DAGISelMatcherGen.cpp revision 204961
1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "Record.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringMap.h"
15#include <utility>
16using namespace llvm;
17
18
19/// getRegisterValueType - Look up and return the ValueType of the specified
20/// register. If the register is a member of multiple register classes which
21/// have different associated types, return MVT::Other.
22static MVT::SimpleValueType getRegisterValueType(Record *R,
23                                                 const CodeGenTarget &T) {
24  bool FoundRC = false;
25  MVT::SimpleValueType VT = MVT::Other;
26  const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
27  std::vector<Record*>::const_iterator Element;
28
29  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
30    const CodeGenRegisterClass &RC = RCs[rc];
31    if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
32      continue;
33
34    if (!FoundRC) {
35      FoundRC = true;
36      VT = RC.getValueTypeNum(0);
37      continue;
38    }
39
40    // If this occurs in multiple register classes, they all have to agree.
41    assert(VT == RC.getValueTypeNum(0));
42  }
43  return VT;
44}
45
46
47namespace {
48  class MatcherGen {
49    const PatternToMatch &Pattern;
50    const CodeGenDAGPatterns &CGP;
51
52    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53    /// out with all of the types removed.  This allows us to insert type checks
54    /// as we scan the tree.
55    TreePatternNode *PatWithNoTypes;
56
57    /// VariableMap - A map from variable names ('$dst') to the recorded operand
58    /// number that they were captured as.  These are biased by 1 to make
59    /// insertion easier.
60    StringMap<unsigned> VariableMap;
61
62    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63    /// the RecordedNodes array, this keeps track of which slot will be next to
64    /// record into.
65    unsigned NextRecordedOperandNo;
66
67    /// MatchedChainNodes - This maintains the position in the recorded nodes
68    /// array of all of the recorded input nodes that have chains.
69    SmallVector<unsigned, 2> MatchedChainNodes;
70
71    /// MatchedFlagResultNodes - This maintains the position in the recorded
72    /// nodes array of all of the recorded input nodes that have flag results.
73    SmallVector<unsigned, 2> MatchedFlagResultNodes;
74
75    /// MatchedComplexPatterns - This maintains a list of all of the
76    /// ComplexPatterns that we need to check.  The patterns are known to have
77    /// names which were recorded.  The second element of each pair is the first
78    /// slot number that the OPC_CheckComplexPat opcode drops the matched
79    /// results into.
80    SmallVector<std::pair<const TreePatternNode*,
81                          unsigned>, 2> MatchedComplexPatterns;
82
83    /// PhysRegInputs - List list has an entry for each explicitly specified
84    /// physreg input to the pattern.  The first elt is the Register node, the
85    /// second is the recorded slot number the input pattern match saved it in.
86    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
87
88    /// Matcher - This is the top level of the generated matcher, the result.
89    Matcher *TheMatcher;
90
91    /// CurPredicate - As we emit matcher nodes, this points to the latest check
92    /// which should have future checks stuck into its Next position.
93    Matcher *CurPredicate;
94  public:
95    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
96
97    ~MatcherGen() {
98      delete PatWithNoTypes;
99    }
100
101    bool EmitMatcherCode(unsigned Variant);
102    void EmitResultCode();
103
104    Matcher *GetMatcher() const { return TheMatcher; }
105    Matcher *GetCurPredicate() const { return CurPredicate; }
106  private:
107    void AddMatcher(Matcher *NewNode);
108    void InferPossibleTypes();
109
110    // Matcher Generation.
111    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
112    void EmitLeafMatchCode(const TreePatternNode *N);
113    void EmitOperatorMatchCode(const TreePatternNode *N,
114                               TreePatternNode *NodeNoTypes);
115
116    // Result Code Generation.
117    unsigned getNamedArgumentSlot(StringRef Name) {
118      unsigned VarMapEntry = VariableMap[Name];
119      assert(VarMapEntry != 0 &&
120             "Variable referenced but not defined and not caught earlier!");
121      return VarMapEntry-1;
122    }
123
124    /// GetInstPatternNode - Get the pattern for an instruction.
125    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
126                                              const TreePatternNode *N);
127
128    void EmitResultOperand(const TreePatternNode *N,
129                           SmallVectorImpl<unsigned> &ResultOps);
130    void EmitResultOfNamedOperand(const TreePatternNode *N,
131                                  SmallVectorImpl<unsigned> &ResultOps);
132    void EmitResultLeafAsOperand(const TreePatternNode *N,
133                                 SmallVectorImpl<unsigned> &ResultOps);
134    void EmitResultInstructionAsOperand(const TreePatternNode *N,
135                                        SmallVectorImpl<unsigned> &ResultOps);
136    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
137                                        SmallVectorImpl<unsigned> &ResultOps);
138    };
139
140} // end anon namespace.
141
142MatcherGen::MatcherGen(const PatternToMatch &pattern,
143                       const CodeGenDAGPatterns &cgp)
144: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
145  TheMatcher(0), CurPredicate(0) {
146  // We need to produce the matcher tree for the patterns source pattern.  To do
147  // this we need to match the structure as well as the types.  To do the type
148  // matching, we want to figure out the fewest number of type checks we need to
149  // emit.  For example, if there is only one integer type supported by a
150  // target, there should be no type comparisons at all for integer patterns!
151  //
152  // To figure out the fewest number of type checks needed, clone the pattern,
153  // remove the types, then perform type inference on the pattern as a whole.
154  // If there are unresolved types, emit an explicit check for those types,
155  // apply the type to the tree, then rerun type inference.  Iterate until all
156  // types are resolved.
157  //
158  PatWithNoTypes = Pattern.getSrcPattern()->clone();
159  PatWithNoTypes->RemoveAllTypes();
160
161  // If there are types that are manifestly known, infer them.
162  InferPossibleTypes();
163}
164
165/// InferPossibleTypes - As we emit the pattern, we end up generating type
166/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
167/// want to propagate implied types as far throughout the tree as possible so
168/// that we avoid doing redundant type checks.  This does the type propagation.
169void MatcherGen::InferPossibleTypes() {
170  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
171  // diagnostics, which we know are impossible at this point.
172  TreePattern &TP = *CGP.pf_begin()->second;
173
174  try {
175    bool MadeChange = true;
176    while (MadeChange)
177      MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
178                                                true/*Ignore reg constraints*/);
179  } catch (...) {
180    errs() << "Type constraint application shouldn't fail!";
181    abort();
182  }
183}
184
185
186/// AddMatcher - Add a matcher node to the current graph we're building.
187void MatcherGen::AddMatcher(Matcher *NewNode) {
188  if (CurPredicate != 0)
189    CurPredicate->setNext(NewNode);
190  else
191    TheMatcher = NewNode;
192  CurPredicate = NewNode;
193}
194
195
196//===----------------------------------------------------------------------===//
197// Pattern Match Generation
198//===----------------------------------------------------------------------===//
199
200/// EmitLeafMatchCode - Generate matching code for leaf nodes.
201void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
202  assert(N->isLeaf() && "Not a leaf?");
203
204  // Direct match against an integer constant.
205  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
206    // If this is the root of the dag we're matching, we emit a redundant opcode
207    // check to ensure that this gets folded into the normal top-level
208    // OpcodeSwitch.
209    if (N == Pattern.getSrcPattern()) {
210      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211      AddMatcher(new CheckOpcodeMatcher(NI));
212    }
213
214    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215  }
216
217  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
218  if (DI == 0) {
219    errs() << "Unknown leaf kind: " << *DI << "\n";
220    abort();
221  }
222
223  Record *LeafRec = DI->getDef();
224  if (// Handle register references.  Nothing to do here, they always match.
225      LeafRec->isSubClassOf("RegisterClass") ||
226      LeafRec->isSubClassOf("PointerLikeRegClass") ||
227      // Place holder for SRCVALUE nodes. Nothing to do here.
228      LeafRec->getName() == "srcvalue")
229    return;
230
231  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
232  // record the register
233  if (LeafRec->isSubClassOf("Register")) {
234    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
235                                 NextRecordedOperandNo));
236    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
237    return;
238  }
239
240  if (LeafRec->isSubClassOf("ValueType"))
241    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
242
243  if (LeafRec->isSubClassOf("CondCode"))
244    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
245
246  if (LeafRec->isSubClassOf("ComplexPattern")) {
247    // We can't model ComplexPattern uses that don't have their name taken yet.
248    // The OPC_CheckComplexPattern operation implicitly records the results.
249    if (N->getName().empty()) {
250      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
251      exit(1);
252    }
253
254    // Remember this ComplexPattern so that we can emit it after all the other
255    // structural matches are done.
256    MatchedComplexPatterns.push_back(std::make_pair(N, 0));
257    return;
258  }
259
260  errs() << "Unknown leaf kind: " << *N << "\n";
261  abort();
262}
263
264void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
265                                       TreePatternNode *NodeNoTypes) {
266  assert(!N->isLeaf() && "Not an operator?");
267  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
268
269  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
270  // a constant without a predicate fn that has more that one bit set, handle
271  // this as a special case.  This is usually for targets that have special
272  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
273  // handling stuff).  Using these instructions is often far more efficient
274  // than materializing the constant.  Unfortunately, both the instcombiner
275  // and the dag combiner can often infer that bits are dead, and thus drop
276  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
277  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
278  // to handle this.
279  if ((N->getOperator()->getName() == "and" ||
280       N->getOperator()->getName() == "or") &&
281      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
282      N->getPredicateFns().empty()) {
283    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
284      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
285        // If this is at the root of the pattern, we emit a redundant
286        // CheckOpcode so that the following checks get factored properly under
287        // a single opcode check.
288        if (N == Pattern.getSrcPattern())
289          AddMatcher(new CheckOpcodeMatcher(CInfo));
290
291        // Emit the CheckAndImm/CheckOrImm node.
292        if (N->getOperator()->getName() == "and")
293          AddMatcher(new CheckAndImmMatcher(II->getValue()));
294        else
295          AddMatcher(new CheckOrImmMatcher(II->getValue()));
296
297        // Match the LHS of the AND as appropriate.
298        AddMatcher(new MoveChildMatcher(0));
299        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
300        AddMatcher(new MoveParentMatcher());
301        return;
302      }
303    }
304  }
305
306  // Check that the current opcode lines up.
307  AddMatcher(new CheckOpcodeMatcher(CInfo));
308
309  // If this node has memory references (i.e. is a load or store), tell the
310  // interpreter to capture them in the memref array.
311  if (N->NodeHasProperty(SDNPMemOperand, CGP))
312    AddMatcher(new RecordMemRefMatcher());
313
314  // If this node has a chain, then the chain is operand #0 is the SDNode, and
315  // the child numbers of the node are all offset by one.
316  unsigned OpNo = 0;
317  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
318    // Record the node and remember it in our chained nodes list.
319    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
320                                         "' chained node",
321                                 NextRecordedOperandNo));
322    // Remember all of the input chains our pattern will match.
323    MatchedChainNodes.push_back(NextRecordedOperandNo++);
324
325    // Don't look at the input chain when matching the tree pattern to the
326    // SDNode.
327    OpNo = 1;
328
329    // If this node is not the root and the subtree underneath it produces a
330    // chain, then the result of matching the node is also produce a chain.
331    // Beyond that, this means that we're also folding (at least) the root node
332    // into the node that produce the chain (for example, matching
333    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
334    // problematic, if the 'reg' node also uses the load (say, its chain).
335    // Graphically:
336    //
337    //         [LD]
338    //         ^  ^
339    //         |  \                              DAG's like cheese.
340    //        /    |
341    //       /    [YY]
342    //       |     ^
343    //      [XX]--/
344    //
345    // It would be invalid to fold XX and LD.  In this case, folding the two
346    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
347    // To prevent this, we emit a dynamic check for legality before allowing
348    // this to be folded.
349    //
350    const TreePatternNode *Root = Pattern.getSrcPattern();
351    if (N != Root) {                             // Not the root of the pattern.
352      // If there is a node between the root and this node, then we definitely
353      // need to emit the check.
354      bool NeedCheck = !Root->hasChild(N);
355
356      // If it *is* an immediate child of the root, we can still need a check if
357      // the root SDNode has multiple inputs.  For us, this means that it is an
358      // intrinsic, has multiple operands, or has other inputs like chain or
359      // flag).
360      if (!NeedCheck) {
361        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
362        NeedCheck =
363          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
364          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
365          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
366          PInfo.getNumOperands() > 1 ||
367          PInfo.hasProperty(SDNPHasChain) ||
368          PInfo.hasProperty(SDNPInFlag) ||
369          PInfo.hasProperty(SDNPOptInFlag);
370      }
371
372      if (NeedCheck)
373        AddMatcher(new CheckFoldableChainNodeMatcher());
374    }
375  }
376
377  // If this node has an output flag and isn't the root, remember it.
378  if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
379      N != Pattern.getSrcPattern()) {
380    // TODO: This redundantly records nodes with both flags and chains.
381
382    // Record the node and remember it in our chained nodes list.
383    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
384                                         "' flag output node",
385                                 NextRecordedOperandNo));
386    // Remember all of the nodes with output flags our pattern will match.
387    MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
388  }
389
390  // If this node is known to have an input flag or if it *might* have an input
391  // flag, capture it as the flag input of the pattern.
392  if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
393      N->NodeHasProperty(SDNPInFlag, CGP))
394    AddMatcher(new CaptureFlagInputMatcher());
395
396  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
397    // Get the code suitable for matching this child.  Move to the child, check
398    // it then move back to the parent.
399    AddMatcher(new MoveChildMatcher(OpNo));
400    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
401    AddMatcher(new MoveParentMatcher());
402  }
403}
404
405
406void MatcherGen::EmitMatchCode(const TreePatternNode *N,
407                               TreePatternNode *NodeNoTypes) {
408  // If N and NodeNoTypes don't agree on a type, then this is a case where we
409  // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
410  // reinfer any correlated types.
411  unsigned NodeType = EEVT::isUnknown;
412  if (NodeNoTypes->getExtTypes() != N->getExtTypes()) {
413    NodeType = N->getTypeNum(0);
414    NodeNoTypes->setTypes(N->getExtTypes());
415    InferPossibleTypes();
416  }
417
418  // If this node has a name associated with it, capture it in VariableMap. If
419  // we already saw this in the pattern, emit code to verify dagness.
420  if (!N->getName().empty()) {
421    unsigned &VarMapEntry = VariableMap[N->getName()];
422    if (VarMapEntry == 0) {
423      // If it is a named node, we must emit a 'Record' opcode.
424      AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
425      VarMapEntry = ++NextRecordedOperandNo;
426    } else {
427      // If we get here, this is a second reference to a specific name.  Since
428      // we already have checked that the first reference is valid, we don't
429      // have to recursively match it, just check that it's the same as the
430      // previously named thing.
431      AddMatcher(new CheckSameMatcher(VarMapEntry-1));
432      return;
433    }
434  }
435
436  if (N->isLeaf())
437    EmitLeafMatchCode(N);
438  else
439    EmitOperatorMatchCode(N, NodeNoTypes);
440
441  // If there are node predicates for this node, generate their checks.
442  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
443    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
444
445  if (NodeType != EEVT::isUnknown)
446    AddMatcher(new CheckTypeMatcher((MVT::SimpleValueType)NodeType));
447}
448
449/// EmitMatcherCode - Generate the code that matches the predicate of this
450/// pattern for the specified Variant.  If the variant is invalid this returns
451/// true and does not generate code, if it is valid, it returns false.
452bool MatcherGen::EmitMatcherCode(unsigned Variant) {
453  // If the root of the pattern is a ComplexPattern and if it is specified to
454  // match some number of root opcodes, these are considered to be our variants.
455  // Depending on which variant we're generating code for, emit the root opcode
456  // check.
457  if (const ComplexPattern *CP =
458                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
459    const std::vector<Record*> &OpNodes = CP->getRootNodes();
460    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
461    if (Variant >= OpNodes.size()) return true;
462
463    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
464  } else {
465    if (Variant != 0) return true;
466  }
467
468  // Emit the matcher for the pattern structure and types.
469  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
470
471  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
472  // feature is around, do the check).
473  if (!Pattern.getPredicateCheck().empty())
474    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
475
476  // Now that we've completed the structural type match, emit any ComplexPattern
477  // checks (e.g. addrmode matches).  We emit this after the structural match
478  // because they are generally more expensive to evaluate and more difficult to
479  // factor.
480  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
481    const TreePatternNode *N = MatchedComplexPatterns[i].first;
482
483    // Remember where the results of this match get stuck.
484    MatchedComplexPatterns[i].second = NextRecordedOperandNo;
485
486    // Get the slot we recorded the value in from the name on the node.
487    unsigned RecNodeEntry = VariableMap[N->getName()];
488    assert(!N->getName().empty() && RecNodeEntry &&
489           "Complex pattern should have a name and slot");
490    --RecNodeEntry;  // Entries in VariableMap are biased.
491
492    const ComplexPattern &CP =
493      CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
494
495    // Emit a CheckComplexPat operation, which does the match (aborting if it
496    // fails) and pushes the matched operands onto the recorded nodes list.
497    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
498                                          N->getName(), NextRecordedOperandNo));
499
500    // Record the right number of operands.
501    NextRecordedOperandNo += CP.getNumOperands();
502    if (CP.hasProperty(SDNPHasChain)) {
503      // If the complex pattern has a chain, then we need to keep track of the
504      // fact that we just recorded a chain input.  The chain input will be
505      // matched as the last operand of the predicate if it was successful.
506      ++NextRecordedOperandNo; // Chained node operand.
507
508      // It is the last operand recorded.
509      assert(NextRecordedOperandNo > 1 &&
510             "Should have recorded input/result chains at least!");
511      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
512    }
513
514    // TODO: Complex patterns can't have output flags, if they did, we'd want
515    // to record them.
516  }
517
518  return false;
519}
520
521
522//===----------------------------------------------------------------------===//
523// Node Result Generation
524//===----------------------------------------------------------------------===//
525
526void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
527                                          SmallVectorImpl<unsigned> &ResultOps){
528  assert(!N->getName().empty() && "Operand not named!");
529
530  // A reference to a complex pattern gets all of the results of the complex
531  // pattern's match.
532  if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
533    unsigned SlotNo = 0;
534    for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
535      if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
536        SlotNo = MatchedComplexPatterns[i].second;
537        break;
538      }
539    assert(SlotNo != 0 && "Didn't get a slot number assigned?");
540
541    // The first slot entry is the node itself, the subsequent entries are the
542    // matched values.
543    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
544      ResultOps.push_back(SlotNo+i);
545    return;
546  }
547
548  unsigned SlotNo = getNamedArgumentSlot(N->getName());
549
550  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
551  // version of the immediate so that it doesn't get selected due to some other
552  // node use.
553  if (!N->isLeaf()) {
554    StringRef OperatorName = N->getOperator()->getName();
555    if (OperatorName == "imm" || OperatorName == "fpimm") {
556      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
557      ResultOps.push_back(NextRecordedOperandNo++);
558      return;
559    }
560  }
561
562  ResultOps.push_back(SlotNo);
563}
564
565void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
566                                         SmallVectorImpl<unsigned> &ResultOps) {
567  assert(N->isLeaf() && "Must be a leaf");
568
569  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
570    AddMatcher(new EmitIntegerMatcher(II->getValue(),N->getTypeNum(0)));
571    ResultOps.push_back(NextRecordedOperandNo++);
572    return;
573  }
574
575  // If this is an explicit register reference, handle it.
576  if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
577    if (DI->getDef()->isSubClassOf("Register")) {
578      AddMatcher(new EmitRegisterMatcher(DI->getDef(),
579                                                 N->getTypeNum(0)));
580      ResultOps.push_back(NextRecordedOperandNo++);
581      return;
582    }
583
584    if (DI->getDef()->getName() == "zero_reg") {
585      AddMatcher(new EmitRegisterMatcher(0, N->getTypeNum(0)));
586      ResultOps.push_back(NextRecordedOperandNo++);
587      return;
588    }
589
590    // Handle a reference to a register class. This is used
591    // in COPY_TO_SUBREG instructions.
592    if (DI->getDef()->isSubClassOf("RegisterClass")) {
593      std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
594      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
595      ResultOps.push_back(NextRecordedOperandNo++);
596      return;
597    }
598  }
599
600  errs() << "unhandled leaf node: \n";
601  N->dump();
602}
603
604/// GetInstPatternNode - Get the pattern for an instruction.
605///
606const TreePatternNode *MatcherGen::
607GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
608  const TreePattern *InstPat = Inst.getPattern();
609
610  // FIXME2?: Assume actual pattern comes before "implicit".
611  TreePatternNode *InstPatNode;
612  if (InstPat)
613    InstPatNode = InstPat->getTree(0);
614  else if (/*isRoot*/ N == Pattern.getDstPattern())
615    InstPatNode = Pattern.getSrcPattern();
616  else
617    return 0;
618
619  if (InstPatNode && !InstPatNode->isLeaf() &&
620      InstPatNode->getOperator()->getName() == "set")
621    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
622
623  return InstPatNode;
624}
625
626void MatcherGen::
627EmitResultInstructionAsOperand(const TreePatternNode *N,
628                               SmallVectorImpl<unsigned> &OutputOps) {
629  Record *Op = N->getOperator();
630  const CodeGenTarget &CGT = CGP.getTargetInfo();
631  CodeGenInstruction &II = CGT.getInstruction(Op->getName());
632  const DAGInstruction &Inst = CGP.getInstruction(Op);
633
634  // If we can, get the pattern for the instruction we're generating.  We derive
635  // a variety of information from this pattern, such as whether it has a chain.
636  //
637  // FIXME2: This is extremely dubious for several reasons, not the least of
638  // which it gives special status to instructions with patterns that Pat<>
639  // nodes can't duplicate.
640  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
641
642  // NodeHasChain - Whether the instruction node we're creating takes chains.
643  bool NodeHasChain = InstPatNode &&
644                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
645
646  bool isRoot = N == Pattern.getDstPattern();
647
648  // TreeHasOutFlag - True if this tree has a flag.
649  bool TreeHasInFlag = false, TreeHasOutFlag = false;
650  if (isRoot) {
651    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
652    TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
653                    SrcPat->TreeHasProperty(SDNPInFlag, CGP);
654
655    // FIXME2: this is checking the entire pattern, not just the node in
656    // question, doing this just for the root seems like a total hack.
657    TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
658  }
659
660  // NumResults - This is the number of results produced by the instruction in
661  // the "outs" list.
662  unsigned NumResults = Inst.getNumResults();
663
664  // Loop over all of the operands of the instruction pattern, emitting code
665  // to fill them all in.  The node 'N' usually has number children equal to
666  // the number of input operands of the instruction.  However, in cases
667  // where there are predicate operands for an instruction, we need to fill
668  // in the 'execute always' values.  Match up the node operands to the
669  // instruction operands to do this.
670  SmallVector<unsigned, 8> InstOps;
671  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
672       InstOpNo != e; ++InstOpNo) {
673
674    // Determine what to emit for this operand.
675    Record *OperandNode = II.OperandList[InstOpNo].Rec;
676    if ((OperandNode->isSubClassOf("PredicateOperand") ||
677         OperandNode->isSubClassOf("OptionalDefOperand")) &&
678        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
679      // This is a predicate or optional def operand; emit the
680      // 'default ops' operands.
681      const DAGDefaultOperand &DefaultOp =
682        CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
683      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
684        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
685      continue;
686    }
687
688    // Otherwise this is a normal operand or a predicate operand without
689    // 'execute always'; emit it.
690    EmitResultOperand(N->getChild(ChildNo), InstOps);
691    ++ChildNo;
692  }
693
694  // If this node has an input flag or explicitly specified input physregs, we
695  // need to add chained and flagged copyfromreg nodes and materialize the flag
696  // input.
697  if (isRoot && !PhysRegInputs.empty()) {
698    // Emit all of the CopyToReg nodes for the input physical registers.  These
699    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
700    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
701      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
702                                                  PhysRegInputs[i].first));
703    // Even if the node has no other flag inputs, the resultant node must be
704    // flagged to the CopyFromReg nodes we just generated.
705    TreeHasInFlag = true;
706  }
707
708  // Result order: node results, chain, flags
709
710  // Determine the result types.
711  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
712  if (NumResults != 0 && N->getTypeNum(0) != MVT::isVoid) {
713    // FIXME2: If the node has multiple results, we should add them.  For now,
714    // preserve existing behavior?!
715    ResultVTs.push_back(N->getTypeNum(0));
716  }
717
718
719  // If this is the root instruction of a pattern that has physical registers in
720  // its result pattern, add output VTs for them.  For example, X86 has:
721  //   (set AL, (mul ...))
722  // This also handles implicit results like:
723  //   (implicit EFLAGS)
724  if (isRoot && Pattern.getDstRegs().size() != 0) {
725    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i)
726      if (Pattern.getDstRegs()[i]->isSubClassOf("Register"))
727        ResultVTs.push_back(getRegisterValueType(Pattern.getDstRegs()[i], CGT));
728  }
729
730  // FIXME2: Instead of using the isVariadic flag on the instruction, we should
731  // have an SDNP that indicates variadicism.  The TargetInstrInfo isVariadic
732  // property should be inferred from this when an instruction has a pattern.
733  int NumFixedArityOperands = -1;
734  if (isRoot && II.isVariadic)
735    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
736
737  // If this is the root node and any of the nodes matched nodes in the input
738  // pattern have MemRefs in them, have the interpreter collect them and plop
739  // them onto this node.
740  //
741  // FIXME3: This is actively incorrect for result patterns where the root of
742  // the pattern is not the memory reference and is also incorrect when the
743  // result pattern has multiple memory-referencing instructions.  For example,
744  // in the X86 backend, this pattern causes the memrefs to get attached to the
745  // CVTSS2SDrr instead of the MOVSSrm:
746  //
747  //  def : Pat<(extloadf32 addr:$src),
748  //            (CVTSS2SDrr (MOVSSrm addr:$src))>;
749  //
750  bool NodeHasMemRefs =
751    isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
752
753  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
754                                 ResultVTs.data(), ResultVTs.size(),
755                                 InstOps.data(), InstOps.size(),
756                                 NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
757                                 NodeHasMemRefs, NumFixedArityOperands,
758                                 NextRecordedOperandNo));
759
760  // The non-chain and non-flag results of the newly emitted node get recorded.
761  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
762    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
763    OutputOps.push_back(NextRecordedOperandNo++);
764  }
765}
766
767void MatcherGen::
768EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
769                               SmallVectorImpl<unsigned> &ResultOps) {
770  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
771
772  // Emit the operand.
773  SmallVector<unsigned, 8> InputOps;
774
775  // FIXME2: Could easily generalize this to support multiple inputs and outputs
776  // to the SDNodeXForm.  For now we just support one input and one output like
777  // the old instruction selector.
778  assert(N->getNumChildren() == 1);
779  EmitResultOperand(N->getChild(0), InputOps);
780
781  // The input currently must have produced exactly one result.
782  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
783
784  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
785  ResultOps.push_back(NextRecordedOperandNo++);
786}
787
788void MatcherGen::EmitResultOperand(const TreePatternNode *N,
789                                   SmallVectorImpl<unsigned> &ResultOps) {
790  // This is something selected from the pattern we matched.
791  if (!N->getName().empty())
792    return EmitResultOfNamedOperand(N, ResultOps);
793
794  if (N->isLeaf())
795    return EmitResultLeafAsOperand(N, ResultOps);
796
797  Record *OpRec = N->getOperator();
798  if (OpRec->isSubClassOf("Instruction"))
799    return EmitResultInstructionAsOperand(N, ResultOps);
800  if (OpRec->isSubClassOf("SDNodeXForm"))
801    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
802  errs() << "Unknown result node to emit code for: " << *N << '\n';
803  throw std::string("Unknown node in result pattern!");
804}
805
806void MatcherGen::EmitResultCode() {
807  // Patterns that match nodes with (potentially multiple) chain inputs have to
808  // merge them together into a token factor.  This informs the generated code
809  // what all the chained nodes are.
810  if (!MatchedChainNodes.empty())
811    AddMatcher(new EmitMergeInputChainsMatcher
812               (MatchedChainNodes.data(), MatchedChainNodes.size()));
813
814  // Codegen the root of the result pattern, capturing the resulting values.
815  SmallVector<unsigned, 8> Ops;
816  EmitResultOperand(Pattern.getDstPattern(), Ops);
817
818  // At this point, we have however many values the result pattern produces.
819  // However, the input pattern might not need all of these.  If there are
820  // excess values at the end (such as condition codes etc) just lop them off.
821  // This doesn't need to worry about flags or chains, just explicit results.
822  //
823  // FIXME2: This doesn't work because there is currently no way to get an
824  // accurate count of the # results the source pattern sets.  This is because
825  // of the "parallel" construct in X86 land, which looks like this:
826  //
827  //def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2),
828  //           (implicit EFLAGS)),
829  //  (AND8rr GR8:$src1, GR8:$src2)>;
830  //
831  // This idiom means to match the two-result node X86and_flag (which is
832  // declared as returning a single result, because we can't match multi-result
833  // nodes yet).  In this case, we would have to know that the input has two
834  // results.  However, mul8r is modelled exactly the same way, but without
835  // implicit defs included.  The fix is to support multiple results directly
836  // and eliminate 'parallel'.
837  //
838  // FIXME2: When this is fixed, we should revert the terrible hack in the
839  // OPC_EmitNode code in the interpreter.
840#if 0
841  const TreePatternNode *Src = Pattern.getSrcPattern();
842  unsigned NumSrcResults = Src->getTypeNum(0) != MVT::isVoid ? 1 : 0;
843  NumSrcResults += Pattern.getDstRegs().size();
844  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
845  Ops.resize(NumSrcResults);
846#endif
847
848  // If the matched pattern covers nodes which define a flag result, emit a node
849  // that tells the matcher about them so that it can update their results.
850  if (!MatchedFlagResultNodes.empty())
851    AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
852                                          MatchedFlagResultNodes.size()));
853
854  AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
855}
856
857
858/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
859/// the specified variant.  If the variant number is invalid, this returns null.
860Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
861                                       unsigned Variant,
862                                       const CodeGenDAGPatterns &CGP) {
863  MatcherGen Gen(Pattern, CGP);
864
865  // Generate the code for the matcher.
866  if (Gen.EmitMatcherCode(Variant))
867    return 0;
868
869  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
870  // FIXME2: Split result code out to another table, and make the matcher end
871  // with an "Emit <index>" command.  This allows result generation stuff to be
872  // shared and factored?
873
874  // If the match succeeds, then we generate Pattern.
875  Gen.EmitResultCode();
876
877  // Unconditional match.
878  return Gen.GetMatcher();
879}
880
881
882
883