DAGISelMatcherOpt.cpp revision 204961
1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel-opt"
15#include "DAGISelMatcher.h"
16#include "CodeGenDAGPatterns.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/StringSet.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21#include <vector>
22using namespace llvm;
23
24/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25/// into single compound nodes like RecordChild.
26static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
27                          const CodeGenDAGPatterns &CGP) {
28  // If we reached the end of the chain, we're done.
29  Matcher *N = MatcherPtr.get();
30  if (N == 0) return;
31
32  // If we have a scope node, walk down all of the children.
33  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
35      OwningPtr<Matcher> Child(Scope->takeChild(i));
36      ContractNodes(Child, CGP);
37      Scope->resetChild(i, Child.take());
38    }
39    return;
40  }
41
42  // If we found a movechild node with a node that comes in a 'foochild' form,
43  // transform it.
44  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
45    Matcher *New = 0;
46    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47      New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48                                   RM->getResultNo());
49
50    if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
51      New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
52
53    if (New) {
54      // Insert the new node.
55      New->setNext(MatcherPtr.take());
56      MatcherPtr.reset(New);
57      // Remove the old one.
58      MC->setNext(MC->getNext()->takeNext());
59      return ContractNodes(MatcherPtr, CGP);
60    }
61  }
62
63  // Zap movechild -> moveparent.
64  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
65    if (MoveParentMatcher *MP =
66          dyn_cast<MoveParentMatcher>(MC->getNext())) {
67      MatcherPtr.reset(MP->takeNext());
68      return ContractNodes(MatcherPtr, CGP);
69    }
70
71  // Turn EmitNode->MarkFlagResults->CompleteMatch into
72  // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
73  // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
74  // to the root of the pattern.
75  if (isa<EmitNodeMatcher>(N) && isa<MarkFlagResultsMatcher>(N->getNext()) &&
76      isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
77    // Unlink the two nodes from the list.
78    Matcher *EmitNode = MatcherPtr.take();
79    Matcher *MFR = EmitNode->takeNext();
80    Matcher *Tail = MFR->takeNext();
81
82    // Relink them.
83    MatcherPtr.reset(MFR);
84    MFR->setNext(EmitNode);
85    EmitNode->setNext(Tail);
86    return ContractNodes(MatcherPtr, CGP);
87  }
88
89  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
90  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
91    if (CompleteMatchMatcher *CM =
92          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
93      // We can only use MorphNodeTo if the result values match up.
94      unsigned RootResultFirst = EN->getFirstResultSlot();
95      bool ResultsMatch = true;
96      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
97        if (CM->getResult(i) != RootResultFirst+i)
98          ResultsMatch = false;
99
100      // If the selected node defines a subset of the flag/chain results, we
101      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
102      // matched pattern has a chain but the root node doesn't.
103      const PatternToMatch &Pattern = CM->getPattern();
104
105      if (!EN->hasChain() &&
106          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
107        ResultsMatch = false;
108
109      // If the matched node has a flag and the output root doesn't, we can't
110      // use MorphNodeTo.
111      //
112      // NOTE: Strictly speaking, we don't have to check for the flag here
113      // because the code in the pattern generator doesn't handle it right.  We
114      // do it anyway for thoroughness.
115      if (!EN->hasOutFlag() &&
116          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP))
117        ResultsMatch = false;
118
119
120      // If the root result node defines more results than the source root node
121      // *and* has a chain or flag input, then we can't match it because it
122      // would end up replacing the extra result with the chain/flag.
123#if 0
124      if ((EN->hasFlag() || EN->hasChain()) &&
125          EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...)
126        ResultMatch = false;
127#endif
128
129      if (ResultsMatch) {
130        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
131        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
132        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
133                                                VTs.data(), VTs.size(),
134                                                Operands.data(),Operands.size(),
135                                                EN->hasChain(), EN->hasInFlag(),
136                                                EN->hasOutFlag(),
137                                                EN->hasMemRefs(),
138                                                EN->getNumFixedArityOperands(),
139                                                Pattern));
140        return;
141      }
142
143      // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
144      // variants.
145    }
146
147  ContractNodes(N->getNextPtr(), CGP);
148
149
150  // If we have a CheckType/CheckChildType/Record node followed by a
151  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
152  // before type checks, as this opens opportunities for factoring on targets
153  // like X86 where many operations are valid on multiple types.
154  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
155       isa<RecordMatcher>(N)) &&
156      isa<CheckOpcodeMatcher>(N->getNext())) {
157    // Unlink the two nodes from the list.
158    Matcher *CheckType = MatcherPtr.take();
159    Matcher *CheckOpcode = CheckType->takeNext();
160    Matcher *Tail = CheckOpcode->takeNext();
161
162    // Relink them.
163    MatcherPtr.reset(CheckOpcode);
164    CheckOpcode->setNext(CheckType);
165    CheckType->setNext(Tail);
166    return ContractNodes(MatcherPtr, CGP);
167  }
168}
169
170/// SinkPatternPredicates - Pattern predicates can be checked at any level of
171/// the matching tree.  The generator dumps them at the top level of the pattern
172/// though, which prevents factoring from being able to see past them.  This
173/// optimization sinks them as far down into the pattern as possible.
174///
175/// Conceptually, we'd like to sink these predicates all the way to the last
176/// matcher predicate in the series.  However, it turns out that some
177/// ComplexPatterns have side effects on the graph, so we really don't want to
178/// run a the complex pattern if the pattern predicate will fail.  For this
179/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
180///
181static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
182  // Recursively scan for a PatternPredicate.
183  // If we reached the end of the chain, we're done.
184  Matcher *N = MatcherPtr.get();
185  if (N == 0) return;
186
187  // Walk down all members of a scope node.
188  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
189    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
190      OwningPtr<Matcher> Child(Scope->takeChild(i));
191      SinkPatternPredicates(Child);
192      Scope->resetChild(i, Child.take());
193    }
194    return;
195  }
196
197  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
198  // we find one.
199  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
200  if (CPPM == 0)
201    return SinkPatternPredicates(N->getNextPtr());
202
203  // Ok, we found one, lets try to sink it. Check if we can sink it past the
204  // next node in the chain.  If not, we won't be able to change anything and
205  // might as well bail.
206  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
207    return;
208
209  // Okay, we know we can sink it past at least one node.  Unlink it from the
210  // chain and scan for the new insertion point.
211  MatcherPtr.take();  // Don't delete CPPM.
212  MatcherPtr.reset(CPPM->takeNext());
213
214  N = MatcherPtr.get();
215  while (N->getNext()->isSafeToReorderWithPatternPredicate())
216    N = N->getNext();
217
218  // At this point, we want to insert CPPM after N.
219  CPPM->setNext(N->takeNext());
220  N->setNext(CPPM);
221}
222
223/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
224/// specified kind.  Return null if we didn't find one otherwise return the
225/// matcher.
226static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
227  for (; M; M = M->getNext())
228    if (M->getKind() == Kind)
229      return M;
230  return 0;
231}
232
233
234/// FactorNodes - Turn matches like this:
235///   Scope
236///     OPC_CheckType i32
237///       ABC
238///     OPC_CheckType i32
239///       XYZ
240/// into:
241///   OPC_CheckType i32
242///     Scope
243///       ABC
244///       XYZ
245///
246static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
247  // If we reached the end of the chain, we're done.
248  Matcher *N = MatcherPtr.get();
249  if (N == 0) return;
250
251  // If this is not a push node, just scan for one.
252  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
253  if (Scope == 0)
254    return FactorNodes(N->getNextPtr());
255
256  // Okay, pull together the children of the scope node into a vector so we can
257  // inspect it more easily.  While we're at it, bucket them up by the hash
258  // code of their first predicate.
259  SmallVector<Matcher*, 32> OptionsToMatch;
260
261  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
262    // Factor the subexpression.
263    OwningPtr<Matcher> Child(Scope->takeChild(i));
264    FactorNodes(Child);
265
266    if (Matcher *N = Child.take())
267      OptionsToMatch.push_back(N);
268  }
269
270  SmallVector<Matcher*, 32> NewOptionsToMatch;
271
272  // Loop over options to match, merging neighboring patterns with identical
273  // starting nodes into a shared matcher.
274  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
275    // Find the set of matchers that start with this node.
276    Matcher *Optn = OptionsToMatch[OptionIdx++];
277
278    if (OptionIdx == e) {
279      NewOptionsToMatch.push_back(Optn);
280      continue;
281    }
282
283    // See if the next option starts with the same matcher.  If the two
284    // neighbors *do* start with the same matcher, we can factor the matcher out
285    // of at least these two patterns.  See what the maximal set we can merge
286    // together is.
287    SmallVector<Matcher*, 8> EqualMatchers;
288    EqualMatchers.push_back(Optn);
289
290    // Factor all of the known-equal matchers after this one into the same
291    // group.
292    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
293      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
294
295    // If we found a non-equal matcher, see if it is contradictory with the
296    // current node.  If so, we know that the ordering relation between the
297    // current sets of nodes and this node don't matter.  Look past it to see if
298    // we can merge anything else into this matching group.
299    unsigned Scan = OptionIdx;
300    while (1) {
301      // If we ran out of stuff to scan, we're done.
302      if (Scan == e) break;
303
304      Matcher *ScanMatcher = OptionsToMatch[Scan];
305
306      // If we found an entry that matches out matcher, merge it into the set to
307      // handle.
308      if (Optn->isEqual(ScanMatcher)) {
309        // If is equal after all, add the option to EqualMatchers and remove it
310        // from OptionsToMatch.
311        EqualMatchers.push_back(ScanMatcher);
312        OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
313        --e;
314        continue;
315      }
316
317      // If the option we're checking for contradicts the start of the list,
318      // skip over it.
319      if (Optn->isContradictory(ScanMatcher)) {
320        ++Scan;
321        continue;
322      }
323
324      // If we're scanning for a simple node, see if it occurs later in the
325      // sequence.  If so, and if we can move it up, it might be contradictory
326      // or the same as what we're looking for.  If so, reorder it.
327      if (Optn->isSimplePredicateOrRecordNode()) {
328        Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
329        if (M2 != 0 && M2 != ScanMatcher &&
330            M2->canMoveBefore(ScanMatcher) &&
331            (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
332          Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
333          M2->setNext(MatcherWithoutM2);
334          OptionsToMatch[Scan] = M2;
335          continue;
336        }
337      }
338
339      // Otherwise, we don't know how to handle this entry, we have to bail.
340      break;
341    }
342
343    if (Scan != e &&
344        // Don't print it's obvious nothing extra could be merged anyway.
345        Scan+1 != e) {
346      DEBUG(errs() << "Couldn't merge this:\n";
347            Optn->print(errs(), 4);
348            errs() << "into this:\n";
349            OptionsToMatch[Scan]->print(errs(), 4);
350            if (Scan+1 != e)
351              OptionsToMatch[Scan+1]->printOne(errs());
352            if (Scan+2 < e)
353              OptionsToMatch[Scan+2]->printOne(errs());
354            errs() << "\n");
355    }
356
357    // If we only found one option starting with this matcher, no factoring is
358    // possible.
359    if (EqualMatchers.size() == 1) {
360      NewOptionsToMatch.push_back(EqualMatchers[0]);
361      continue;
362    }
363
364    // Factor these checks by pulling the first node off each entry and
365    // discarding it.  Take the first one off the first entry to reuse.
366    Matcher *Shared = Optn;
367    Optn = Optn->takeNext();
368    EqualMatchers[0] = Optn;
369
370    // Remove and delete the first node from the other matchers we're factoring.
371    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
372      Matcher *Tmp = EqualMatchers[i]->takeNext();
373      delete EqualMatchers[i];
374      EqualMatchers[i] = Tmp;
375    }
376
377    Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
378
379    // Recursively factor the newly created node.
380    FactorNodes(Shared->getNextPtr());
381
382    NewOptionsToMatch.push_back(Shared);
383  }
384
385  // If we're down to a single pattern to match, then we don't need this scope
386  // anymore.
387  if (NewOptionsToMatch.size() == 1) {
388    MatcherPtr.reset(NewOptionsToMatch[0]);
389    return;
390  }
391
392  if (NewOptionsToMatch.empty()) {
393    MatcherPtr.reset(0);
394    return;
395  }
396
397  // If our factoring failed (didn't achieve anything) see if we can simplify in
398  // other ways.
399
400  // Check to see if all of the leading entries are now opcode checks.  If so,
401  // we can convert this Scope to be a OpcodeSwitch instead.
402  bool AllOpcodeChecks = true, AllTypeChecks = true;
403  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
404    // Check to see if this breaks a series of CheckOpcodeMatchers.
405    if (AllOpcodeChecks &&
406        !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
407#if 0
408      if (i > 3) {
409        errs() << "FAILING OPC #" << i << "\n";
410        NewOptionsToMatch[i]->dump();
411      }
412#endif
413      AllOpcodeChecks = false;
414    }
415
416    // Check to see if this breaks a series of CheckTypeMatcher's.
417    if (AllTypeChecks) {
418      CheckTypeMatcher *CTM =
419        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
420                                                        Matcher::CheckType));
421      if (CTM == 0 ||
422          // iPTR checks could alias any other case without us knowing, don't
423          // bother with them.
424          CTM->getType() == MVT::iPTR ||
425          // If the CheckType isn't at the start of the list, see if we can move
426          // it there.
427          !CTM->canMoveBefore(NewOptionsToMatch[i])) {
428#if 0
429        if (i > 3 && AllTypeChecks) {
430          errs() << "FAILING TYPE #" << i << "\n";
431          NewOptionsToMatch[i]->dump();
432        }
433#endif
434        AllTypeChecks = false;
435      }
436    }
437  }
438
439  // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
440  if (AllOpcodeChecks) {
441    StringSet<> Opcodes;
442    SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
443    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
444      CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
445      assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
446             "Duplicate opcodes not factored?");
447      Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
448    }
449
450    MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
451    return;
452  }
453
454  // If all the options are CheckType's, we can form the SwitchType, woot.
455  if (AllTypeChecks) {
456    DenseMap<unsigned, unsigned> TypeEntry;
457    SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
458    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
459      CheckTypeMatcher *CTM =
460        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
461                                                        Matcher::CheckType));
462      Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
463      MVT::SimpleValueType CTMTy = CTM->getType();
464      delete CTM;
465
466      unsigned &Entry = TypeEntry[CTMTy];
467      if (Entry != 0) {
468        // If we have unfactored duplicate types, then we should factor them.
469        Matcher *PrevMatcher = Cases[Entry-1].second;
470        if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
471          SM->setNumChildren(SM->getNumChildren()+1);
472          SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
473          continue;
474        }
475
476        Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
477        Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
478        continue;
479      }
480
481      Entry = Cases.size()+1;
482      Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
483    }
484
485    if (Cases.size() != 1) {
486      MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
487    } else {
488      // If we factored and ended up with one case, create it now.
489      MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first));
490      MatcherPtr->setNext(Cases[0].second);
491    }
492    return;
493  }
494
495
496  // Reassemble the Scope node with the adjusted children.
497  Scope->setNumChildren(NewOptionsToMatch.size());
498  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
499    Scope->resetChild(i, NewOptionsToMatch[i]);
500}
501
502Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
503                               const CodeGenDAGPatterns &CGP) {
504  OwningPtr<Matcher> MatcherPtr(TheMatcher);
505  ContractNodes(MatcherPtr, CGP);
506  SinkPatternPredicates(MatcherPtr);
507  FactorNodes(MatcherPtr);
508  return MatcherPtr.take();
509}
510