RegionStore.cpp revision 224145
1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/GRStateTrait.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Direct = 0x0, Default = 0x1 };
43private:
44  llvm ::PointerIntPair<const MemRegion*, 1> P;
45  uint64_t Offset;
46
47  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
48    : P(r, (unsigned) k), Offset(offset) {}
49public:
50
51  bool isDirect() const { return P.getInt() == Direct; }
52
53  const MemRegion *getRegion() const { return P.getPointer(); }
54  uint64_t getOffset() const { return Offset; }
55
56  void Profile(llvm::FoldingSetNodeID& ID) const {
57    ID.AddPointer(P.getOpaqueValue());
58    ID.AddInteger(Offset);
59  }
60
61  static BindingKey Make(const MemRegion *R, Kind k);
62
63  bool operator<(const BindingKey &X) const {
64    if (P.getOpaqueValue() < X.P.getOpaqueValue())
65      return true;
66    if (P.getOpaqueValue() > X.P.getOpaqueValue())
67      return false;
68    return Offset < X.Offset;
69  }
70
71  bool operator==(const BindingKey &X) const {
72    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
73           Offset == X.Offset;
74  }
75
76  bool isValid() const {
77    return getRegion() != NULL;
78  }
79};
80} // end anonymous namespace
81
82BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
83  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
84    const RegionRawOffset &O = ER->getAsArrayOffset();
85
86    // FIXME: There are some ElementRegions for which we cannot compute
87    // raw offsets yet, including regions with symbolic offsets. These will be
88    // ignored by the store.
89    return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
90  }
91
92  return BindingKey(R, 0, k);
93}
94
95namespace llvm {
96  static inline
97  llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
98    os << '(' << K.getRegion() << ',' << K.getOffset()
99       << ',' << (K.isDirect() ? "direct" : "default")
100       << ')';
101    return os;
102  }
103} // end llvm namespace
104
105//===----------------------------------------------------------------------===//
106// Actual Store type.
107//===----------------------------------------------------------------------===//
108
109typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
110
111//===----------------------------------------------------------------------===//
112// Fine-grained control of RegionStoreManager.
113//===----------------------------------------------------------------------===//
114
115namespace {
116struct minimal_features_tag {};
117struct maximal_features_tag {};
118
119class RegionStoreFeatures {
120  bool SupportsFields;
121public:
122  RegionStoreFeatures(minimal_features_tag) :
123    SupportsFields(false) {}
124
125  RegionStoreFeatures(maximal_features_tag) :
126    SupportsFields(true) {}
127
128  void enableFields(bool t) { SupportsFields = t; }
129
130  bool supportsFields() const { return SupportsFields; }
131};
132}
133
134//===----------------------------------------------------------------------===//
135// Main RegionStore logic.
136//===----------------------------------------------------------------------===//
137
138namespace {
139
140class RegionStoreSubRegionMap : public SubRegionMap {
141public:
142  typedef llvm::ImmutableSet<const MemRegion*> Set;
143  typedef llvm::DenseMap<const MemRegion*, Set> Map;
144private:
145  Set::Factory F;
146  Map M;
147public:
148  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
149    Map::iterator I = M.find(Parent);
150
151    if (I == M.end()) {
152      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
153      return true;
154    }
155
156    I->second = F.add(I->second, SubRegion);
157    return false;
158  }
159
160  void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
161
162  ~RegionStoreSubRegionMap() {}
163
164  const Set *getSubRegions(const MemRegion *Parent) const {
165    Map::const_iterator I = M.find(Parent);
166    return I == M.end() ? NULL : &I->second;
167  }
168
169  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
170    Map::const_iterator I = M.find(Parent);
171
172    if (I == M.end())
173      return true;
174
175    Set S = I->second;
176    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
177      if (!V.Visit(Parent, *SI))
178        return false;
179    }
180
181    return true;
182  }
183};
184
185void
186RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
187                                 const SubRegion *R) {
188  const MemRegion *superR = R->getSuperRegion();
189  if (add(superR, R))
190    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
191      WL.push_back(sr);
192}
193
194class RegionStoreManager : public StoreManager {
195  const RegionStoreFeatures Features;
196  RegionBindings::Factory RBFactory;
197
198public:
199  RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
200    : StoreManager(mgr),
201      Features(f),
202      RBFactory(mgr.getAllocator()) {}
203
204  SubRegionMap *getSubRegionMap(Store store) {
205    return getRegionStoreSubRegionMap(store);
206  }
207
208  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
209
210  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
211  /// getDefaultBinding - Returns an SVal* representing an optional default
212  ///  binding associated with a region and its subregions.
213  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
214
215  /// setImplicitDefaultValue - Set the default binding for the provided
216  ///  MemRegion to the value implicitly defined for compound literals when
217  ///  the value is not specified.
218  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
219
220  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
221  ///  type.  'Array' represents the lvalue of the array being decayed
222  ///  to a pointer, and the returned SVal represents the decayed
223  ///  version of that lvalue (i.e., a pointer to the first element of
224  ///  the array).  This is called by ExprEngine when evaluating
225  ///  casts from arrays to pointers.
226  SVal ArrayToPointer(Loc Array);
227
228  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
229  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
230
231  StoreRef getInitialStore(const LocationContext *InitLoc) {
232    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
233  }
234
235  //===-------------------------------------------------------------------===//
236  // Binding values to regions.
237  //===-------------------------------------------------------------------===//
238
239  StoreRef invalidateRegions(Store store,
240                             const MemRegion * const *Begin,
241                             const MemRegion * const *End,
242                             const Expr *E, unsigned Count,
243                             InvalidatedSymbols &IS,
244                             bool invalidateGlobals,
245                             InvalidatedRegions *Regions);
246
247public:   // Made public for helper classes.
248
249  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
250                               RegionStoreSubRegionMap &M);
251
252  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
253
254  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
255                     BindingKey::Kind k, SVal V);
256
257  const SVal *lookup(RegionBindings B, BindingKey K);
258  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
259
260  RegionBindings removeBinding(RegionBindings B, BindingKey K);
261  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
262                        BindingKey::Kind k);
263
264  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
265    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
266                        BindingKey::Default);
267  }
268
269public: // Part of public interface to class.
270
271  StoreRef Bind(Store store, Loc LV, SVal V);
272
273  // BindDefault is only used to initialize a region with a default value.
274  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
275    RegionBindings B = GetRegionBindings(store);
276    assert(!lookup(B, R, BindingKey::Default));
277    assert(!lookup(B, R, BindingKey::Direct));
278    return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
279  }
280
281  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
282                               const LocationContext *LC, SVal V);
283
284  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
285
286  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
287    return StoreRef(store, *this);
288  }
289
290  /// BindStruct - Bind a compound value to a structure.
291  StoreRef BindStruct(Store store, const TypedRegion* R, SVal V);
292
293  StoreRef BindArray(Store store, const TypedRegion* R, SVal V);
294
295  /// KillStruct - Set the entire struct to unknown.
296  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
297
298  StoreRef Remove(Store store, Loc LV);
299
300  void incrementReferenceCount(Store store) {
301    GetRegionBindings(store).manualRetain();
302  }
303
304  /// If the StoreManager supports it, decrement the reference count of
305  /// the specified Store object.  If the reference count hits 0, the memory
306  /// associated with the object is recycled.
307  void decrementReferenceCount(Store store) {
308    GetRegionBindings(store).manualRelease();
309  }
310
311  //===------------------------------------------------------------------===//
312  // Loading values from regions.
313  //===------------------------------------------------------------------===//
314
315  /// The high level logic for this method is this:
316  /// Retrieve (L)
317  ///   if L has binding
318  ///     return L's binding
319  ///   else if L is in killset
320  ///     return unknown
321  ///   else
322  ///     if L is on stack or heap
323  ///       return undefined
324  ///     else
325  ///       return symbolic
326  SVal Retrieve(Store store, Loc L, QualType T = QualType());
327
328  SVal RetrieveElement(Store store, const ElementRegion *R);
329
330  SVal RetrieveField(Store store, const FieldRegion *R);
331
332  SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
333
334  SVal RetrieveVar(Store store, const VarRegion *R);
335
336  SVal RetrieveLazySymbol(const TypedRegion *R);
337
338  SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
339                                    QualType Ty, const MemRegion *superR);
340
341  SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
342                           Store lazyBindingStore);
343
344  /// Retrieve the values in a struct and return a CompoundVal, used when doing
345  /// struct copy:
346  /// struct s x, y;
347  /// x = y;
348  /// y's value is retrieved by this method.
349  SVal RetrieveStruct(Store store, const TypedRegion* R);
350
351  SVal RetrieveArray(Store store, const TypedRegion* R);
352
353  /// Used to lazily generate derived symbols for bindings that are defined
354  ///  implicitly by default bindings in a super region.
355  Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
356                                             const MemRegion *superR,
357                                             const TypedRegion *R, QualType Ty);
358
359  /// Get the state and region whose binding this region R corresponds to.
360  std::pair<Store, const MemRegion*>
361  GetLazyBinding(RegionBindings B, const MemRegion *R,
362                 const MemRegion *originalRegion);
363
364  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
365                            const TypedRegion *R);
366
367  //===------------------------------------------------------------------===//
368  // State pruning.
369  //===------------------------------------------------------------------===//
370
371  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
372  ///  It returns a new Store with these values removed.
373  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
374                           SymbolReaper& SymReaper,
375                          llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
376
377  StoreRef enterStackFrame(const GRState *state, const StackFrameContext *frame);
378
379  //===------------------------------------------------------------------===//
380  // Region "extents".
381  //===------------------------------------------------------------------===//
382
383  // FIXME: This method will soon be eliminated; see the note in Store.h.
384  DefinedOrUnknownSVal getSizeInElements(const GRState *state,
385                                         const MemRegion* R, QualType EleTy);
386
387  //===------------------------------------------------------------------===//
388  // Utility methods.
389  //===------------------------------------------------------------------===//
390
391  static inline RegionBindings GetRegionBindings(Store store) {
392    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
393  }
394
395  void print(Store store, llvm::raw_ostream& Out, const char* nl,
396             const char *sep);
397
398  void iterBindings(Store store, BindingsHandler& f) {
399    RegionBindings B = GetRegionBindings(store);
400    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
401      const BindingKey &K = I.getKey();
402      if (!K.isDirect())
403        continue;
404      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
405        // FIXME: Possibly incorporate the offset?
406        if (!f.HandleBinding(*this, store, R, I.getData()))
407          return;
408      }
409    }
410  }
411};
412
413} // end anonymous namespace
414
415//===----------------------------------------------------------------------===//
416// RegionStore creation.
417//===----------------------------------------------------------------------===//
418
419StoreManager *ento::CreateRegionStoreManager(GRStateManager& StMgr) {
420  RegionStoreFeatures F = maximal_features_tag();
421  return new RegionStoreManager(StMgr, F);
422}
423
424StoreManager *ento::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
425  RegionStoreFeatures F = minimal_features_tag();
426  F.enableFields(true);
427  return new RegionStoreManager(StMgr, F);
428}
429
430
431RegionStoreSubRegionMap*
432RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
433  RegionBindings B = GetRegionBindings(store);
434  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
435
436  llvm::SmallVector<const SubRegion*, 10> WL;
437
438  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
439    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
440      M->process(WL, R);
441
442  // We also need to record in the subregion map "intermediate" regions that
443  // don't have direct bindings but are super regions of those that do.
444  while (!WL.empty()) {
445    const SubRegion *R = WL.back();
446    WL.pop_back();
447    M->process(WL, R);
448  }
449
450  return M;
451}
452
453//===----------------------------------------------------------------------===//
454// Region Cluster analysis.
455//===----------------------------------------------------------------------===//
456
457namespace {
458template <typename DERIVED>
459class ClusterAnalysis  {
460protected:
461  typedef BumpVector<BindingKey> RegionCluster;
462  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
463  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
464  typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
465    WorkList;
466
467  BumpVectorContext BVC;
468  ClusterMap ClusterM;
469  WorkList WL;
470
471  RegionStoreManager &RM;
472  ASTContext &Ctx;
473  SValBuilder &svalBuilder;
474
475  RegionBindings B;
476
477  const bool includeGlobals;
478
479public:
480  ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr,
481                  RegionBindings b, const bool includeGlobals)
482    : RM(rm), Ctx(StateMgr.getContext()),
483      svalBuilder(StateMgr.getSValBuilder()),
484      B(b), includeGlobals(includeGlobals) {}
485
486  RegionBindings getRegionBindings() const { return B; }
487
488  RegionCluster &AddToCluster(BindingKey K) {
489    const MemRegion *R = K.getRegion();
490    const MemRegion *baseR = R->getBaseRegion();
491    RegionCluster &C = getCluster(baseR);
492    C.push_back(K, BVC);
493    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
494    return C;
495  }
496
497  bool isVisited(const MemRegion *R) {
498    return (bool) Visited[&getCluster(R->getBaseRegion())];
499  }
500
501  RegionCluster& getCluster(const MemRegion *R) {
502    RegionCluster *&CRef = ClusterM[R];
503    if (!CRef) {
504      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
505      CRef = new (Mem) RegionCluster(BVC, 10);
506    }
507    return *CRef;
508  }
509
510  void GenerateClusters() {
511      // Scan the entire set of bindings and make the region clusters.
512    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
513      RegionCluster &C = AddToCluster(RI.getKey());
514      if (const MemRegion *R = RI.getData().getAsRegion()) {
515        // Generate a cluster, but don't add the region to the cluster
516        // if there aren't any bindings.
517        getCluster(R->getBaseRegion());
518      }
519      if (includeGlobals) {
520        const MemRegion *R = RI.getKey().getRegion();
521        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
522          AddToWorkList(R, C);
523      }
524    }
525  }
526
527  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
528    if (unsigned &visited = Visited[&C])
529      return false;
530    else
531      visited = 1;
532
533    WL.push_back(std::make_pair(R, &C));
534    return true;
535  }
536
537  bool AddToWorkList(BindingKey K) {
538    return AddToWorkList(K.getRegion());
539  }
540
541  bool AddToWorkList(const MemRegion *R) {
542    const MemRegion *baseR = R->getBaseRegion();
543    return AddToWorkList(baseR, getCluster(baseR));
544  }
545
546  void RunWorkList() {
547    while (!WL.empty()) {
548      const MemRegion *baseR;
549      RegionCluster *C;
550      llvm::tie(baseR, C) = WL.back();
551      WL.pop_back();
552
553        // First visit the cluster.
554      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
555
556        // Next, visit the base region.
557      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
558    }
559  }
560
561public:
562  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
563  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
564  void VisitBaseRegion(const MemRegion *baseR) {}
565};
566}
567
568//===----------------------------------------------------------------------===//
569// Binding invalidation.
570//===----------------------------------------------------------------------===//
571
572void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
573                                                 const MemRegion *R,
574                                                 RegionStoreSubRegionMap &M) {
575
576  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
577    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
578         I != E; ++I)
579      RemoveSubRegionBindings(B, *I, M);
580
581  B = removeBinding(B, R);
582}
583
584namespace {
585class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
586{
587  const Expr *Ex;
588  unsigned Count;
589  StoreManager::InvalidatedSymbols &IS;
590  StoreManager::InvalidatedRegions *Regions;
591public:
592  invalidateRegionsWorker(RegionStoreManager &rm,
593                          GRStateManager &stateMgr,
594                          RegionBindings b,
595                          const Expr *ex, unsigned count,
596                          StoreManager::InvalidatedSymbols &is,
597                          StoreManager::InvalidatedRegions *r,
598                          bool includeGlobals)
599    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
600      Ex(ex), Count(count), IS(is), Regions(r) {}
601
602  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
603  void VisitBaseRegion(const MemRegion *baseR);
604
605private:
606  void VisitBinding(SVal V);
607};
608}
609
610void invalidateRegionsWorker::VisitBinding(SVal V) {
611  // A symbol?  Mark it touched by the invalidation.
612  if (SymbolRef Sym = V.getAsSymbol())
613    IS.insert(Sym);
614
615  if (const MemRegion *R = V.getAsRegion()) {
616    AddToWorkList(R);
617    return;
618  }
619
620  // Is it a LazyCompoundVal?  All references get invalidated as well.
621  if (const nonloc::LazyCompoundVal *LCS =
622        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
623
624    const MemRegion *LazyR = LCS->getRegion();
625    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
626
627    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
628      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
629      if (baseR && baseR->isSubRegionOf(LazyR))
630        VisitBinding(RI.getData());
631    }
632
633    return;
634  }
635}
636
637void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
638                                           BindingKey *I, BindingKey *E) {
639  for ( ; I != E; ++I) {
640    // Get the old binding.  Is it a region?  If so, add it to the worklist.
641    const BindingKey &K = *I;
642    if (const SVal *V = RM.lookup(B, K))
643      VisitBinding(*V);
644
645    B = RM.removeBinding(B, K);
646  }
647}
648
649void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
650  // Symbolic region?  Mark that symbol touched by the invalidation.
651  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
652    IS.insert(SR->getSymbol());
653
654  // BlockDataRegion?  If so, invalidate captured variables that are passed
655  // by reference.
656  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
657    for (BlockDataRegion::referenced_vars_iterator
658         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
659         BI != BE; ++BI) {
660      const VarRegion *VR = *BI;
661      const VarDecl *VD = VR->getDecl();
662      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
663        AddToWorkList(VR);
664    }
665    return;
666  }
667
668  // Otherwise, we have a normal data region. Record that we touched the region.
669  if (Regions)
670    Regions->push_back(baseR);
671
672  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
673    // Invalidate the region by setting its default value to
674    // conjured symbol. The type of the symbol is irrelavant.
675    DefinedOrUnknownSVal V =
676      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
677    B = RM.addBinding(B, baseR, BindingKey::Default, V);
678    return;
679  }
680
681  if (!baseR->isBoundable())
682    return;
683
684  const TypedRegion *TR = cast<TypedRegion>(baseR);
685  QualType T = TR->getValueType();
686
687    // Invalidate the binding.
688  if (T->isStructureOrClassType()) {
689    // Invalidate the region by setting its default value to
690    // conjured symbol. The type of the symbol is irrelavant.
691    DefinedOrUnknownSVal V =
692      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
693    B = RM.addBinding(B, baseR, BindingKey::Default, V);
694    return;
695  }
696
697  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
698      // Set the default value of the array to conjured symbol.
699    DefinedOrUnknownSVal V =
700    svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
701    B = RM.addBinding(B, baseR, BindingKey::Default, V);
702    return;
703  }
704
705  if (includeGlobals &&
706      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
707    // If the region is a global and we are invalidating all globals,
708    // just erase the entry.  This causes all globals to be lazily
709    // symbolicated from the same base symbol.
710    B = RM.removeBinding(B, baseR);
711    return;
712  }
713
714
715  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
716  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
717  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
718}
719
720StoreRef RegionStoreManager::invalidateRegions(Store store,
721                                               const MemRegion * const *I,
722                                               const MemRegion * const *E,
723                                               const Expr *Ex, unsigned Count,
724                                               InvalidatedSymbols &IS,
725                                               bool invalidateGlobals,
726                                               InvalidatedRegions *Regions) {
727  invalidateRegionsWorker W(*this, StateMgr,
728                            RegionStoreManager::GetRegionBindings(store),
729                            Ex, Count, IS, Regions, invalidateGlobals);
730
731  // Scan the bindings and generate the clusters.
732  W.GenerateClusters();
733
734  // Add I .. E to the worklist.
735  for ( ; I != E; ++I)
736    W.AddToWorkList(*I);
737
738  W.RunWorkList();
739
740  // Return the new bindings.
741  RegionBindings B = W.getRegionBindings();
742
743  if (invalidateGlobals) {
744    // Bind the non-static globals memory space to a new symbol that we will
745    // use to derive the bindings for all non-static globals.
746    const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
747    SVal V =
748      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
749                                  /* symbol type, doesn't matter */ Ctx.IntTy,
750                                  Count);
751    B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
752
753    // Even if there are no bindings in the global scope, we still need to
754    // record that we touched it.
755    if (Regions)
756      Regions->push_back(GS);
757  }
758
759  return StoreRef(B.getRootWithoutRetain(), *this);
760}
761
762//===----------------------------------------------------------------------===//
763// Extents for regions.
764//===----------------------------------------------------------------------===//
765
766DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
767                                                           const MemRegion *R,
768                                                           QualType EleTy) {
769  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
770  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
771  if (!SizeInt)
772    return UnknownVal();
773
774  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
775
776  if (Ctx.getAsVariableArrayType(EleTy)) {
777    // FIXME: We need to track extra state to properly record the size
778    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
779    // we don't have a divide-by-zero below.
780    return UnknownVal();
781  }
782
783  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
784
785  // If a variable is reinterpreted as a type that doesn't fit into a larger
786  // type evenly, round it down.
787  // This is a signed value, since it's used in arithmetic with signed indices.
788  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
789}
790
791//===----------------------------------------------------------------------===//
792// Location and region casting.
793//===----------------------------------------------------------------------===//
794
795/// ArrayToPointer - Emulates the "decay" of an array to a pointer
796///  type.  'Array' represents the lvalue of the array being decayed
797///  to a pointer, and the returned SVal represents the decayed
798///  version of that lvalue (i.e., a pointer to the first element of
799///  the array).  This is called by ExprEngine when evaluating casts
800///  from arrays to pointers.
801SVal RegionStoreManager::ArrayToPointer(Loc Array) {
802  if (!isa<loc::MemRegionVal>(Array))
803    return UnknownVal();
804
805  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
806  const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
807
808  if (!ArrayR)
809    return UnknownVal();
810
811  // Strip off typedefs from the ArrayRegion's ValueType.
812  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
813  const ArrayType *AT = cast<ArrayType>(T);
814  T = AT->getElementType();
815
816  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
817  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
818}
819
820SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
821  const CXXRecordDecl *baseDecl;
822  if (baseType->isPointerType())
823    baseDecl = baseType->getCXXRecordDeclForPointerType();
824  else
825    baseDecl = baseType->getAsCXXRecordDecl();
826
827  assert(baseDecl && "not a CXXRecordDecl?");
828
829  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
830  if (!derivedRegVal)
831    return derived;
832
833  const MemRegion *baseReg =
834    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
835
836  return loc::MemRegionVal(baseReg);
837}
838
839//===----------------------------------------------------------------------===//
840// Loading values from regions.
841//===----------------------------------------------------------------------===//
842
843Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
844                                                    const MemRegion *R) {
845
846  if (const SVal *V = lookup(B, R, BindingKey::Direct))
847    return *V;
848
849  return Optional<SVal>();
850}
851
852Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
853                                                     const MemRegion *R) {
854  if (R->isBoundable())
855    if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
856      if (TR->getValueType()->isUnionType())
857        return UnknownVal();
858
859  if (const SVal *V = lookup(B, R, BindingKey::Default))
860    return *V;
861
862  return Optional<SVal>();
863}
864
865SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
866  assert(!isa<UnknownVal>(L) && "location unknown");
867  assert(!isa<UndefinedVal>(L) && "location undefined");
868
869  // For access to concrete addresses, return UnknownVal.  Checks
870  // for null dereferences (and similar errors) are done by checkers, not
871  // the Store.
872  // FIXME: We can consider lazily symbolicating such memory, but we really
873  // should defer this when we can reason easily about symbolicating arrays
874  // of bytes.
875  if (isa<loc::ConcreteInt>(L)) {
876    return UnknownVal();
877  }
878  if (!isa<loc::MemRegionVal>(L)) {
879    return UnknownVal();
880  }
881
882  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
883
884  if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
885    if (T.isNull()) {
886      const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
887      T = SR->getSymbol()->getType(Ctx);
888    }
889    MR = GetElementZeroRegion(MR, T);
890  }
891
892  if (isa<CodeTextRegion>(MR)) {
893    assert(0 && "Why load from a code text region?");
894    return UnknownVal();
895  }
896
897  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
898  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
899  const TypedRegion *R = cast<TypedRegion>(MR);
900  QualType RTy = R->getValueType();
901
902  // FIXME: We should eventually handle funny addressing.  e.g.:
903  //
904  //   int x = ...;
905  //   int *p = &x;
906  //   char *q = (char*) p;
907  //   char c = *q;  // returns the first byte of 'x'.
908  //
909  // Such funny addressing will occur due to layering of regions.
910
911  if (RTy->isStructureOrClassType())
912    return RetrieveStruct(store, R);
913
914  // FIXME: Handle unions.
915  if (RTy->isUnionType())
916    return UnknownVal();
917
918  if (RTy->isArrayType())
919    return RetrieveArray(store, R);
920
921  // FIXME: handle Vector types.
922  if (RTy->isVectorType())
923    return UnknownVal();
924
925  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
926    return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
927
928  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
929    // FIXME: Here we actually perform an implicit conversion from the loaded
930    // value to the element type.  Eventually we want to compose these values
931    // more intelligently.  For example, an 'element' can encompass multiple
932    // bound regions (e.g., several bound bytes), or could be a subset of
933    // a larger value.
934    return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
935  }
936
937  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
938    // FIXME: Here we actually perform an implicit conversion from the loaded
939    // value to the ivar type.  What we should model is stores to ivars
940    // that blow past the extent of the ivar.  If the address of the ivar is
941    // reinterpretted, it is possible we stored a different value that could
942    // fit within the ivar.  Either we need to cast these when storing them
943    // or reinterpret them lazily (as we do here).
944    return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
945  }
946
947  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
948    // FIXME: Here we actually perform an implicit conversion from the loaded
949    // value to the variable type.  What we should model is stores to variables
950    // that blow past the extent of the variable.  If the address of the
951    // variable is reinterpretted, it is possible we stored a different value
952    // that could fit within the variable.  Either we need to cast these when
953    // storing them or reinterpret them lazily (as we do here).
954    return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
955  }
956
957  RegionBindings B = GetRegionBindings(store);
958  const SVal *V = lookup(B, R, BindingKey::Direct);
959
960  // Check if the region has a binding.
961  if (V)
962    return *V;
963
964  // The location does not have a bound value.  This means that it has
965  // the value it had upon its creation and/or entry to the analyzed
966  // function/method.  These are either symbolic values or 'undefined'.
967  if (R->hasStackNonParametersStorage()) {
968    // All stack variables are considered to have undefined values
969    // upon creation.  All heap allocated blocks are considered to
970    // have undefined values as well unless they are explicitly bound
971    // to specific values.
972    return UndefinedVal();
973  }
974
975  // All other values are symbolic.
976  return svalBuilder.getRegionValueSymbolVal(R);
977}
978
979std::pair<Store, const MemRegion *>
980RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
981                                   const MemRegion *originalRegion) {
982
983  if (originalRegion != R) {
984    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
985      if (const nonloc::LazyCompoundVal *V =
986          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
987        return std::make_pair(V->getStore(), V->getRegion());
988    }
989  }
990
991  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
992    const std::pair<Store, const MemRegion *> &X =
993      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
994
995    if (X.second)
996      return std::make_pair(X.first,
997                            MRMgr.getElementRegionWithSuper(ER, X.second));
998  }
999  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1000    const std::pair<Store, const MemRegion *> &X =
1001      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1002
1003    if (X.second)
1004      return std::make_pair(X.first,
1005                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1006  }
1007  // C++ base object region is another kind of region that we should blast
1008  // through to look for lazy compound value. It is like a field region.
1009  else if (const CXXBaseObjectRegion *baseReg =
1010                            dyn_cast<CXXBaseObjectRegion>(R)) {
1011    const std::pair<Store, const MemRegion *> &X =
1012      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1013
1014    if (X.second)
1015      return std::make_pair(X.first,
1016                     MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1017  }
1018
1019  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1020  // possible for a valid lazy binding.
1021  return std::make_pair((Store) 0, (const MemRegion *) 0);
1022}
1023
1024SVal RegionStoreManager::RetrieveElement(Store store,
1025                                         const ElementRegion* R) {
1026  // Check if the region has a binding.
1027  RegionBindings B = GetRegionBindings(store);
1028  if (const Optional<SVal> &V = getDirectBinding(B, R))
1029    return *V;
1030
1031  const MemRegion* superR = R->getSuperRegion();
1032
1033  // Check if the region is an element region of a string literal.
1034  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1035    // FIXME: Handle loads from strings where the literal is treated as
1036    // an integer, e.g., *((unsigned int*)"hello")
1037    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1038    if (T != Ctx.getCanonicalType(R->getElementType()))
1039      return UnknownVal();
1040
1041    const StringLiteral *Str = StrR->getStringLiteral();
1042    SVal Idx = R->getIndex();
1043    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1044      int64_t i = CI->getValue().getSExtValue();
1045      int64_t byteLength = Str->getByteLength();
1046      // Technically, only i == byteLength is guaranteed to be null.
1047      // However, such overflows should be caught before reaching this point;
1048      // the only time such an access would be made is if a string literal was
1049      // used to initialize a larger array.
1050      char c = (i >= byteLength) ? '\0' : Str->getString()[i];
1051      return svalBuilder.makeIntVal(c, T);
1052    }
1053  }
1054
1055  // Check for loads from a code text region.  For such loads, just give up.
1056  if (isa<CodeTextRegion>(superR))
1057    return UnknownVal();
1058
1059  // Handle the case where we are indexing into a larger scalar object.
1060  // For example, this handles:
1061  //   int x = ...
1062  //   char *y = &x;
1063  //   return *y;
1064  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1065  const RegionRawOffset &O = R->getAsArrayOffset();
1066
1067  // If we cannot reason about the offset, return an unknown value.
1068  if (!O.getRegion())
1069    return UnknownVal();
1070
1071  if (const TypedRegion *baseR = dyn_cast_or_null<TypedRegion>(O.getRegion())) {
1072    QualType baseT = baseR->getValueType();
1073    if (baseT->isScalarType()) {
1074      QualType elemT = R->getElementType();
1075      if (elemT->isScalarType()) {
1076        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1077          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1078            if (SymbolRef parentSym = V->getAsSymbol())
1079              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1080
1081            if (V->isUnknownOrUndef())
1082              return *V;
1083            // Other cases: give up.  We are indexing into a larger object
1084            // that has some value, but we don't know how to handle that yet.
1085            return UnknownVal();
1086          }
1087        }
1088      }
1089    }
1090  }
1091  return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1092}
1093
1094SVal RegionStoreManager::RetrieveField(Store store,
1095                                       const FieldRegion* R) {
1096
1097  // Check if the region has a binding.
1098  RegionBindings B = GetRegionBindings(store);
1099  if (const Optional<SVal> &V = getDirectBinding(B, R))
1100    return *V;
1101
1102  QualType Ty = R->getValueType();
1103  return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1104}
1105
1106Optional<SVal>
1107RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1108                                                const MemRegion *superR,
1109                                                const TypedRegion *R,
1110                                                QualType Ty) {
1111
1112  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1113    const SVal &val = D.getValue();
1114    if (SymbolRef parentSym = val.getAsSymbol())
1115      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1116
1117    if (val.isZeroConstant())
1118      return svalBuilder.makeZeroVal(Ty);
1119
1120    if (val.isUnknownOrUndef())
1121      return val;
1122
1123    // Lazy bindings are handled later.
1124    if (isa<nonloc::LazyCompoundVal>(val))
1125      return Optional<SVal>();
1126
1127    assert(0 && "Unknown default value");
1128  }
1129
1130  return Optional<SVal>();
1131}
1132
1133SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
1134                                             Store lazyBindingStore) {
1135  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1136    return RetrieveElement(lazyBindingStore, ER);
1137
1138  return RetrieveField(lazyBindingStore,
1139                       cast<FieldRegion>(lazyBindingRegion));
1140}
1141
1142SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1143                                                      const TypedRegion *R,
1144                                                      QualType Ty,
1145                                                      const MemRegion *superR) {
1146
1147  // At this point we have already checked in either RetrieveElement or
1148  // RetrieveField if 'R' has a direct binding.
1149
1150  RegionBindings B = GetRegionBindings(store);
1151
1152  while (superR) {
1153    if (const Optional<SVal> &D =
1154        RetrieveDerivedDefaultValue(B, superR, R, Ty))
1155      return *D;
1156
1157    // If our super region is a field or element itself, walk up the region
1158    // hierarchy to see if there is a default value installed in an ancestor.
1159    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1160      superR = SR->getSuperRegion();
1161      continue;
1162    }
1163    break;
1164  }
1165
1166  // Lazy binding?
1167  Store lazyBindingStore = NULL;
1168  const MemRegion *lazyBindingRegion = NULL;
1169  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1170
1171  if (lazyBindingRegion)
1172    return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
1173
1174  if (R->hasStackNonParametersStorage()) {
1175    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1176      // Currently we don't reason specially about Clang-style vectors.  Check
1177      // if superR is a vector and if so return Unknown.
1178      if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
1179        if (typedSuperR->getValueType()->isVectorType())
1180          return UnknownVal();
1181      }
1182
1183      // FIXME: We also need to take ElementRegions with symbolic indexes into
1184      // account.
1185      if (!ER->getIndex().isConstant())
1186        return UnknownVal();
1187    }
1188
1189    return UndefinedVal();
1190  }
1191
1192  // All other values are symbolic.
1193  return svalBuilder.getRegionValueSymbolVal(R);
1194}
1195
1196SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1197
1198    // Check if the region has a binding.
1199  RegionBindings B = GetRegionBindings(store);
1200
1201  if (const Optional<SVal> &V = getDirectBinding(B, R))
1202    return *V;
1203
1204  const MemRegion *superR = R->getSuperRegion();
1205
1206  // Check if the super region has a default binding.
1207  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1208    if (SymbolRef parentSym = V->getAsSymbol())
1209      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1210
1211    // Other cases: give up.
1212    return UnknownVal();
1213  }
1214
1215  return RetrieveLazySymbol(R);
1216}
1217
1218SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1219
1220  // Check if the region has a binding.
1221  RegionBindings B = GetRegionBindings(store);
1222
1223  if (const Optional<SVal> &V = getDirectBinding(B, R))
1224    return *V;
1225
1226  // Lazily derive a value for the VarRegion.
1227  const VarDecl *VD = R->getDecl();
1228  QualType T = VD->getType();
1229  const MemSpaceRegion *MS = R->getMemorySpace();
1230
1231  if (isa<UnknownSpaceRegion>(MS) ||
1232      isa<StackArgumentsSpaceRegion>(MS))
1233    return svalBuilder.getRegionValueSymbolVal(R);
1234
1235  if (isa<GlobalsSpaceRegion>(MS)) {
1236    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1237      // Is 'VD' declared constant?  If so, retrieve the constant value.
1238      QualType CT = Ctx.getCanonicalType(T);
1239      if (CT.isConstQualified()) {
1240        const Expr *Init = VD->getInit();
1241        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1242        if (Init)
1243          if (const IntegerLiteral *IL =
1244              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1245            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1246            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1247          }
1248      }
1249
1250      if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1251        return V.getValue();
1252
1253      return svalBuilder.getRegionValueSymbolVal(R);
1254    }
1255
1256    if (T->isIntegerType())
1257      return svalBuilder.makeIntVal(0, T);
1258    if (T->isPointerType())
1259      return svalBuilder.makeNull();
1260
1261    return UnknownVal();
1262  }
1263
1264  return UndefinedVal();
1265}
1266
1267SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {
1268  // All other values are symbolic.
1269  return svalBuilder.getRegionValueSymbolVal(R);
1270}
1271
1272SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
1273  QualType T = R->getValueType();
1274  assert(T->isStructureOrClassType());
1275  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1276}
1277
1278SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
1279  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1280  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1281}
1282
1283//===----------------------------------------------------------------------===//
1284// Binding values to regions.
1285//===----------------------------------------------------------------------===//
1286
1287StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1288  if (isa<loc::MemRegionVal>(L))
1289    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1290      return StoreRef(removeBinding(GetRegionBindings(store),
1291                                    R).getRootWithoutRetain(),
1292                      *this);
1293
1294  return StoreRef(store, *this);
1295}
1296
1297StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1298  if (isa<loc::ConcreteInt>(L))
1299    return StoreRef(store, *this);
1300
1301  // If we get here, the location should be a region.
1302  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1303
1304  // Check if the region is a struct region.
1305  if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
1306    if (TR->getValueType()->isStructureOrClassType())
1307      return BindStruct(store, TR, V);
1308
1309  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1310    if (ER->getIndex().isZeroConstant()) {
1311      if (const TypedRegion *superR =
1312            dyn_cast<TypedRegion>(ER->getSuperRegion())) {
1313        QualType superTy = superR->getValueType();
1314        // For now, just invalidate the fields of the struct/union/class.
1315        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1316        // FIXME: Precisely handle the fields of the record.
1317        if (superTy->isStructureOrClassType())
1318          return KillStruct(store, superR, UnknownVal());
1319      }
1320    }
1321  }
1322  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1323    // Binding directly to a symbolic region should be treated as binding
1324    // to element 0.
1325    QualType T = SR->getSymbol()->getType(Ctx);
1326
1327    // FIXME: Is this the right way to handle symbols that are references?
1328    if (const PointerType *PT = T->getAs<PointerType>())
1329      T = PT->getPointeeType();
1330    else
1331      T = T->getAs<ReferenceType>()->getPointeeType();
1332
1333    R = GetElementZeroRegion(SR, T);
1334  }
1335
1336  // Perform the binding.
1337  RegionBindings B = GetRegionBindings(store);
1338  return StoreRef(addBinding(B, R, BindingKey::Direct,
1339                             V).getRootWithoutRetain(), *this);
1340}
1341
1342StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1343                                      SVal InitVal) {
1344
1345  QualType T = VR->getDecl()->getType();
1346
1347  if (T->isArrayType())
1348    return BindArray(store, VR, InitVal);
1349  if (T->isStructureOrClassType())
1350    return BindStruct(store, VR, InitVal);
1351
1352  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1353}
1354
1355// FIXME: this method should be merged into Bind().
1356StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1357                                                 const CompoundLiteralExpr *CL,
1358                                                 const LocationContext *LC,
1359                                                 SVal V) {
1360  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1361              V);
1362}
1363
1364StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1365                                                     const MemRegion *R,
1366                                                     QualType T) {
1367  RegionBindings B = GetRegionBindings(store);
1368  SVal V;
1369
1370  if (Loc::isLocType(T))
1371    V = svalBuilder.makeNull();
1372  else if (T->isIntegerType())
1373    V = svalBuilder.makeZeroVal(T);
1374  else if (T->isStructureOrClassType() || T->isArrayType()) {
1375    // Set the default value to a zero constant when it is a structure
1376    // or array.  The type doesn't really matter.
1377    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1378  }
1379  else {
1380    // We can't represent values of this type, but we still need to set a value
1381    // to record that the region has been initialized.
1382    // If this assertion ever fires, a new case should be added above -- we
1383    // should know how to default-initialize any value we can symbolicate.
1384    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1385    V = UnknownVal();
1386  }
1387
1388  return StoreRef(addBinding(B, R, BindingKey::Default,
1389                             V).getRootWithoutRetain(), *this);
1390}
1391
1392StoreRef RegionStoreManager::BindArray(Store store, const TypedRegion* R,
1393                                       SVal Init) {
1394
1395  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1396  QualType ElementTy = AT->getElementType();
1397  Optional<uint64_t> Size;
1398
1399  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1400    Size = CAT->getSize().getZExtValue();
1401
1402  // Check if the init expr is a string literal.
1403  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1404    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1405
1406    // Treat the string as a lazy compound value.
1407    nonloc::LazyCompoundVal LCV =
1408      cast<nonloc::LazyCompoundVal>(svalBuilder.
1409                                makeLazyCompoundVal(StoreRef(store, *this), S));
1410    return CopyLazyBindings(LCV, store, R);
1411  }
1412
1413  // Handle lazy compound values.
1414  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1415    return CopyLazyBindings(*LCV, store, R);
1416
1417  // Remaining case: explicit compound values.
1418
1419  if (Init.isUnknown())
1420    return setImplicitDefaultValue(store, R, ElementTy);
1421
1422  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1423  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1424  uint64_t i = 0;
1425
1426  StoreRef newStore(store, *this);
1427  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1428    // The init list might be shorter than the array length.
1429    if (VI == VE)
1430      break;
1431
1432    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1433    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1434
1435    if (ElementTy->isStructureOrClassType())
1436      newStore = BindStruct(newStore.getStore(), ER, *VI);
1437    else if (ElementTy->isArrayType())
1438      newStore = BindArray(newStore.getStore(), ER, *VI);
1439    else
1440      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1441  }
1442
1443  // If the init list is shorter than the array length, set the
1444  // array default value.
1445  if (Size.hasValue() && i < Size.getValue())
1446    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1447
1448  return newStore;
1449}
1450
1451StoreRef RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
1452                                        SVal V) {
1453
1454  if (!Features.supportsFields())
1455    return StoreRef(store, *this);
1456
1457  QualType T = R->getValueType();
1458  assert(T->isStructureOrClassType());
1459
1460  const RecordType* RT = T->getAs<RecordType>();
1461  RecordDecl* RD = RT->getDecl();
1462
1463  if (!RD->isDefinition())
1464    return StoreRef(store, *this);
1465
1466  // Handle lazy compound values.
1467  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1468    return CopyLazyBindings(*LCV, store, R);
1469
1470  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1471  // that we are binding symbolic struct value. Kill the field values, and if
1472  // the value is symbolic go and bind it as a "default" binding.
1473  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1474    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1475    return KillStruct(store, R, SV);
1476  }
1477
1478  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1479  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1480
1481  RecordDecl::field_iterator FI, FE;
1482  StoreRef newStore(store, *this);
1483
1484  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
1485
1486    if (VI == VE)
1487      break;
1488
1489    QualType FTy = (*FI)->getType();
1490    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1491
1492    if (FTy->isArrayType())
1493      newStore = BindArray(newStore.getStore(), FR, *VI);
1494    else if (FTy->isStructureOrClassType())
1495      newStore = BindStruct(newStore.getStore(), FR, *VI);
1496    else
1497      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1498  }
1499
1500  // There may be fewer values in the initialize list than the fields of struct.
1501  if (FI != FE) {
1502    RegionBindings B = GetRegionBindings(newStore.getStore());
1503    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1504    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1505  }
1506
1507  return newStore;
1508}
1509
1510StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1511                                     SVal DefaultVal) {
1512  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1513
1514  // The BindingKey may be "invalid" if we cannot handle the region binding
1515  // explicitly.  One example is something like array[index], where index
1516  // is a symbolic value.  In such cases, we want to invalidate the entire
1517  // array, as the index assignment could have been to any element.  In
1518  // the case of nested symbolic indices, we need to march up the region
1519  // hierarchy untile we reach a region whose binding we can reason about.
1520  const SubRegion *subReg = R;
1521
1522  while (!key.isValid()) {
1523    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1524      subReg = tmp;
1525      key = BindingKey::Make(tmp, BindingKey::Default);
1526    }
1527    else
1528      break;
1529  }
1530
1531  // Remove the old bindings, using 'subReg' as the root of all regions
1532  // we will invalidate.
1533  RegionBindings B = GetRegionBindings(store);
1534  llvm::OwningPtr<RegionStoreSubRegionMap>
1535    SubRegions(getRegionStoreSubRegionMap(store));
1536  RemoveSubRegionBindings(B, subReg, *SubRegions);
1537
1538  // Set the default value of the struct region to "unknown".
1539  if (!key.isValid())
1540    return StoreRef(B.getRootWithoutRetain(), *this);
1541
1542  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1543}
1544
1545StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1546                                              Store store,
1547                                              const TypedRegion *R) {
1548
1549  // Nuke the old bindings stemming from R.
1550  RegionBindings B = GetRegionBindings(store);
1551
1552  llvm::OwningPtr<RegionStoreSubRegionMap>
1553    SubRegions(getRegionStoreSubRegionMap(store));
1554
1555  // B and DVM are updated after the call to RemoveSubRegionBindings.
1556  RemoveSubRegionBindings(B, R, *SubRegions.get());
1557
1558  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1559  // results in a zero-copy algorithm.
1560  return StoreRef(addBinding(B, R, BindingKey::Default,
1561                             V).getRootWithoutRetain(), *this);
1562}
1563
1564//===----------------------------------------------------------------------===//
1565// "Raw" retrievals and bindings.
1566//===----------------------------------------------------------------------===//
1567
1568
1569RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1570                                              SVal V) {
1571  if (!K.isValid())
1572    return B;
1573  return RBFactory.add(B, K, V);
1574}
1575
1576RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1577                                              const MemRegion *R,
1578                                              BindingKey::Kind k, SVal V) {
1579  return addBinding(B, BindingKey::Make(R, k), V);
1580}
1581
1582const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1583  if (!K.isValid())
1584    return NULL;
1585  return B.lookup(K);
1586}
1587
1588const SVal *RegionStoreManager::lookup(RegionBindings B,
1589                                       const MemRegion *R,
1590                                       BindingKey::Kind k) {
1591  return lookup(B, BindingKey::Make(R, k));
1592}
1593
1594RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1595                                                 BindingKey K) {
1596  if (!K.isValid())
1597    return B;
1598  return RBFactory.remove(B, K);
1599}
1600
1601RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1602                                                 const MemRegion *R,
1603                                                BindingKey::Kind k){
1604  return removeBinding(B, BindingKey::Make(R, k));
1605}
1606
1607//===----------------------------------------------------------------------===//
1608// State pruning.
1609//===----------------------------------------------------------------------===//
1610
1611namespace {
1612class removeDeadBindingsWorker :
1613  public ClusterAnalysis<removeDeadBindingsWorker> {
1614  llvm::SmallVector<const SymbolicRegion*, 12> Postponed;
1615  SymbolReaper &SymReaper;
1616  const StackFrameContext *CurrentLCtx;
1617
1618public:
1619  removeDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr,
1620                           RegionBindings b, SymbolReaper &symReaper,
1621                           const StackFrameContext *LCtx)
1622    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1623                                                /* includeGlobals = */ false),
1624      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1625
1626  // Called by ClusterAnalysis.
1627  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1628  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1629
1630  void VisitBindingKey(BindingKey K);
1631  bool UpdatePostponed();
1632  void VisitBinding(SVal V);
1633};
1634}
1635
1636void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1637                                                   RegionCluster &C) {
1638
1639  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1640    if (SymReaper.isLive(VR))
1641      AddToWorkList(baseR, C);
1642
1643    return;
1644  }
1645
1646  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1647    if (SymReaper.isLive(SR->getSymbol()))
1648      AddToWorkList(SR, C);
1649    else
1650      Postponed.push_back(SR);
1651
1652    return;
1653  }
1654
1655  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1656    AddToWorkList(baseR, C);
1657    return;
1658  }
1659
1660  // CXXThisRegion in the current or parent location context is live.
1661  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1662    const StackArgumentsSpaceRegion *StackReg =
1663      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1664    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1665    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1666      AddToWorkList(TR, C);
1667  }
1668}
1669
1670void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1671                                            BindingKey *I, BindingKey *E) {
1672  for ( ; I != E; ++I)
1673    VisitBindingKey(*I);
1674}
1675
1676void removeDeadBindingsWorker::VisitBinding(SVal V) {
1677  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1678  if (const nonloc::LazyCompoundVal *LCS =
1679      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1680
1681    const MemRegion *LazyR = LCS->getRegion();
1682    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1683    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1684      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1685      if (baseR && baseR->isSubRegionOf(LazyR))
1686        VisitBinding(RI.getData());
1687    }
1688    return;
1689  }
1690
1691  // If V is a region, then add it to the worklist.
1692  if (const MemRegion *R = V.getAsRegion())
1693    AddToWorkList(R);
1694
1695    // Update the set of live symbols.
1696  for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
1697       SI!=SE;++SI)
1698    SymReaper.markLive(*SI);
1699}
1700
1701void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1702  const MemRegion *R = K.getRegion();
1703
1704  // Mark this region "live" by adding it to the worklist.  This will cause
1705  // use to visit all regions in the cluster (if we haven't visited them
1706  // already).
1707  if (AddToWorkList(R)) {
1708    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1709    // should continue to track that symbol.
1710    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1711      SymReaper.markLive(SymR->getSymbol());
1712
1713    // For BlockDataRegions, enqueue the VarRegions for variables marked
1714    // with __block (passed-by-reference).
1715    // via BlockDeclRefExprs.
1716    if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1717      for (BlockDataRegion::referenced_vars_iterator
1718           RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1719           RI != RE; ++RI) {
1720        if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1721          AddToWorkList(*RI);
1722      }
1723
1724      // No possible data bindings on a BlockDataRegion.
1725      return;
1726    }
1727  }
1728
1729  // Visit the data binding for K.
1730  if (const SVal *V = RM.lookup(B, K))
1731    VisitBinding(*V);
1732}
1733
1734bool removeDeadBindingsWorker::UpdatePostponed() {
1735  // See if any postponed SymbolicRegions are actually live now, after
1736  // having done a scan.
1737  bool changed = false;
1738
1739  for (llvm::SmallVectorImpl<const SymbolicRegion*>::iterator
1740        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1741    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1742      if (SymReaper.isLive(SR->getSymbol())) {
1743        changed |= AddToWorkList(SR);
1744        *I = NULL;
1745      }
1746    }
1747  }
1748
1749  return changed;
1750}
1751
1752StoreRef RegionStoreManager::removeDeadBindings(Store store,
1753                                                const StackFrameContext *LCtx,
1754                                                SymbolReaper& SymReaper,
1755                           llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
1756{
1757  RegionBindings B = GetRegionBindings(store);
1758  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1759  W.GenerateClusters();
1760
1761  // Enqueue the region roots onto the worklist.
1762  for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
1763       E=RegionRoots.end(); I!=E; ++I)
1764    W.AddToWorkList(*I);
1765
1766  do W.RunWorkList(); while (W.UpdatePostponed());
1767
1768  // We have now scanned the store, marking reachable regions and symbols
1769  // as live.  We now remove all the regions that are dead from the store
1770  // as well as update DSymbols with the set symbols that are now dead.
1771  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1772    const BindingKey &K = I.getKey();
1773
1774    // If the cluster has been visited, we know the region has been marked.
1775    if (W.isVisited(K.getRegion()))
1776      continue;
1777
1778    // Remove the dead entry.
1779    B = removeBinding(B, K);
1780
1781    // Mark all non-live symbols that this binding references as dead.
1782    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1783      SymReaper.maybeDead(SymR->getSymbol());
1784
1785    SVal X = I.getData();
1786    SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1787    for (; SI != SE; ++SI)
1788      SymReaper.maybeDead(*SI);
1789  }
1790
1791  return StoreRef(B.getRootWithoutRetain(), *this);
1792}
1793
1794
1795StoreRef RegionStoreManager::enterStackFrame(const GRState *state,
1796                                             const StackFrameContext *frame) {
1797  FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1798  FunctionDecl::param_const_iterator PI = FD->param_begin(),
1799                                     PE = FD->param_end();
1800  StoreRef store = StoreRef(state->getStore(), *this);
1801
1802  if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1803    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1804
1805    // Copy the arg expression value to the arg variables.  We check that
1806    // PI != PE because the actual number of arguments may be different than
1807    // the function declaration.
1808    for (; AI != AE && PI != PE; ++AI, ++PI) {
1809      SVal ArgVal = state->getSVal(*AI);
1810      store = Bind(store.getStore(),
1811                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1812    }
1813  } else if (const CXXConstructExpr *CE =
1814               dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1815    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1816      AE = CE->arg_end();
1817
1818    // Copy the arg expression value to the arg variables.
1819    for (; AI != AE; ++AI, ++PI) {
1820      SVal ArgVal = state->getSVal(*AI);
1821      store = Bind(store.getStore(),
1822                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1823    }
1824  } else
1825    assert(isa<CXXDestructorDecl>(frame->getDecl()));
1826
1827  return store;
1828}
1829
1830//===----------------------------------------------------------------------===//
1831// Utility methods.
1832//===----------------------------------------------------------------------===//
1833
1834void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
1835                               const char* nl, const char *sep) {
1836  RegionBindings B = GetRegionBindings(store);
1837  OS << "Store (direct and default bindings):" << nl;
1838
1839  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1840    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1841}
1842