Store.cpp revision 234353
1//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defined the types Store and StoreManager.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/DeclObjC.h"
18
19using namespace clang;
20using namespace ento;
21
22StoreManager::StoreManager(ProgramStateManager &stateMgr)
23  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
24    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
25
26StoreRef StoreManager::enterStackFrame(ProgramStateRef state,
27                                       const LocationContext *callerCtx,
28                                       const StackFrameContext *calleeCtx) {
29  return StoreRef(state->getStore(), *this);
30}
31
32const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
33                                              QualType EleTy, uint64_t index) {
34  NonLoc idx = svalBuilder.makeArrayIndex(index);
35  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
36}
37
38// FIXME: Merge with the implementation of the same method in MemRegion.cpp
39static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
40  if (const RecordType *RT = Ty->getAs<RecordType>()) {
41    const RecordDecl *D = RT->getDecl();
42    if (!D->getDefinition())
43      return false;
44  }
45
46  return true;
47}
48
49StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
50  return StoreRef(store, *this);
51}
52
53const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
54                                                        QualType T) {
55  NonLoc idx = svalBuilder.makeZeroArrayIndex();
56  assert(!T.isNull());
57  return MRMgr.getElementRegion(T, idx, R, Ctx);
58}
59
60const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
61
62  ASTContext &Ctx = StateMgr.getContext();
63
64  // Handle casts to Objective-C objects.
65  if (CastToTy->isObjCObjectPointerType())
66    return R->StripCasts();
67
68  if (CastToTy->isBlockPointerType()) {
69    // FIXME: We may need different solutions, depending on the symbol
70    // involved.  Blocks can be casted to/from 'id', as they can be treated
71    // as Objective-C objects.  This could possibly be handled by enhancing
72    // our reasoning of downcasts of symbolic objects.
73    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
74      return R;
75
76    // We don't know what to make of it.  Return a NULL region, which
77    // will be interpretted as UnknownVal.
78    return NULL;
79  }
80
81  // Now assume we are casting from pointer to pointer. Other cases should
82  // already be handled.
83  QualType PointeeTy = CastToTy->getPointeeType();
84  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
85
86  // Handle casts to void*.  We just pass the region through.
87  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
88    return R;
89
90  // Handle casts from compatible types.
91  if (R->isBoundable())
92    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
93      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
94      if (CanonPointeeTy == ObjTy)
95        return R;
96    }
97
98  // Process region cast according to the kind of the region being cast.
99  switch (R->getKind()) {
100    case MemRegion::CXXThisRegionKind:
101    case MemRegion::GenericMemSpaceRegionKind:
102    case MemRegion::StackLocalsSpaceRegionKind:
103    case MemRegion::StackArgumentsSpaceRegionKind:
104    case MemRegion::HeapSpaceRegionKind:
105    case MemRegion::UnknownSpaceRegionKind:
106    case MemRegion::StaticGlobalSpaceRegionKind:
107    case MemRegion::GlobalInternalSpaceRegionKind:
108    case MemRegion::GlobalSystemSpaceRegionKind:
109    case MemRegion::GlobalImmutableSpaceRegionKind: {
110      llvm_unreachable("Invalid region cast");
111    }
112
113    case MemRegion::FunctionTextRegionKind:
114    case MemRegion::BlockTextRegionKind:
115    case MemRegion::BlockDataRegionKind:
116    case MemRegion::StringRegionKind:
117      // FIXME: Need to handle arbitrary downcasts.
118    case MemRegion::SymbolicRegionKind:
119    case MemRegion::AllocaRegionKind:
120    case MemRegion::CompoundLiteralRegionKind:
121    case MemRegion::FieldRegionKind:
122    case MemRegion::ObjCIvarRegionKind:
123    case MemRegion::ObjCStringRegionKind:
124    case MemRegion::VarRegionKind:
125    case MemRegion::CXXTempObjectRegionKind:
126    case MemRegion::CXXBaseObjectRegionKind:
127      return MakeElementRegion(R, PointeeTy);
128
129    case MemRegion::ElementRegionKind: {
130      // If we are casting from an ElementRegion to another type, the
131      // algorithm is as follows:
132      //
133      // (1) Compute the "raw offset" of the ElementRegion from the
134      //     base region.  This is done by calling 'getAsRawOffset()'.
135      //
136      // (2a) If we get a 'RegionRawOffset' after calling
137      //      'getAsRawOffset()', determine if the absolute offset
138      //      can be exactly divided into chunks of the size of the
139      //      casted-pointee type.  If so, create a new ElementRegion with
140      //      the pointee-cast type as the new ElementType and the index
141      //      being the offset divded by the chunk size.  If not, create
142      //      a new ElementRegion at offset 0 off the raw offset region.
143      //
144      // (2b) If we don't a get a 'RegionRawOffset' after calling
145      //      'getAsRawOffset()', it means that we are at offset 0.
146      //
147      // FIXME: Handle symbolic raw offsets.
148
149      const ElementRegion *elementR = cast<ElementRegion>(R);
150      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
151      const MemRegion *baseR = rawOff.getRegion();
152
153      // If we cannot compute a raw offset, throw up our hands and return
154      // a NULL MemRegion*.
155      if (!baseR)
156        return NULL;
157
158      CharUnits off = rawOff.getOffset();
159
160      if (off.isZero()) {
161        // Edge case: we are at 0 bytes off the beginning of baseR.  We
162        // check to see if type we are casting to is the same as the base
163        // region.  If so, just return the base region.
164        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
165          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
166          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
167          if (CanonPointeeTy == ObjTy)
168            return baseR;
169        }
170
171        // Otherwise, create a new ElementRegion at offset 0.
172        return MakeElementRegion(baseR, PointeeTy);
173      }
174
175      // We have a non-zero offset from the base region.  We want to determine
176      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
177      // we create an ElementRegion whose index is that value.  Otherwise, we
178      // create two ElementRegions, one that reflects a raw offset and the other
179      // that reflects the cast.
180
181      // Compute the index for the new ElementRegion.
182      int64_t newIndex = 0;
183      const MemRegion *newSuperR = 0;
184
185      // We can only compute sizeof(PointeeTy) if it is a complete type.
186      if (IsCompleteType(Ctx, PointeeTy)) {
187        // Compute the size in **bytes**.
188        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
189        if (!pointeeTySize.isZero()) {
190          // Is the offset a multiple of the size?  If so, we can layer the
191          // ElementRegion (with elementType == PointeeTy) directly on top of
192          // the base region.
193          if (off % pointeeTySize == 0) {
194            newIndex = off / pointeeTySize;
195            newSuperR = baseR;
196          }
197        }
198      }
199
200      if (!newSuperR) {
201        // Create an intermediate ElementRegion to represent the raw byte.
202        // This will be the super region of the final ElementRegion.
203        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
204      }
205
206      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
207    }
208  }
209
210  llvm_unreachable("unreachable");
211}
212
213
214/// CastRetrievedVal - Used by subclasses of StoreManager to implement
215///  implicit casts that arise from loads from regions that are reinterpreted
216///  as another region.
217SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
218                                    QualType castTy, bool performTestOnly) {
219
220  if (castTy.isNull() || V.isUnknownOrUndef())
221    return V;
222
223  ASTContext &Ctx = svalBuilder.getContext();
224
225  if (performTestOnly) {
226    // Automatically translate references to pointers.
227    QualType T = R->getValueType();
228    if (const ReferenceType *RT = T->getAs<ReferenceType>())
229      T = Ctx.getPointerType(RT->getPointeeType());
230
231    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
232    return V;
233  }
234
235  return svalBuilder.dispatchCast(V, castTy);
236}
237
238SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
239  if (Base.isUnknownOrUndef())
240    return Base;
241
242  Loc BaseL = cast<Loc>(Base);
243  const MemRegion* BaseR = 0;
244
245  switch (BaseL.getSubKind()) {
246  case loc::MemRegionKind:
247    BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
248    break;
249
250  case loc::GotoLabelKind:
251    // These are anormal cases. Flag an undefined value.
252    return UndefinedVal();
253
254  case loc::ConcreteIntKind:
255    // While these seem funny, this can happen through casts.
256    // FIXME: What we should return is the field offset.  For example,
257    //  add the field offset to the integer value.  That way funny things
258    //  like this work properly:  &(((struct foo *) 0xa)->f)
259    return Base;
260
261  default:
262    llvm_unreachable("Unhandled Base.");
263  }
264
265  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
266  // of FieldDecl.
267  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
268    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
269
270  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
271}
272
273SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
274  return getLValueFieldOrIvar(decl, base);
275}
276
277SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
278                                    SVal Base) {
279
280  // If the base is an unknown or undefined value, just return it back.
281  // FIXME: For absolute pointer addresses, we just return that value back as
282  //  well, although in reality we should return the offset added to that
283  //  value.
284  if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
285    return Base;
286
287  const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
288
289  // Pointer of any type can be cast and used as array base.
290  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
291
292  // Convert the offset to the appropriate size and signedness.
293  Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
294
295  if (!ElemR) {
296    //
297    // If the base region is not an ElementRegion, create one.
298    // This can happen in the following example:
299    //
300    //   char *p = __builtin_alloc(10);
301    //   p[1] = 8;
302    //
303    //  Observe that 'p' binds to an AllocaRegion.
304    //
305    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
306                                                    BaseRegion, Ctx));
307  }
308
309  SVal BaseIdx = ElemR->getIndex();
310
311  if (!isa<nonloc::ConcreteInt>(BaseIdx))
312    return UnknownVal();
313
314  const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
315
316  // Only allow non-integer offsets if the base region has no offset itself.
317  // FIXME: This is a somewhat arbitrary restriction. We should be using
318  // SValBuilder here to add the two offsets without checking their types.
319  if (!isa<nonloc::ConcreteInt>(Offset)) {
320    if (isa<ElementRegion>(BaseRegion->StripCasts()))
321      return UnknownVal();
322
323    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
324                                                    ElemR->getSuperRegion(),
325                                                    Ctx));
326  }
327
328  const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
329  assert(BaseIdxI.isSigned());
330
331  // Compute the new index.
332  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
333                                                                    OffI));
334
335  // Construct the new ElementRegion.
336  const MemRegion *ArrayR = ElemR->getSuperRegion();
337  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
338                                                  Ctx));
339}
340
341StoreManager::BindingsHandler::~BindingsHandler() {}
342
343bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
344                                                    Store store,
345                                                    const MemRegion* R,
346                                                    SVal val) {
347  SymbolRef SymV = val.getAsLocSymbol();
348  if (!SymV || SymV != Sym)
349    return true;
350
351  if (Binding) {
352    First = false;
353    return false;
354  }
355  else
356    Binding = R;
357
358  return true;
359}
360
361void SubRegionMap::anchor() { }
362void SubRegionMap::Visitor::anchor() { }
363