1218887Sdim//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2218887Sdim//
3218887Sdim//                     The LLVM Compiler Infrastructure
4218887Sdim//
5218887Sdim// This file is distributed under the University of Illinois Open Source
6218887Sdim// License. See LICENSE.TXT for details.
7218887Sdim//
8218887Sdim//===----------------------------------------------------------------------===//
9218887Sdim//
10218887Sdim//  This file defined the types Store and StoreManager.
11218887Sdim//
12218887Sdim//===----------------------------------------------------------------------===//
13218887Sdim
14218887Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15249423Sdim#include "clang/AST/CXXInheritance.h"
16249423Sdim#include "clang/AST/CharUnits.h"
17249423Sdim#include "clang/AST/DeclObjC.h"
18239462Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
19226633Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20218887Sdim
21218887Sdimusing namespace clang;
22218887Sdimusing namespace ento;
23218887Sdim
24226633SdimStoreManager::StoreManager(ProgramStateManager &stateMgr)
25218887Sdim  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
26218887Sdim    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
27218887Sdim
28239462SdimStoreRef StoreManager::enterStackFrame(Store OldStore,
29239462Sdim                                       const CallEvent &Call,
30239462Sdim                                       const StackFrameContext *LCtx) {
31239462Sdim  StoreRef Store = StoreRef(OldStore, *this);
32239462Sdim
33239462Sdim  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
34239462Sdim  Call.getInitialStackFrameContents(LCtx, InitialBindings);
35239462Sdim
36239462Sdim  for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
37239462Sdim                                       E = InitialBindings.end();
38239462Sdim       I != E; ++I) {
39239462Sdim    Store = Bind(Store.getStore(), I->first, I->second);
40239462Sdim  }
41239462Sdim
42239462Sdim  return Store;
43218887Sdim}
44218887Sdim
45218887Sdimconst MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
46218887Sdim                                              QualType EleTy, uint64_t index) {
47218887Sdim  NonLoc idx = svalBuilder.makeArrayIndex(index);
48218887Sdim  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
49218887Sdim}
50218887Sdim
51218887Sdim// FIXME: Merge with the implementation of the same method in MemRegion.cpp
52218887Sdimstatic bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
53218887Sdim  if (const RecordType *RT = Ty->getAs<RecordType>()) {
54218887Sdim    const RecordDecl *D = RT->getDecl();
55218887Sdim    if (!D->getDefinition())
56218887Sdim      return false;
57218887Sdim  }
58218887Sdim
59218887Sdim  return true;
60218887Sdim}
61218887Sdim
62218887SdimStoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
63218887Sdim  return StoreRef(store, *this);
64218887Sdim}
65218887Sdim
66218887Sdimconst ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
67218887Sdim                                                        QualType T) {
68218887Sdim  NonLoc idx = svalBuilder.makeZeroArrayIndex();
69218887Sdim  assert(!T.isNull());
70218887Sdim  return MRMgr.getElementRegion(T, idx, R, Ctx);
71218887Sdim}
72218887Sdim
73218887Sdimconst MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
74218887Sdim
75226633Sdim  ASTContext &Ctx = StateMgr.getContext();
76218887Sdim
77218887Sdim  // Handle casts to Objective-C objects.
78218887Sdim  if (CastToTy->isObjCObjectPointerType())
79218887Sdim    return R->StripCasts();
80218887Sdim
81218887Sdim  if (CastToTy->isBlockPointerType()) {
82218887Sdim    // FIXME: We may need different solutions, depending on the symbol
83218887Sdim    // involved.  Blocks can be casted to/from 'id', as they can be treated
84218887Sdim    // as Objective-C objects.  This could possibly be handled by enhancing
85218887Sdim    // our reasoning of downcasts of symbolic objects.
86218887Sdim    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87218887Sdim      return R;
88218887Sdim
89218887Sdim    // We don't know what to make of it.  Return a NULL region, which
90218887Sdim    // will be interpretted as UnknownVal.
91218887Sdim    return NULL;
92218887Sdim  }
93218887Sdim
94218887Sdim  // Now assume we are casting from pointer to pointer. Other cases should
95218887Sdim  // already be handled.
96218887Sdim  QualType PointeeTy = CastToTy->getPointeeType();
97218887Sdim  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98218887Sdim
99218887Sdim  // Handle casts to void*.  We just pass the region through.
100218887Sdim  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101218887Sdim    return R;
102218887Sdim
103218887Sdim  // Handle casts from compatible types.
104218887Sdim  if (R->isBoundable())
105226633Sdim    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
106218887Sdim      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107218887Sdim      if (CanonPointeeTy == ObjTy)
108218887Sdim        return R;
109218887Sdim    }
110218887Sdim
111218887Sdim  // Process region cast according to the kind of the region being cast.
112218887Sdim  switch (R->getKind()) {
113218887Sdim    case MemRegion::CXXThisRegionKind:
114218887Sdim    case MemRegion::GenericMemSpaceRegionKind:
115218887Sdim    case MemRegion::StackLocalsSpaceRegionKind:
116218887Sdim    case MemRegion::StackArgumentsSpaceRegionKind:
117218887Sdim    case MemRegion::HeapSpaceRegionKind:
118218887Sdim    case MemRegion::UnknownSpaceRegionKind:
119234353Sdim    case MemRegion::StaticGlobalSpaceRegionKind:
120234353Sdim    case MemRegion::GlobalInternalSpaceRegionKind:
121234353Sdim    case MemRegion::GlobalSystemSpaceRegionKind:
122234353Sdim    case MemRegion::GlobalImmutableSpaceRegionKind: {
123226633Sdim      llvm_unreachable("Invalid region cast");
124218887Sdim    }
125218887Sdim
126218887Sdim    case MemRegion::FunctionTextRegionKind:
127218887Sdim    case MemRegion::BlockTextRegionKind:
128218887Sdim    case MemRegion::BlockDataRegionKind:
129218887Sdim    case MemRegion::StringRegionKind:
130218887Sdim      // FIXME: Need to handle arbitrary downcasts.
131218887Sdim    case MemRegion::SymbolicRegionKind:
132218887Sdim    case MemRegion::AllocaRegionKind:
133218887Sdim    case MemRegion::CompoundLiteralRegionKind:
134218887Sdim    case MemRegion::FieldRegionKind:
135218887Sdim    case MemRegion::ObjCIvarRegionKind:
136234353Sdim    case MemRegion::ObjCStringRegionKind:
137218887Sdim    case MemRegion::VarRegionKind:
138218887Sdim    case MemRegion::CXXTempObjectRegionKind:
139218887Sdim    case MemRegion::CXXBaseObjectRegionKind:
140218887Sdim      return MakeElementRegion(R, PointeeTy);
141218887Sdim
142218887Sdim    case MemRegion::ElementRegionKind: {
143218887Sdim      // If we are casting from an ElementRegion to another type, the
144218887Sdim      // algorithm is as follows:
145218887Sdim      //
146218887Sdim      // (1) Compute the "raw offset" of the ElementRegion from the
147218887Sdim      //     base region.  This is done by calling 'getAsRawOffset()'.
148218887Sdim      //
149218887Sdim      // (2a) If we get a 'RegionRawOffset' after calling
150218887Sdim      //      'getAsRawOffset()', determine if the absolute offset
151218887Sdim      //      can be exactly divided into chunks of the size of the
152218887Sdim      //      casted-pointee type.  If so, create a new ElementRegion with
153218887Sdim      //      the pointee-cast type as the new ElementType and the index
154218887Sdim      //      being the offset divded by the chunk size.  If not, create
155218887Sdim      //      a new ElementRegion at offset 0 off the raw offset region.
156218887Sdim      //
157218887Sdim      // (2b) If we don't a get a 'RegionRawOffset' after calling
158218887Sdim      //      'getAsRawOffset()', it means that we are at offset 0.
159218887Sdim      //
160218887Sdim      // FIXME: Handle symbolic raw offsets.
161218887Sdim
162218887Sdim      const ElementRegion *elementR = cast<ElementRegion>(R);
163218887Sdim      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
164218887Sdim      const MemRegion *baseR = rawOff.getRegion();
165218887Sdim
166218887Sdim      // If we cannot compute a raw offset, throw up our hands and return
167218887Sdim      // a NULL MemRegion*.
168218887Sdim      if (!baseR)
169218887Sdim        return NULL;
170218887Sdim
171218887Sdim      CharUnits off = rawOff.getOffset();
172218887Sdim
173218887Sdim      if (off.isZero()) {
174218887Sdim        // Edge case: we are at 0 bytes off the beginning of baseR.  We
175218887Sdim        // check to see if type we are casting to is the same as the base
176218887Sdim        // region.  If so, just return the base region.
177226633Sdim        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
178218887Sdim          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
179218887Sdim          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
180218887Sdim          if (CanonPointeeTy == ObjTy)
181218887Sdim            return baseR;
182218887Sdim        }
183218887Sdim
184218887Sdim        // Otherwise, create a new ElementRegion at offset 0.
185218887Sdim        return MakeElementRegion(baseR, PointeeTy);
186218887Sdim      }
187218887Sdim
188218887Sdim      // We have a non-zero offset from the base region.  We want to determine
189218887Sdim      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
190218887Sdim      // we create an ElementRegion whose index is that value.  Otherwise, we
191218887Sdim      // create two ElementRegions, one that reflects a raw offset and the other
192218887Sdim      // that reflects the cast.
193218887Sdim
194218887Sdim      // Compute the index for the new ElementRegion.
195218887Sdim      int64_t newIndex = 0;
196218887Sdim      const MemRegion *newSuperR = 0;
197218887Sdim
198218887Sdim      // We can only compute sizeof(PointeeTy) if it is a complete type.
199218887Sdim      if (IsCompleteType(Ctx, PointeeTy)) {
200218887Sdim        // Compute the size in **bytes**.
201218887Sdim        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
202218887Sdim        if (!pointeeTySize.isZero()) {
203218887Sdim          // Is the offset a multiple of the size?  If so, we can layer the
204218887Sdim          // ElementRegion (with elementType == PointeeTy) directly on top of
205218887Sdim          // the base region.
206218887Sdim          if (off % pointeeTySize == 0) {
207218887Sdim            newIndex = off / pointeeTySize;
208218887Sdim            newSuperR = baseR;
209218887Sdim          }
210218887Sdim        }
211218887Sdim      }
212218887Sdim
213218887Sdim      if (!newSuperR) {
214218887Sdim        // Create an intermediate ElementRegion to represent the raw byte.
215218887Sdim        // This will be the super region of the final ElementRegion.
216218887Sdim        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
217218887Sdim      }
218218887Sdim
219218887Sdim      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
220218887Sdim    }
221218887Sdim  }
222218887Sdim
223226633Sdim  llvm_unreachable("unreachable");
224218887Sdim}
225218887Sdim
226249423Sdimstatic bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
227249423Sdim  const MemRegion *MR = V.getAsRegion();
228249423Sdim  if (!MR)
229249423Sdim    return true;
230249423Sdim
231249423Sdim  const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
232249423Sdim  if (!TVR)
233249423Sdim    return true;
234249423Sdim
235249423Sdim  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
236249423Sdim  if (!RD)
237249423Sdim    return true;
238249423Sdim
239249423Sdim  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
240249423Sdim  if (!Expected)
241249423Sdim    Expected = Ty->getAsCXXRecordDecl();
242249423Sdim
243249423Sdim  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
244249423Sdim}
245249423Sdim
246239462SdimSVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
247249423Sdim  // Sanity check to avoid doing the wrong thing in the face of
248249423Sdim  // reinterpret_cast.
249249423Sdim  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
250249423Sdim    return UnknownVal();
251249423Sdim
252239462Sdim  // Walk through the cast path to create nested CXXBaseRegions.
253239462Sdim  SVal Result = Derived;
254239462Sdim  for (CastExpr::path_const_iterator I = Cast->path_begin(),
255239462Sdim                                     E = Cast->path_end();
256239462Sdim       I != E; ++I) {
257249423Sdim    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
258239462Sdim  }
259239462Sdim  return Result;
260239462Sdim}
261218887Sdim
262243830SdimSVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
263243830Sdim  // Walk through the path to create nested CXXBaseRegions.
264243830Sdim  SVal Result = Derived;
265243830Sdim  for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
266243830Sdim       I != E; ++I) {
267249423Sdim    Result = evalDerivedToBase(Result, I->Base->getType(),
268249423Sdim                               I->Base->isVirtual());
269243830Sdim  }
270243830Sdim  return Result;
271243830Sdim}
272239462Sdim
273249423SdimSVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
274249423Sdim                                     bool IsVirtual) {
275249423Sdim  Optional<loc::MemRegionVal> DerivedRegVal =
276249423Sdim      Derived.getAs<loc::MemRegionVal>();
277243830Sdim  if (!DerivedRegVal)
278243830Sdim    return Derived;
279243830Sdim
280243830Sdim  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281243830Sdim  if (!BaseDecl)
282243830Sdim    BaseDecl = BaseType->getAsCXXRecordDecl();
283243830Sdim  assert(BaseDecl && "not a C++ object?");
284243830Sdim
285243830Sdim  const MemRegion *BaseReg =
286249423Sdim    MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
287249423Sdim                                 IsVirtual);
288243830Sdim
289243830Sdim  return loc::MemRegionVal(BaseReg);
290243830Sdim}
291243830Sdim
292251662Sdim/// Returns the static type of the given region, if it represents a C++ class
293251662Sdim/// object.
294251662Sdim///
295251662Sdim/// This handles both fully-typed regions, where the dynamic type is known, and
296251662Sdim/// symbolic regions, where the dynamic type is merely bounded (and even then,
297251662Sdim/// only ostensibly!), but does not take advantage of any dynamic type info.
298251662Sdimstatic const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
299251662Sdim  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR))
300251662Sdim    return TVR->getValueType()->getAsCXXRecordDecl();
301251662Sdim  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
302251662Sdim    return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
303251662Sdim  return 0;
304251662Sdim}
305251662Sdim
306251662SdimSVal StoreManager::evalDynamicCast(SVal Base, QualType TargetType,
307243830Sdim                                   bool &Failed) {
308243830Sdim  Failed = false;
309243830Sdim
310251662Sdim  const MemRegion *MR = Base.getAsRegion();
311251662Sdim  if (!MR)
312243830Sdim    return UnknownVal();
313243830Sdim
314243830Sdim  // Assume the derived class is a pointer or a reference to a CXX record.
315251662Sdim  TargetType = TargetType->getPointeeType();
316251662Sdim  assert(!TargetType.isNull());
317251662Sdim  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
318251662Sdim  if (!TargetClass && !TargetType->isVoidType())
319243830Sdim    return UnknownVal();
320243830Sdim
321243830Sdim  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
322243830Sdim  // derived to base).
323251662Sdim  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
324243830Sdim    // If found the derived class, the cast succeeds.
325251662Sdim    if (MRClass == TargetClass)
326251662Sdim      return loc::MemRegionVal(MR);
327243830Sdim
328263508Sdim    // We skip over incomplete types. They must be the result of an earlier
329263508Sdim    // reinterpret_cast, as one can only dynamic_cast between types in the same
330263508Sdim    // class hierarchy.
331263508Sdim    if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
332243830Sdim      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
333243830Sdim      // only happen when multiple or virtual inheritance is involved.
334243830Sdim      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
335243830Sdim                         /*DetectVirtual=*/false);
336251662Sdim      if (MRClass->isDerivedFrom(TargetClass, Paths))
337251662Sdim        return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
338243830Sdim    }
339243830Sdim
340251662Sdim    if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
341243830Sdim      // Drill down the chain to get the derived classes.
342251662Sdim      MR = BaseR->getSuperRegion();
343251662Sdim      continue;
344251662Sdim    }
345243830Sdim
346251662Sdim    // If this is a cast to void*, return the region.
347251662Sdim    if (TargetType->isVoidType())
348251662Sdim      return loc::MemRegionVal(MR);
349243830Sdim
350251662Sdim    // Strange use of reinterpret_cast can give us paths we don't reason
351251662Sdim    // about well, by putting in ElementRegions where we'd expect
352251662Sdim    // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
353251662Sdim    // derived class has a zero offset from the base class), then it's safe
354251662Sdim    // to strip the cast; if it's invalid, -Wreinterpret-base-class should
355251662Sdim    // catch it. In the interest of performance, the analyzer will silently
356251662Sdim    // do the wrong thing in the invalid case (because offsets for subregions
357251662Sdim    // will be wrong).
358251662Sdim    const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
359251662Sdim    if (Uncasted == MR) {
360251662Sdim      // We reached the bottom of the hierarchy and did not find the derived
361251662Sdim      // class. We we must be casting the base to derived, so the cast should
362251662Sdim      // fail.
363251662Sdim      break;
364243830Sdim    }
365251662Sdim
366251662Sdim    MR = Uncasted;
367243830Sdim  }
368251662Sdim
369251662Sdim  // We failed if the region we ended up with has perfect type info.
370251662Sdim  Failed = isa<TypedValueRegion>(MR);
371243830Sdim  return UnknownVal();
372243830Sdim}
373243830Sdim
374243830Sdim
375218887Sdim/// CastRetrievedVal - Used by subclasses of StoreManager to implement
376218887Sdim///  implicit casts that arise from loads from regions that are reinterpreted
377218887Sdim///  as another region.
378226633SdimSVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
379218887Sdim                                    QualType castTy, bool performTestOnly) {
380218887Sdim
381234353Sdim  if (castTy.isNull() || V.isUnknownOrUndef())
382218887Sdim    return V;
383218887Sdim
384218887Sdim  ASTContext &Ctx = svalBuilder.getContext();
385218887Sdim
386218887Sdim  if (performTestOnly) {
387218887Sdim    // Automatically translate references to pointers.
388218887Sdim    QualType T = R->getValueType();
389218887Sdim    if (const ReferenceType *RT = T->getAs<ReferenceType>())
390218887Sdim      T = Ctx.getPointerType(RT->getPointeeType());
391218887Sdim
392218887Sdim    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
393218887Sdim    return V;
394218887Sdim  }
395218887Sdim
396234353Sdim  return svalBuilder.dispatchCast(V, castTy);
397218887Sdim}
398218887Sdim
399226633SdimSVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
400218887Sdim  if (Base.isUnknownOrUndef())
401218887Sdim    return Base;
402218887Sdim
403249423Sdim  Loc BaseL = Base.castAs<Loc>();
404218887Sdim  const MemRegion* BaseR = 0;
405218887Sdim
406218887Sdim  switch (BaseL.getSubKind()) {
407218887Sdim  case loc::MemRegionKind:
408249423Sdim    BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
409218887Sdim    break;
410218887Sdim
411218887Sdim  case loc::GotoLabelKind:
412218887Sdim    // These are anormal cases. Flag an undefined value.
413218887Sdim    return UndefinedVal();
414218887Sdim
415218887Sdim  case loc::ConcreteIntKind:
416218887Sdim    // While these seem funny, this can happen through casts.
417218887Sdim    // FIXME: What we should return is the field offset.  For example,
418218887Sdim    //  add the field offset to the integer value.  That way funny things
419218887Sdim    //  like this work properly:  &(((struct foo *) 0xa)->f)
420218887Sdim    return Base;
421218887Sdim
422218887Sdim  default:
423226633Sdim    llvm_unreachable("Unhandled Base.");
424218887Sdim  }
425218887Sdim
426218887Sdim  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
427218887Sdim  // of FieldDecl.
428218887Sdim  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
429218887Sdim    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
430218887Sdim
431218887Sdim  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
432218887Sdim}
433218887Sdim
434234353SdimSVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
435234353Sdim  return getLValueFieldOrIvar(decl, base);
436234353Sdim}
437234353Sdim
438218887SdimSVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
439218887Sdim                                    SVal Base) {
440218887Sdim
441218887Sdim  // If the base is an unknown or undefined value, just return it back.
442218887Sdim  // FIXME: For absolute pointer addresses, we just return that value back as
443218887Sdim  //  well, although in reality we should return the offset added to that
444218887Sdim  //  value.
445249423Sdim  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
446218887Sdim    return Base;
447218887Sdim
448249423Sdim  const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
449218887Sdim
450218887Sdim  // Pointer of any type can be cast and used as array base.
451218887Sdim  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
452218887Sdim
453218887Sdim  // Convert the offset to the appropriate size and signedness.
454249423Sdim  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
455218887Sdim
456218887Sdim  if (!ElemR) {
457218887Sdim    //
458218887Sdim    // If the base region is not an ElementRegion, create one.
459218887Sdim    // This can happen in the following example:
460218887Sdim    //
461218887Sdim    //   char *p = __builtin_alloc(10);
462218887Sdim    //   p[1] = 8;
463218887Sdim    //
464218887Sdim    //  Observe that 'p' binds to an AllocaRegion.
465218887Sdim    //
466218887Sdim    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
467218887Sdim                                                    BaseRegion, Ctx));
468218887Sdim  }
469218887Sdim
470218887Sdim  SVal BaseIdx = ElemR->getIndex();
471218887Sdim
472249423Sdim  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
473218887Sdim    return UnknownVal();
474218887Sdim
475249423Sdim  const llvm::APSInt &BaseIdxI =
476249423Sdim      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
477218887Sdim
478218887Sdim  // Only allow non-integer offsets if the base region has no offset itself.
479218887Sdim  // FIXME: This is a somewhat arbitrary restriction. We should be using
480218887Sdim  // SValBuilder here to add the two offsets without checking their types.
481249423Sdim  if (!Offset.getAs<nonloc::ConcreteInt>()) {
482218887Sdim    if (isa<ElementRegion>(BaseRegion->StripCasts()))
483218887Sdim      return UnknownVal();
484218887Sdim
485218887Sdim    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
486218887Sdim                                                    ElemR->getSuperRegion(),
487218887Sdim                                                    Ctx));
488218887Sdim  }
489218887Sdim
490249423Sdim  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
491218887Sdim  assert(BaseIdxI.isSigned());
492218887Sdim
493218887Sdim  // Compute the new index.
494218887Sdim  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
495218887Sdim                                                                    OffI));
496218887Sdim
497218887Sdim  // Construct the new ElementRegion.
498218887Sdim  const MemRegion *ArrayR = ElemR->getSuperRegion();
499218887Sdim  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
500218887Sdim                                                  Ctx));
501218887Sdim}
502226633Sdim
503226633SdimStoreManager::BindingsHandler::~BindingsHandler() {}
504226633Sdim
505234353Sdimbool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
506234353Sdim                                                    Store store,
507234353Sdim                                                    const MemRegion* R,
508234353Sdim                                                    SVal val) {
509234353Sdim  SymbolRef SymV = val.getAsLocSymbol();
510234353Sdim  if (!SymV || SymV != Sym)
511234353Sdim    return true;
512234353Sdim
513234353Sdim  if (Binding) {
514234353Sdim    First = false;
515234353Sdim    return false;
516234353Sdim  }
517234353Sdim  else
518234353Sdim    Binding = R;
519234353Sdim
520234353Sdim  return true;
521234353Sdim}
522