles bits into digits, digits into subfields and
786 * subfields into the timecode field. Bits can have values of zero, one
787 * or position identifier. There are four bits per digit, two digits per
788 * subfield and ten subfields per field. The last bit in every subfield
789 * and the first bit in the first subfield are position identifiers.
790 */
791static void
792irig_decode(
793	struct	peer *peer,	/* peer structure pointer */
794	int	bit		/* data bit (0, 1 or 2) */
795	)
796{
797	struct refclockproc *pp;
798	struct irigunit *up;
799
800	/*
801	 * Local variables
802	 */
803	char	syncchar;	/* sync character (Spectracom only) */
804	char	sbs[6];		/* binary seconds since 0h */
805	char	spare[2];	/* mulligan digits */
806
807        pp = peer->procptr;
808	up = (struct irigunit *)pp->unitptr;
809
810	/*
811	 * Assemble subfield bits.
812	 */
813	up->bits <<= 1;
814	if (bit == BIT1) {
815		up->bits |= 1;
816	} else if (bit == BITP && up->lastbit == BITP) {
817
818		/*
819		 * Frame sync - two adjacent position identifiers.
820		 * Monitor the reference timestamp and wiggle the
821		 * clock, but only if no errors have occurred.
822		 */
823		up->bitcnt = 1;
824		up->fieldcnt = 0;
825		up->lastbit = 0;
826		up->montime = pp->lastrec;
827		if (up->errflg == 0) {
828			up->timecnt++;
829			refclock_process(pp);
830		}
831		if (up->timecnt >= MAXSTAGE) {
832			refclock_receive(peer);
833			up->timecnt = 0;
834			up->pollcnt = 2;
835		}
836		up->errflg = 0;
837	}
838	up->bitcnt = (up->bitcnt + 1) % SUBFLD;
839	if (up->bitcnt == 0) {
840
841		/*
842		 * End of subfield. Encode two hexadecimal digits in
843		 * little-endian timecode field.
844		 */
845		if (up->fieldcnt == 0)
846		    up->bits <<= 1;
847		if (up->xptr < 2)
848		    up->xptr = 2 * FIELD;
849		up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
850						  0xf];
851		up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
852		up->fieldcnt = (up->fieldcnt + 1) % FIELD;
853		if (up->fieldcnt == 0) {
854
855			/*
856			 * End of field. Decode the timecode, adjust the
857			 * gain and set the input port. Set the port
858			 * here on the assumption somebody might even
859			 * change it on-wing.
860			 */
861			up->xptr = 2 * FIELD;
862			if (sscanf((char *)up->timecode,
863				   "%6s%2d%c%2s%3d%2d%2d%2d",
864				   sbs, &pp->year, &syncchar, spare, &pp->day,
865				   &pp->hour, &pp->minute, &pp->second) != 8)
866			    pp->leap = LEAP_NOTINSYNC;
867			else
868			    pp->leap = LEAP_NOWARNING;
869			up->second = (up->second + up->decim) % 60;
870			if (pp->second != up->second)
871			    up->errflg |= IRIG_ERR_CHECK;
872			up->second = pp->second;
873			sprintf(pp->a_lastcode,
874				"%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %2d %6.3f %6.1f %s",
875				up->errflg, syncchar, pp->year, pp->day,
876				pp->hour, pp->minute, pp->second,
877				up->maxsignal, up->gain, up->modndx,
878				up->envxing, up->tc, up->yxing, up->freq *
879				1e6 / SECOND, ulfptoa(&up->montime, 6));
880			pp->lencode = strlen(pp->a_lastcode);
881			if (up->timecnt == 0 || pp->sloppyclockflag &
882			    CLK_FLAG4)
883			    record_clock_stats(&peer->srcadr,
884					       pp->a_lastcode);
885#ifdef DEBUG
886			if (debug > 2)
887			    printf("irig: %s\n", pp->a_lastcode);
888#endif /* DEBUG */
889		}
890	}
891	up->lastbit = bit;
892}
893
894
895/*
896 * irig_poll - called by the transmit procedure
897 *
898 * This routine keeps track of status. If nothing is heard for two
899 * successive poll intervals, a timeout event is declared and any
900 * orphaned timecode updates are sent to foster care.
901 */
902static void
903irig_poll(
904	int	unit,		/* instance number (not used) */
905	struct peer *peer	/* peer structure pointer */
906	)
907{
908	struct refclockproc *pp;
909	struct irigunit *up;
910
911	pp = peer->procptr;
912	up = (struct irigunit *)pp->unitptr;
913
914	/*
915	 * Keep book for tattletales
916	 */
917	if (up->pollcnt == 0) {
918		refclock_report(peer, CEVNT_TIMEOUT);
919		up->timecnt = 0;
920		return;
921	}
922	up->pollcnt--;
923	pp->polls++;
924
925}
926
927
928/*
929 * irig_gain - adjust codec gain
930 *
931 * This routine is called once each second. If the signal envelope
932 * amplitude is too low, the codec gain is bumped up by four units; if
933 * too high, it is bumped down. The decoder is relatively insensitive to
934 * amplitude, so this crudity works just fine. The input port is set and
935 * the error flag is cleared, mostly to be ornery.
936 */
937static void
938irig_gain(
939	struct peer *peer	/* peer structure pointer */
940	)
941{
942	struct refclockproc *pp;
943	struct irigunit *up;
944
945	pp = peer->procptr;
946	up = (struct irigunit *)pp->unitptr;
947
948	/*
949	 * Apparently, the codec uses only the high order bits of the
950	 * gain control field. Thus, it may take awhile for changes to
951	 * wiggle the hardware bits.
952	 */
953	if (up->clipcnt == 0) {
954		up->gain += 4;
955		if (up->gain > 255)
956			up->gain = 255;
957	} else if (up->clipcnt > SECOND / 100) {
958		up->gain -= 4;
959		if (up->gain < 0)
960			up->gain = 0;
961	}
962	audio_gain(up->gain, up->port);
963	up->clipcnt = 0;
964}
965
966
967#else
968int refclock_irig_bs;
969#endif /* REFCLOCK */
970