1218887Sdim// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2218887Sdim//
3218887Sdim//                     The LLVM Compiler Infrastructure
4218887Sdim//
5218887Sdim// This file is distributed under the University of Illinois Open Source
6218887Sdim// License. See LICENSE.TXT for details.
7218887Sdim//
8218887Sdim//===----------------------------------------------------------------------===//
9218887Sdim//
10218887Sdim//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11218887Sdim//
12218887Sdim//===----------------------------------------------------------------------===//
13218887Sdim
14249423Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15239462Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16226633Sdim#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17218887Sdim
18218887Sdimusing namespace clang;
19218887Sdimusing namespace ento;
20218887Sdim
21218887Sdimnamespace {
22218887Sdimclass SimpleSValBuilder : public SValBuilder {
23218887Sdimprotected:
24234353Sdim  virtual SVal dispatchCast(SVal val, QualType castTy);
25221345Sdim  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26221345Sdim  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27218887Sdim
28218887Sdimpublic:
29218887Sdim  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30226633Sdim                    ProgramStateManager &stateMgr)
31218887Sdim                    : SValBuilder(alloc, context, stateMgr) {}
32218887Sdim  virtual ~SimpleSValBuilder() {}
33218887Sdim
34218887Sdim  virtual SVal evalMinus(NonLoc val);
35218887Sdim  virtual SVal evalComplement(NonLoc val);
36234353Sdim  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37218887Sdim                           NonLoc lhs, NonLoc rhs, QualType resultTy);
38234353Sdim  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39218887Sdim                           Loc lhs, Loc rhs, QualType resultTy);
40234353Sdim  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41218887Sdim                           Loc lhs, NonLoc rhs, QualType resultTy);
42218887Sdim
43218887Sdim  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44218887Sdim  ///  (integer) value, that value is returned. Otherwise, returns NULL.
45234353Sdim  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46218887Sdim
47218887Sdim  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48218887Sdim                     const llvm::APSInt &RHS, QualType resultTy);
49218887Sdim};
50218887Sdim} // end anonymous namespace
51218887Sdim
52218887SdimSValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53218887Sdim                                           ASTContext &context,
54226633Sdim                                           ProgramStateManager &stateMgr) {
55218887Sdim  return new SimpleSValBuilder(alloc, context, stateMgr);
56218887Sdim}
57218887Sdim
58218887Sdim//===----------------------------------------------------------------------===//
59218887Sdim// Transfer function for Casts.
60218887Sdim//===----------------------------------------------------------------------===//
61218887Sdim
62234353SdimSVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63249423Sdim  assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64249423Sdim  return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65249423Sdim                           : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66234353Sdim}
67234353Sdim
68221345SdimSVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69218887Sdim
70218887Sdim  bool isLocType = Loc::isLocType(castTy);
71218887Sdim
72249423Sdim  if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
73218887Sdim    if (isLocType)
74218887Sdim      return LI->getLoc();
75218887Sdim
76218887Sdim    // FIXME: Correctly support promotions/truncations.
77218887Sdim    unsigned castSize = Context.getTypeSize(castTy);
78218887Sdim    if (castSize == LI->getNumBits())
79218887Sdim      return val;
80218887Sdim    return makeLocAsInteger(LI->getLoc(), castSize);
81218887Sdim  }
82218887Sdim
83218887Sdim  if (const SymExpr *se = val.getAsSymbolicExpression()) {
84243830Sdim    QualType T = Context.getCanonicalType(se->getType());
85234353Sdim    // If types are the same or both are integers, ignore the cast.
86218887Sdim    // FIXME: Remove this hack when we support symbolic truncation/extension.
87218887Sdim    // HACK: If both castTy and T are integers, ignore the cast.  This is
88218887Sdim    // not a permanent solution.  Eventually we want to precisely handle
89218887Sdim    // extension/truncation of symbolic integers.  This prevents us from losing
90218887Sdim    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91218887Sdim    // different integer types.
92234353Sdim   if (haveSameType(T, castTy))
93218887Sdim      return val;
94218887Sdim
95234353Sdim    if (!isLocType)
96234353Sdim      return makeNonLoc(se, T, castTy);
97218887Sdim    return UnknownVal();
98218887Sdim  }
99218887Sdim
100234353Sdim  // If value is a non integer constant, produce unknown.
101249423Sdim  if (!val.getAs<nonloc::ConcreteInt>())
102218887Sdim    return UnknownVal();
103218887Sdim
104249423Sdim  // Handle casts to a boolean type.
105249423Sdim  if (castTy->isBooleanType()) {
106249423Sdim    bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
107249423Sdim    return makeTruthVal(b, castTy);
108249423Sdim  }
109249423Sdim
110234353Sdim  // Only handle casts from integers to integers - if val is an integer constant
111234353Sdim  // being cast to a non integer type, produce unknown.
112251662Sdim  if (!isLocType && !castTy->isIntegralOrEnumerationType())
113218887Sdim    return UnknownVal();
114218887Sdim
115249423Sdim  llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
116239462Sdim  BasicVals.getAPSIntType(castTy).apply(i);
117218887Sdim
118218887Sdim  if (isLocType)
119218887Sdim    return makeIntLocVal(i);
120218887Sdim  else
121218887Sdim    return makeIntVal(i);
122218887Sdim}
123218887Sdim
124221345SdimSVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
125218887Sdim
126218887Sdim  // Casts from pointers -> pointers, just return the lval.
127218887Sdim  //
128218887Sdim  // Casts from pointers -> references, just return the lval.  These
129218887Sdim  //   can be introduced by the frontend for corner cases, e.g
130218887Sdim  //   casting from va_list* to __builtin_va_list&.
131218887Sdim  //
132218887Sdim  if (Loc::isLocType(castTy) || castTy->isReferenceType())
133218887Sdim    return val;
134218887Sdim
135218887Sdim  // FIXME: Handle transparent unions where a value can be "transparently"
136218887Sdim  //  lifted into a union type.
137218887Sdim  if (castTy->isUnionType())
138218887Sdim    return UnknownVal();
139218887Sdim
140263508Sdim  // Casting a Loc to a bool will almost always be true,
141263508Sdim  // unless this is a weak function or a symbolic region.
142263508Sdim  if (castTy->isBooleanType()) {
143263508Sdim    switch (val.getSubKind()) {
144263508Sdim      case loc::MemRegionKind: {
145263508Sdim        const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
146263508Sdim        if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R))
147263508Sdim          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
148263508Sdim            if (FD->isWeak())
149263508Sdim              // FIXME: Currently we are using an extent symbol here,
150263508Sdim              // because there are no generic region address metadata
151263508Sdim              // symbols to use, only content metadata.
152263508Sdim              return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
153263508Sdim
154263508Sdim        if (const SymbolicRegion *SymR = R->getSymbolicBase())
155263508Sdim          return nonloc::SymbolVal(SymR->getSymbol());
156263508Sdim
157263508Sdim        // FALL-THROUGH
158263508Sdim      }
159263508Sdim
160263508Sdim      case loc::GotoLabelKind:
161263508Sdim        // Labels and non symbolic memory regions are always true.
162263508Sdim        return makeTruthVal(true, castTy);
163263508Sdim    }
164263508Sdim  }
165263508Sdim
166251662Sdim  if (castTy->isIntegralOrEnumerationType()) {
167218887Sdim    unsigned BitWidth = Context.getTypeSize(castTy);
168218887Sdim
169249423Sdim    if (!val.getAs<loc::ConcreteInt>())
170218887Sdim      return makeLocAsInteger(val, BitWidth);
171218887Sdim
172249423Sdim    llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
173239462Sdim    BasicVals.getAPSIntType(castTy).apply(i);
174218887Sdim    return makeIntVal(i);
175218887Sdim  }
176218887Sdim
177218887Sdim  // All other cases: return 'UnknownVal'.  This includes casting pointers
178218887Sdim  // to floats, which is probably badness it itself, but this is a good
179218887Sdim  // intermediate solution until we do something better.
180218887Sdim  return UnknownVal();
181218887Sdim}
182218887Sdim
183218887Sdim//===----------------------------------------------------------------------===//
184218887Sdim// Transfer function for unary operators.
185218887Sdim//===----------------------------------------------------------------------===//
186218887Sdim
187218887SdimSVal SimpleSValBuilder::evalMinus(NonLoc val) {
188218887Sdim  switch (val.getSubKind()) {
189218887Sdim  case nonloc::ConcreteIntKind:
190249423Sdim    return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
191218887Sdim  default:
192218887Sdim    return UnknownVal();
193218887Sdim  }
194218887Sdim}
195218887Sdim
196218887SdimSVal SimpleSValBuilder::evalComplement(NonLoc X) {
197218887Sdim  switch (X.getSubKind()) {
198218887Sdim  case nonloc::ConcreteIntKind:
199249423Sdim    return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
200218887Sdim  default:
201218887Sdim    return UnknownVal();
202218887Sdim  }
203218887Sdim}
204218887Sdim
205218887Sdim//===----------------------------------------------------------------------===//
206218887Sdim// Transfer function for binary operators.
207218887Sdim//===----------------------------------------------------------------------===//
208218887Sdim
209218887SdimSVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
210218887Sdim                                    BinaryOperator::Opcode op,
211218887Sdim                                    const llvm::APSInt &RHS,
212218887Sdim                                    QualType resultTy) {
213218887Sdim  bool isIdempotent = false;
214218887Sdim
215218887Sdim  // Check for a few special cases with known reductions first.
216218887Sdim  switch (op) {
217218887Sdim  default:
218218887Sdim    // We can't reduce this case; just treat it normally.
219218887Sdim    break;
220218887Sdim  case BO_Mul:
221218887Sdim    // a*0 and a*1
222218887Sdim    if (RHS == 0)
223218887Sdim      return makeIntVal(0, resultTy);
224218887Sdim    else if (RHS == 1)
225218887Sdim      isIdempotent = true;
226218887Sdim    break;
227218887Sdim  case BO_Div:
228218887Sdim    // a/0 and a/1
229218887Sdim    if (RHS == 0)
230218887Sdim      // This is also handled elsewhere.
231218887Sdim      return UndefinedVal();
232218887Sdim    else if (RHS == 1)
233218887Sdim      isIdempotent = true;
234218887Sdim    break;
235218887Sdim  case BO_Rem:
236218887Sdim    // a%0 and a%1
237218887Sdim    if (RHS == 0)
238218887Sdim      // This is also handled elsewhere.
239218887Sdim      return UndefinedVal();
240218887Sdim    else if (RHS == 1)
241218887Sdim      return makeIntVal(0, resultTy);
242218887Sdim    break;
243218887Sdim  case BO_Add:
244218887Sdim  case BO_Sub:
245218887Sdim  case BO_Shl:
246218887Sdim  case BO_Shr:
247218887Sdim  case BO_Xor:
248218887Sdim    // a+0, a-0, a<<0, a>>0, a^0
249218887Sdim    if (RHS == 0)
250218887Sdim      isIdempotent = true;
251218887Sdim    break;
252218887Sdim  case BO_And:
253218887Sdim    // a&0 and a&(~0)
254218887Sdim    if (RHS == 0)
255218887Sdim      return makeIntVal(0, resultTy);
256218887Sdim    else if (RHS.isAllOnesValue())
257218887Sdim      isIdempotent = true;
258218887Sdim    break;
259218887Sdim  case BO_Or:
260218887Sdim    // a|0 and a|(~0)
261218887Sdim    if (RHS == 0)
262218887Sdim      isIdempotent = true;
263218887Sdim    else if (RHS.isAllOnesValue()) {
264218887Sdim      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
265218887Sdim      return nonloc::ConcreteInt(Result);
266218887Sdim    }
267218887Sdim    break;
268218887Sdim  }
269218887Sdim
270218887Sdim  // Idempotent ops (like a*1) can still change the type of an expression.
271221345Sdim  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
272221345Sdim  // dirty work.
273234353Sdim  if (isIdempotent)
274234353Sdim      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
275218887Sdim
276218887Sdim  // If we reach this point, the expression cannot be simplified.
277239462Sdim  // Make a SymbolVal for the entire expression, after converting the RHS.
278239462Sdim  const llvm::APSInt *ConvertedRHS = &RHS;
279239462Sdim  if (BinaryOperator::isComparisonOp(op)) {
280239462Sdim    // We're looking for a type big enough to compare the symbolic value
281239462Sdim    // with the given constant.
282239462Sdim    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
283239462Sdim    ASTContext &Ctx = getContext();
284243830Sdim    QualType SymbolType = LHS->getType();
285239462Sdim    uint64_t ValWidth = RHS.getBitWidth();
286239462Sdim    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
287239462Sdim
288239462Sdim    if (ValWidth < TypeWidth) {
289239462Sdim      // If the value is too small, extend it.
290239462Sdim      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
291239462Sdim    } else if (ValWidth == TypeWidth) {
292239462Sdim      // If the value is signed but the symbol is unsigned, do the comparison
293239462Sdim      // in unsigned space. [C99 6.3.1.8]
294239462Sdim      // (For the opposite case, the value is already unsigned.)
295239462Sdim      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
296239462Sdim        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
297239462Sdim    }
298239462Sdim  } else
299239462Sdim    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
300239462Sdim
301239462Sdim  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
302218887Sdim}
303218887Sdim
304234353SdimSVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
305218887Sdim                                  BinaryOperator::Opcode op,
306218887Sdim                                  NonLoc lhs, NonLoc rhs,
307218887Sdim                                  QualType resultTy)  {
308239462Sdim  NonLoc InputLHS = lhs;
309239462Sdim  NonLoc InputRHS = rhs;
310239462Sdim
311218887Sdim  // Handle trivial case where left-side and right-side are the same.
312218887Sdim  if (lhs == rhs)
313218887Sdim    switch (op) {
314218887Sdim      default:
315218887Sdim        break;
316218887Sdim      case BO_EQ:
317218887Sdim      case BO_LE:
318218887Sdim      case BO_GE:
319218887Sdim        return makeTruthVal(true, resultTy);
320218887Sdim      case BO_LT:
321218887Sdim      case BO_GT:
322218887Sdim      case BO_NE:
323218887Sdim        return makeTruthVal(false, resultTy);
324218887Sdim      case BO_Xor:
325218887Sdim      case BO_Sub:
326243830Sdim        if (resultTy->isIntegralOrEnumerationType())
327243830Sdim          return makeIntVal(0, resultTy);
328243830Sdim        return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
329218887Sdim      case BO_Or:
330218887Sdim      case BO_And:
331221345Sdim        return evalCastFromNonLoc(lhs, resultTy);
332218887Sdim    }
333218887Sdim
334218887Sdim  while (1) {
335218887Sdim    switch (lhs.getSubKind()) {
336218887Sdim    default:
337239462Sdim      return makeSymExprValNN(state, op, lhs, rhs, resultTy);
338218887Sdim    case nonloc::LocAsIntegerKind: {
339249423Sdim      Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
340218887Sdim      switch (rhs.getSubKind()) {
341218887Sdim        case nonloc::LocAsIntegerKind:
342218887Sdim          return evalBinOpLL(state, op, lhsL,
343249423Sdim                             rhs.castAs<nonloc::LocAsInteger>().getLoc(),
344218887Sdim                             resultTy);
345218887Sdim        case nonloc::ConcreteIntKind: {
346218887Sdim          // Transform the integer into a location and compare.
347249423Sdim          llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
348239462Sdim          BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
349218887Sdim          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
350218887Sdim        }
351218887Sdim        default:
352218887Sdim          switch (op) {
353218887Sdim            case BO_EQ:
354218887Sdim              return makeTruthVal(false, resultTy);
355218887Sdim            case BO_NE:
356218887Sdim              return makeTruthVal(true, resultTy);
357218887Sdim            default:
358218887Sdim              // This case also handles pointer arithmetic.
359239462Sdim              return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
360218887Sdim          }
361218887Sdim      }
362218887Sdim    }
363218887Sdim    case nonloc::ConcreteIntKind: {
364249423Sdim      llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
365218887Sdim
366239462Sdim      // If we're dealing with two known constants, just perform the operation.
367239462Sdim      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
368239462Sdim        llvm::APSInt RHSValue = *KnownRHSValue;
369239462Sdim        if (BinaryOperator::isComparisonOp(op)) {
370239462Sdim          // We're looking for a type big enough to compare the two values.
371239462Sdim          // FIXME: This is not correct. char + short will result in a promotion
372239462Sdim          // to int. Unfortunately we have lost types by this point.
373239462Sdim          APSIntType CompareType = std::max(APSIntType(LHSValue),
374239462Sdim                                            APSIntType(RHSValue));
375239462Sdim          CompareType.apply(LHSValue);
376239462Sdim          CompareType.apply(RHSValue);
377239462Sdim        } else if (!BinaryOperator::isShiftOp(op)) {
378239462Sdim          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
379239462Sdim          IntType.apply(LHSValue);
380239462Sdim          IntType.apply(RHSValue);
381224145Sdim        }
382224145Sdim
383239462Sdim        const llvm::APSInt *Result =
384239462Sdim          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
385239462Sdim        if (!Result)
386239462Sdim          return UndefinedVal();
387218887Sdim
388239462Sdim        return nonloc::ConcreteInt(*Result);
389218887Sdim      }
390239462Sdim
391239462Sdim      // Swap the left and right sides and flip the operator if doing so
392239462Sdim      // allows us to better reason about the expression (this is a form
393239462Sdim      // of expression canonicalization).
394239462Sdim      // While we're at it, catch some special cases for non-commutative ops.
395239462Sdim      switch (op) {
396239462Sdim      case BO_LT:
397239462Sdim      case BO_GT:
398239462Sdim      case BO_LE:
399239462Sdim      case BO_GE:
400249423Sdim        op = BinaryOperator::reverseComparisonOp(op);
401239462Sdim        // FALL-THROUGH
402239462Sdim      case BO_EQ:
403239462Sdim      case BO_NE:
404239462Sdim      case BO_Add:
405239462Sdim      case BO_Mul:
406239462Sdim      case BO_And:
407239462Sdim      case BO_Xor:
408239462Sdim      case BO_Or:
409239462Sdim        std::swap(lhs, rhs);
410239462Sdim        continue;
411239462Sdim      case BO_Shr:
412239462Sdim        // (~0)>>a
413239462Sdim        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
414239462Sdim          return evalCastFromNonLoc(lhs, resultTy);
415239462Sdim        // FALL-THROUGH
416239462Sdim      case BO_Shl:
417239462Sdim        // 0<<a and 0>>a
418239462Sdim        if (LHSValue == 0)
419239462Sdim          return evalCastFromNonLoc(lhs, resultTy);
420239462Sdim        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
421239462Sdim      default:
422239462Sdim        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
423239462Sdim      }
424218887Sdim    }
425218887Sdim    case nonloc::SymbolValKind: {
426239462Sdim      // We only handle LHS as simple symbols or SymIntExprs.
427249423Sdim      SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
428224145Sdim
429234353Sdim      // LHS is a symbolic expression.
430239462Sdim      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
431224145Sdim
432234353Sdim        // Is this a logical not? (!x is represented as x == 0.)
433234353Sdim        if (op == BO_EQ && rhs.isZeroConstant()) {
434234353Sdim          // We know how to negate certain expressions. Simplify them here.
435234353Sdim
436234353Sdim          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
437234353Sdim          switch (opc) {
438234353Sdim          default:
439234353Sdim            // We don't know how to negate this operation.
440234353Sdim            // Just handle it as if it were a normal comparison to 0.
441234353Sdim            break;
442234353Sdim          case BO_LAnd:
443234353Sdim          case BO_LOr:
444234353Sdim            llvm_unreachable("Logical operators handled by branching logic.");
445234353Sdim          case BO_Assign:
446234353Sdim          case BO_MulAssign:
447234353Sdim          case BO_DivAssign:
448234353Sdim          case BO_RemAssign:
449234353Sdim          case BO_AddAssign:
450234353Sdim          case BO_SubAssign:
451234353Sdim          case BO_ShlAssign:
452234353Sdim          case BO_ShrAssign:
453234353Sdim          case BO_AndAssign:
454234353Sdim          case BO_XorAssign:
455234353Sdim          case BO_OrAssign:
456234353Sdim          case BO_Comma:
457234353Sdim            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
458234353Sdim          case BO_PtrMemD:
459234353Sdim          case BO_PtrMemI:
460234353Sdim            llvm_unreachable("Pointer arithmetic not handled here.");
461234353Sdim          case BO_LT:
462234353Sdim          case BO_GT:
463234353Sdim          case BO_LE:
464234353Sdim          case BO_GE:
465234353Sdim          case BO_EQ:
466234353Sdim          case BO_NE:
467251662Sdim            assert(resultTy->isBooleanType() ||
468251662Sdim                   resultTy == getConditionType());
469251662Sdim            assert(symIntExpr->getType()->isBooleanType() ||
470251662Sdim                   getContext().hasSameUnqualifiedType(symIntExpr->getType(),
471251662Sdim                                                       getConditionType()));
472234353Sdim            // Negate the comparison and make a value.
473249423Sdim            opc = BinaryOperator::negateComparisonOp(opc);
474234353Sdim            return makeNonLoc(symIntExpr->getLHS(), opc,
475234353Sdim                symIntExpr->getRHS(), resultTy);
476218887Sdim          }
477218887Sdim        }
478218887Sdim
479234353Sdim        // For now, only handle expressions whose RHS is a constant.
480239462Sdim        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
481239462Sdim          // If both the LHS and the current expression are additive,
482239462Sdim          // fold their constants and try again.
483239462Sdim          if (BinaryOperator::isAdditiveOp(op)) {
484239462Sdim            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
485239462Sdim            if (BinaryOperator::isAdditiveOp(lop)) {
486239462Sdim              // Convert the two constants to a common type, then combine them.
487234353Sdim
488239462Sdim              // resultTy may not be the best type to convert to, but it's
489239462Sdim              // probably the best choice in expressions with mixed type
490239462Sdim              // (such as x+1U+2LL). The rules for implicit conversions should
491239462Sdim              // choose a reasonable type to preserve the expression, and will
492239462Sdim              // at least match how the value is going to be used.
493239462Sdim              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
494239462Sdim              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
495239462Sdim              const llvm::APSInt &second = IntType.convert(*RHSValue);
496218887Sdim
497239462Sdim              const llvm::APSInt *newRHS;
498239462Sdim              if (lop == op)
499239462Sdim                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
500239462Sdim              else
501239462Sdim                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
502234353Sdim
503239462Sdim              assert(newRHS && "Invalid operation despite common type!");
504239462Sdim              rhs = nonloc::ConcreteInt(*newRHS);
505239462Sdim              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
506239462Sdim              op = lop;
507234353Sdim              continue;
508234353Sdim            }
509234353Sdim          }
510234353Sdim
511239462Sdim          // Otherwise, make a SymIntExpr out of the expression.
512239462Sdim          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
513234353Sdim        }
514249423Sdim      }
515234353Sdim
516249423Sdim      // Does the symbolic expression simplify to a constant?
517249423Sdim      // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
518249423Sdim      // and try again.
519249423Sdim      ConstraintManager &CMgr = state->getConstraintManager();
520249423Sdim      if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
521249423Sdim        lhs = nonloc::ConcreteInt(*Constant);
522249423Sdim        continue;
523249423Sdim      }
524239462Sdim
525249423Sdim      // Is the RHS a constant?
526249423Sdim      if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
527249423Sdim        return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
528234353Sdim
529239462Sdim      // Give up -- this is not a symbolic expression we can handle.
530239462Sdim      return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
531218887Sdim    }
532218887Sdim    }
533218887Sdim  }
534218887Sdim}
535218887Sdim
536263508Sdimstatic SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
537263508Sdim                                            const FieldRegion *RightFR,
538263508Sdim                                            BinaryOperator::Opcode op,
539263508Sdim                                            QualType resultTy,
540263508Sdim                                            SimpleSValBuilder &SVB) {
541263508Sdim  // Only comparisons are meaningful here!
542263508Sdim  if (!BinaryOperator::isComparisonOp(op))
543263508Sdim    return UnknownVal();
544263508Sdim
545263508Sdim  // Next, see if the two FRs have the same super-region.
546263508Sdim  // FIXME: This doesn't handle casts yet, and simply stripping the casts
547263508Sdim  // doesn't help.
548263508Sdim  if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
549263508Sdim    return UnknownVal();
550263508Sdim
551263508Sdim  const FieldDecl *LeftFD = LeftFR->getDecl();
552263508Sdim  const FieldDecl *RightFD = RightFR->getDecl();
553263508Sdim  const RecordDecl *RD = LeftFD->getParent();
554263508Sdim
555263508Sdim  // Make sure the two FRs are from the same kind of record. Just in case!
556263508Sdim  // FIXME: This is probably where inheritance would be a problem.
557263508Sdim  if (RD != RightFD->getParent())
558263508Sdim    return UnknownVal();
559263508Sdim
560263508Sdim  // We know for sure that the two fields are not the same, since that
561263508Sdim  // would have given us the same SVal.
562263508Sdim  if (op == BO_EQ)
563263508Sdim    return SVB.makeTruthVal(false, resultTy);
564263508Sdim  if (op == BO_NE)
565263508Sdim    return SVB.makeTruthVal(true, resultTy);
566263508Sdim
567263508Sdim  // Iterate through the fields and see which one comes first.
568263508Sdim  // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
569263508Sdim  // members and the units in which bit-fields reside have addresses that
570263508Sdim  // increase in the order in which they are declared."
571263508Sdim  bool leftFirst = (op == BO_LT || op == BO_LE);
572263508Sdim  for (RecordDecl::field_iterator I = RD->field_begin(),
573263508Sdim       E = RD->field_end(); I!=E; ++I) {
574263508Sdim    if (*I == LeftFD)
575263508Sdim      return SVB.makeTruthVal(leftFirst, resultTy);
576263508Sdim    if (*I == RightFD)
577263508Sdim      return SVB.makeTruthVal(!leftFirst, resultTy);
578263508Sdim  }
579263508Sdim
580263508Sdim  llvm_unreachable("Fields not found in parent record's definition");
581263508Sdim}
582263508Sdim
583218887Sdim// FIXME: all this logic will change if/when we have MemRegion::getLocation().
584234353SdimSVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
585218887Sdim                                  BinaryOperator::Opcode op,
586218887Sdim                                  Loc lhs, Loc rhs,
587218887Sdim                                  QualType resultTy) {
588218887Sdim  // Only comparisons and subtractions are valid operations on two pointers.
589218887Sdim  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
590218887Sdim  // However, if a pointer is casted to an integer, evalBinOpNN may end up
591218887Sdim  // calling this function with another operation (PR7527). We don't attempt to
592218887Sdim  // model this for now, but it could be useful, particularly when the
593218887Sdim  // "location" is actually an integer value that's been passed through a void*.
594218887Sdim  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
595218887Sdim    return UnknownVal();
596218887Sdim
597218887Sdim  // Special cases for when both sides are identical.
598218887Sdim  if (lhs == rhs) {
599218887Sdim    switch (op) {
600218887Sdim    default:
601226633Sdim      llvm_unreachable("Unimplemented operation for two identical values");
602218887Sdim    case BO_Sub:
603218887Sdim      return makeZeroVal(resultTy);
604218887Sdim    case BO_EQ:
605218887Sdim    case BO_LE:
606218887Sdim    case BO_GE:
607218887Sdim      return makeTruthVal(true, resultTy);
608218887Sdim    case BO_NE:
609218887Sdim    case BO_LT:
610218887Sdim    case BO_GT:
611218887Sdim      return makeTruthVal(false, resultTy);
612218887Sdim    }
613218887Sdim  }
614218887Sdim
615218887Sdim  switch (lhs.getSubKind()) {
616218887Sdim  default:
617226633Sdim    llvm_unreachable("Ordering not implemented for this Loc.");
618218887Sdim
619218887Sdim  case loc::GotoLabelKind:
620218887Sdim    // The only thing we know about labels is that they're non-null.
621218887Sdim    if (rhs.isZeroConstant()) {
622218887Sdim      switch (op) {
623218887Sdim      default:
624218887Sdim        break;
625218887Sdim      case BO_Sub:
626221345Sdim        return evalCastFromLoc(lhs, resultTy);
627218887Sdim      case BO_EQ:
628218887Sdim      case BO_LE:
629218887Sdim      case BO_LT:
630218887Sdim        return makeTruthVal(false, resultTy);
631218887Sdim      case BO_NE:
632218887Sdim      case BO_GT:
633218887Sdim      case BO_GE:
634218887Sdim        return makeTruthVal(true, resultTy);
635218887Sdim      }
636218887Sdim    }
637218887Sdim    // There may be two labels for the same location, and a function region may
638218887Sdim    // have the same address as a label at the start of the function (depending
639218887Sdim    // on the ABI).
640218887Sdim    // FIXME: we can probably do a comparison against other MemRegions, though.
641218887Sdim    // FIXME: is there a way to tell if two labels refer to the same location?
642218887Sdim    return UnknownVal();
643218887Sdim
644218887Sdim  case loc::ConcreteIntKind: {
645218887Sdim    // If one of the operands is a symbol and the other is a constant,
646218887Sdim    // build an expression for use by the constraint manager.
647218887Sdim    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
648218887Sdim      // We can only build expressions with symbols on the left,
649218887Sdim      // so we need a reversible operator.
650218887Sdim      if (!BinaryOperator::isComparisonOp(op))
651218887Sdim        return UnknownVal();
652218887Sdim
653249423Sdim      const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
654249423Sdim      op = BinaryOperator::reverseComparisonOp(op);
655249423Sdim      return makeNonLoc(rSym, op, lVal, resultTy);
656218887Sdim    }
657218887Sdim
658218887Sdim    // If both operands are constants, just perform the operation.
659249423Sdim    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
660249423Sdim      SVal ResultVal =
661249423Sdim          lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
662249423Sdim      if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
663249423Sdim        return evalCastFromNonLoc(*Result, resultTy);
664249423Sdim
665249423Sdim      assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
666249423Sdim      return UnknownVal();
667218887Sdim    }
668218887Sdim
669218887Sdim    // Special case comparisons against NULL.
670218887Sdim    // This must come after the test if the RHS is a symbol, which is used to
671218887Sdim    // build constraints. The address of any non-symbolic region is guaranteed
672218887Sdim    // to be non-NULL, as is any label.
673249423Sdim    assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
674218887Sdim    if (lhs.isZeroConstant()) {
675218887Sdim      switch (op) {
676218887Sdim      default:
677218887Sdim        break;
678218887Sdim      case BO_EQ:
679218887Sdim      case BO_GT:
680218887Sdim      case BO_GE:
681218887Sdim        return makeTruthVal(false, resultTy);
682218887Sdim      case BO_NE:
683218887Sdim      case BO_LT:
684218887Sdim      case BO_LE:
685218887Sdim        return makeTruthVal(true, resultTy);
686218887Sdim      }
687218887Sdim    }
688218887Sdim
689218887Sdim    // Comparing an arbitrary integer to a region or label address is
690218887Sdim    // completely unknowable.
691218887Sdim    return UnknownVal();
692218887Sdim  }
693218887Sdim  case loc::MemRegionKind: {
694249423Sdim    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
695218887Sdim      // If one of the operands is a symbol and the other is a constant,
696218887Sdim      // build an expression for use by the constraint manager.
697263508Sdim      if (SymbolRef lSym = lhs.getAsLocSymbol(true))
698218887Sdim        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
699218887Sdim
700218887Sdim      // Special case comparisons to NULL.
701218887Sdim      // This must come after the test if the LHS is a symbol, which is used to
702218887Sdim      // build constraints. The address of any non-symbolic region is guaranteed
703218887Sdim      // to be non-NULL.
704218887Sdim      if (rInt->isZeroConstant()) {
705263508Sdim        if (op == BO_Sub)
706221345Sdim          return evalCastFromLoc(lhs, resultTy);
707263508Sdim
708263508Sdim        if (BinaryOperator::isComparisonOp(op)) {
709263508Sdim          QualType boolType = getContext().BoolTy;
710263508Sdim          NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
711263508Sdim          NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
712263508Sdim          return evalBinOpNN(state, op, l, r, resultTy);
713218887Sdim        }
714218887Sdim      }
715218887Sdim
716218887Sdim      // Comparing a region to an arbitrary integer is completely unknowable.
717218887Sdim      return UnknownVal();
718218887Sdim    }
719218887Sdim
720218887Sdim    // Get both values as regions, if possible.
721218887Sdim    const MemRegion *LeftMR = lhs.getAsRegion();
722218887Sdim    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
723218887Sdim
724218887Sdim    const MemRegion *RightMR = rhs.getAsRegion();
725218887Sdim    if (!RightMR)
726218887Sdim      // The RHS is probably a label, which in theory could address a region.
727218887Sdim      // FIXME: we can probably make a more useful statement about non-code
728218887Sdim      // regions, though.
729218887Sdim      return UnknownVal();
730218887Sdim
731218887Sdim    const MemRegion *LeftBase = LeftMR->getBaseRegion();
732218887Sdim    const MemRegion *RightBase = RightMR->getBaseRegion();
733249423Sdim    const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
734249423Sdim    const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
735249423Sdim    const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
736239462Sdim
737239462Sdim    // If the two regions are from different known memory spaces they cannot be
738239462Sdim    // equal. Also, assume that no symbolic region (whose memory space is
739239462Sdim    // unknown) is on the stack.
740239462Sdim    if (LeftMS != RightMS &&
741239462Sdim        ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
742239462Sdim         (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
743218887Sdim      switch (op) {
744218887Sdim      default:
745218887Sdim        return UnknownVal();
746218887Sdim      case BO_EQ:
747218887Sdim        return makeTruthVal(false, resultTy);
748218887Sdim      case BO_NE:
749218887Sdim        return makeTruthVal(true, resultTy);
750218887Sdim      }
751218887Sdim    }
752218887Sdim
753239462Sdim    // If both values wrap regions, see if they're from different base regions.
754239462Sdim    // Note, heap base symbolic regions are assumed to not alias with
755239462Sdim    // each other; for example, we assume that malloc returns different address
756239462Sdim    // on each invocation.
757239462Sdim    if (LeftBase != RightBase &&
758239462Sdim        ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
759239462Sdim         (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
760234353Sdim      switch (op) {
761239462Sdim      default:
762239462Sdim        return UnknownVal();
763239462Sdim      case BO_EQ:
764239462Sdim        return makeTruthVal(false, resultTy);
765239462Sdim      case BO_NE:
766239462Sdim        return makeTruthVal(true, resultTy);
767234353Sdim      }
768234353Sdim    }
769234353Sdim
770263508Sdim    // Handle special cases for when both regions are element regions.
771263508Sdim    const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
772263508Sdim    const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
773263508Sdim    if (RightER && LeftER) {
774218887Sdim      // Next, see if the two ERs have the same super-region and matching types.
775218887Sdim      // FIXME: This should do something useful even if the types don't match,
776218887Sdim      // though if both indexes are constant the RegionRawOffset path will
777218887Sdim      // give the correct answer.
778218887Sdim      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
779218887Sdim          LeftER->getElementType() == RightER->getElementType()) {
780218887Sdim        // Get the left index and cast it to the correct type.
781218887Sdim        // If the index is unknown or undefined, bail out here.
782218887Sdim        SVal LeftIndexVal = LeftER->getIndex();
783249423Sdim        Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
784218887Sdim        if (!LeftIndex)
785218887Sdim          return UnknownVal();
786249423Sdim        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
787249423Sdim        LeftIndex = LeftIndexVal.getAs<NonLoc>();
788218887Sdim        if (!LeftIndex)
789218887Sdim          return UnknownVal();
790218887Sdim
791218887Sdim        // Do the same for the right index.
792218887Sdim        SVal RightIndexVal = RightER->getIndex();
793249423Sdim        Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
794218887Sdim        if (!RightIndex)
795218887Sdim          return UnknownVal();
796249423Sdim        RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
797249423Sdim        RightIndex = RightIndexVal.getAs<NonLoc>();
798218887Sdim        if (!RightIndex)
799218887Sdim          return UnknownVal();
800218887Sdim
801218887Sdim        // Actually perform the operation.
802218887Sdim        // evalBinOpNN expects the two indexes to already be the right type.
803218887Sdim        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
804218887Sdim      }
805263508Sdim    }
806218887Sdim
807263508Sdim    // Special handling of the FieldRegions, even with symbolic offsets.
808263508Sdim    const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
809263508Sdim    const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
810263508Sdim    if (RightFR && LeftFR) {
811263508Sdim      SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
812263508Sdim                                               *this);
813263508Sdim      if (!R.isUnknown())
814263508Sdim        return R;
815263508Sdim    }
816218887Sdim
817263508Sdim    // Compare the regions using the raw offsets.
818263508Sdim    RegionOffset LeftOffset = LeftMR->getAsOffset();
819263508Sdim    RegionOffset RightOffset = RightMR->getAsOffset();
820218887Sdim
821263508Sdim    if (LeftOffset.getRegion() != NULL &&
822263508Sdim        LeftOffset.getRegion() == RightOffset.getRegion() &&
823263508Sdim        !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
824263508Sdim      int64_t left = LeftOffset.getOffset();
825263508Sdim      int64_t right = RightOffset.getOffset();
826263508Sdim
827263508Sdim      switch (op) {
828218887Sdim        default:
829218887Sdim          return UnknownVal();
830218887Sdim        case BO_LT:
831218887Sdim          return makeTruthVal(left < right, resultTy);
832218887Sdim        case BO_GT:
833218887Sdim          return makeTruthVal(left > right, resultTy);
834218887Sdim        case BO_LE:
835218887Sdim          return makeTruthVal(left <= right, resultTy);
836218887Sdim        case BO_GE:
837218887Sdim          return makeTruthVal(left >= right, resultTy);
838218887Sdim        case BO_EQ:
839218887Sdim          return makeTruthVal(left == right, resultTy);
840218887Sdim        case BO_NE:
841218887Sdim          return makeTruthVal(left != right, resultTy);
842218887Sdim      }
843218887Sdim    }
844218887Sdim
845249423Sdim    // At this point we're not going to get a good answer, but we can try
846249423Sdim    // conjuring an expression instead.
847249423Sdim    SymbolRef LHSSym = lhs.getAsLocSymbol();
848249423Sdim    SymbolRef RHSSym = rhs.getAsLocSymbol();
849249423Sdim    if (LHSSym && RHSSym)
850249423Sdim      return makeNonLoc(LHSSym, op, RHSSym, resultTy);
851249423Sdim
852218887Sdim    // If we get here, we have no way of comparing the regions.
853218887Sdim    return UnknownVal();
854218887Sdim  }
855218887Sdim  }
856218887Sdim}
857218887Sdim
858234353SdimSVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
859218887Sdim                                  BinaryOperator::Opcode op,
860218887Sdim                                  Loc lhs, NonLoc rhs, QualType resultTy) {
861263508Sdim  assert(!BinaryOperator::isComparisonOp(op) &&
862263508Sdim         "arguments to comparison ops must be of the same type");
863263508Sdim
864218887Sdim  // Special case: rhs is a zero constant.
865218887Sdim  if (rhs.isZeroConstant())
866218887Sdim    return lhs;
867218887Sdim
868218887Sdim  // We are dealing with pointer arithmetic.
869218887Sdim
870218887Sdim  // Handle pointer arithmetic on constant values.
871249423Sdim  if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
872249423Sdim    if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
873218887Sdim      const llvm::APSInt &leftI = lhsInt->getValue();
874218887Sdim      assert(leftI.isUnsigned());
875218887Sdim      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
876218887Sdim
877218887Sdim      // Convert the bitwidth of rightI.  This should deal with overflow
878218887Sdim      // since we are dealing with concrete values.
879218887Sdim      rightI = rightI.extOrTrunc(leftI.getBitWidth());
880218887Sdim
881218887Sdim      // Offset the increment by the pointer size.
882218887Sdim      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
883218887Sdim      rightI *= Multiplicand;
884218887Sdim
885218887Sdim      // Compute the adjusted pointer.
886218887Sdim      switch (op) {
887218887Sdim        case BO_Add:
888218887Sdim          rightI = leftI + rightI;
889218887Sdim          break;
890218887Sdim        case BO_Sub:
891218887Sdim          rightI = leftI - rightI;
892218887Sdim          break;
893218887Sdim        default:
894218887Sdim          llvm_unreachable("Invalid pointer arithmetic operation");
895218887Sdim      }
896218887Sdim      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
897218887Sdim    }
898218887Sdim  }
899218887Sdim
900218887Sdim  // Handle cases where 'lhs' is a region.
901218887Sdim  if (const MemRegion *region = lhs.getAsRegion()) {
902249423Sdim    rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
903218887Sdim    SVal index = UnknownVal();
904218887Sdim    const MemRegion *superR = 0;
905218887Sdim    QualType elementType;
906218887Sdim
907218887Sdim    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
908221345Sdim      assert(op == BO_Add || op == BO_Sub);
909221345Sdim      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
910218887Sdim                          getArrayIndexType());
911218887Sdim      superR = elemReg->getSuperRegion();
912218887Sdim      elementType = elemReg->getElementType();
913218887Sdim    }
914218887Sdim    else if (isa<SubRegion>(region)) {
915218887Sdim      superR = region;
916218887Sdim      index = rhs;
917243830Sdim      if (resultTy->isAnyPointerType())
918243830Sdim        elementType = resultTy->getPointeeType();
919218887Sdim    }
920218887Sdim
921249423Sdim    if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
922218887Sdim      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
923218887Sdim                                                       superR, getContext()));
924218887Sdim    }
925218887Sdim  }
926218887Sdim  return UnknownVal();
927218887Sdim}
928218887Sdim
929234353Sdimconst llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
930218887Sdim                                                   SVal V) {
931218887Sdim  if (V.isUnknownOrUndef())
932218887Sdim    return NULL;
933218887Sdim
934249423Sdim  if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
935218887Sdim    return &X->getValue();
936218887Sdim
937249423Sdim  if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
938218887Sdim    return &X->getValue();
939218887Sdim
940218887Sdim  if (SymbolRef Sym = V.getAsSymbol())
941243830Sdim    return state->getConstraintManager().getSymVal(state, Sym);
942218887Sdim
943218887Sdim  // FIXME: Add support for SymExprs.
944218887Sdim  return NULL;
945218887Sdim}
946