SemaDeclCXX.cpp revision 249423
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68  };
69
70  /// VisitExpr - Visit all of the children of this expression.
71  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
72    bool IsInvalid = false;
73    for (Stmt::child_range I = Node->children(); I; ++I)
74      IsInvalid |= Visit(*I);
75    return IsInvalid;
76  }
77
78  /// VisitDeclRefExpr - Visit a reference to a declaration, to
79  /// determine whether this declaration can be used in the default
80  /// argument expression.
81  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
82    NamedDecl *Decl = DRE->getDecl();
83    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p9
85      //   Default arguments are evaluated each time the function is
86      //   called. The order of evaluation of function arguments is
87      //   unspecified. Consequently, parameters of a function shall not
88      //   be used in default argument expressions, even if they are not
89      //   evaluated. Parameters of a function declared before a default
90      //   argument expression are in scope and can hide namespace and
91      //   class member names.
92      return S->Diag(DRE->getLocStart(),
93                     diag::err_param_default_argument_references_param)
94         << Param->getDeclName() << DefaultArg->getSourceRange();
95    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
96      // C++ [dcl.fct.default]p7
97      //   Local variables shall not be used in default argument
98      //   expressions.
99      if (VDecl->isLocalVarDecl())
100        return S->Diag(DRE->getLocStart(),
101                       diag::err_param_default_argument_references_local)
102          << VDecl->getDeclName() << DefaultArg->getSourceRange();
103    }
104
105    return false;
106  }
107
108  /// VisitCXXThisExpr - Visit a C++ "this" expression.
109  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
110    // C++ [dcl.fct.default]p8:
111    //   The keyword this shall not be used in a default argument of a
112    //   member function.
113    return S->Diag(ThisE->getLocStart(),
114                   diag::err_param_default_argument_references_this)
115               << ThisE->getSourceRange();
116  }
117
118  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
119    // C++11 [expr.lambda.prim]p13:
120    //   A lambda-expression appearing in a default argument shall not
121    //   implicitly or explicitly capture any entity.
122    if (Lambda->capture_begin() == Lambda->capture_end())
123      return false;
124
125    return S->Diag(Lambda->getLocStart(),
126                   diag::err_lambda_capture_default_arg);
127  }
128}
129
130void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
131                                                      CXXMethodDecl *Method) {
132  // If we have an MSAny spec already, don't bother.
133  if (!Method || ComputedEST == EST_MSAny)
134    return;
135
136  const FunctionProtoType *Proto
137    = Method->getType()->getAs<FunctionProtoType>();
138  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
139  if (!Proto)
140    return;
141
142  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
143
144  // If this function can throw any exceptions, make a note of that.
145  if (EST == EST_MSAny || EST == EST_None) {
146    ClearExceptions();
147    ComputedEST = EST;
148    return;
149  }
150
151  // FIXME: If the call to this decl is using any of its default arguments, we
152  // need to search them for potentially-throwing calls.
153
154  // If this function has a basic noexcept, it doesn't affect the outcome.
155  if (EST == EST_BasicNoexcept)
156    return;
157
158  // If we have a throw-all spec at this point, ignore the function.
159  if (ComputedEST == EST_None)
160    return;
161
162  // If we're still at noexcept(true) and there's a nothrow() callee,
163  // change to that specification.
164  if (EST == EST_DynamicNone) {
165    if (ComputedEST == EST_BasicNoexcept)
166      ComputedEST = EST_DynamicNone;
167    return;
168  }
169
170  // Check out noexcept specs.
171  if (EST == EST_ComputedNoexcept) {
172    FunctionProtoType::NoexceptResult NR =
173        Proto->getNoexceptSpec(Self->Context);
174    assert(NR != FunctionProtoType::NR_NoNoexcept &&
175           "Must have noexcept result for EST_ComputedNoexcept.");
176    assert(NR != FunctionProtoType::NR_Dependent &&
177           "Should not generate implicit declarations for dependent cases, "
178           "and don't know how to handle them anyway.");
179
180    // noexcept(false) -> no spec on the new function
181    if (NR == FunctionProtoType::NR_Throw) {
182      ClearExceptions();
183      ComputedEST = EST_None;
184    }
185    // noexcept(true) won't change anything either.
186    return;
187  }
188
189  assert(EST == EST_Dynamic && "EST case not considered earlier.");
190  assert(ComputedEST != EST_None &&
191         "Shouldn't collect exceptions when throw-all is guaranteed.");
192  ComputedEST = EST_Dynamic;
193  // Record the exceptions in this function's exception specification.
194  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
195                                          EEnd = Proto->exception_end();
196       E != EEnd; ++E)
197    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
198      Exceptions.push_back(*E);
199}
200
201void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
202  if (!E || ComputedEST == EST_MSAny)
203    return;
204
205  // FIXME:
206  //
207  // C++0x [except.spec]p14:
208  //   [An] implicit exception-specification specifies the type-id T if and
209  // only if T is allowed by the exception-specification of a function directly
210  // invoked by f's implicit definition; f shall allow all exceptions if any
211  // function it directly invokes allows all exceptions, and f shall allow no
212  // exceptions if every function it directly invokes allows no exceptions.
213  //
214  // Note in particular that if an implicit exception-specification is generated
215  // for a function containing a throw-expression, that specification can still
216  // be noexcept(true).
217  //
218  // Note also that 'directly invoked' is not defined in the standard, and there
219  // is no indication that we should only consider potentially-evaluated calls.
220  //
221  // Ultimately we should implement the intent of the standard: the exception
222  // specification should be the set of exceptions which can be thrown by the
223  // implicit definition. For now, we assume that any non-nothrow expression can
224  // throw any exception.
225
226  if (Self->canThrow(E))
227    ComputedEST = EST_None;
228}
229
230bool
231Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
232                              SourceLocation EqualLoc) {
233  if (RequireCompleteType(Param->getLocation(), Param->getType(),
234                          diag::err_typecheck_decl_incomplete_type)) {
235    Param->setInvalidDecl();
236    return true;
237  }
238
239  // C++ [dcl.fct.default]p5
240  //   A default argument expression is implicitly converted (clause
241  //   4) to the parameter type. The default argument expression has
242  //   the same semantic constraints as the initializer expression in
243  //   a declaration of a variable of the parameter type, using the
244  //   copy-initialization semantics (8.5).
245  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
246                                                                    Param);
247  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
248                                                           EqualLoc);
249  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
250  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckCompletedExpr(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  bool MightBeFunction = D.isFunctionDeclarationContext();
356  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
357    DeclaratorChunk &chunk = D.getTypeObject(i);
358    if (chunk.Kind == DeclaratorChunk::Function) {
359      if (MightBeFunction) {
360        // This is a function declaration. It can have default arguments, but
361        // keep looking in case its return type is a function type with default
362        // arguments.
363        MightBeFunction = false;
364        continue;
365      }
366      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
367        ParmVarDecl *Param =
368          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
369        if (Param->hasUnparsedDefaultArg()) {
370          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
371          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
372            << SourceRange((*Toks)[1].getLocation(),
373                           Toks->back().getLocation());
374          delete Toks;
375          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
376        } else if (Param->getDefaultArg()) {
377          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
378            << Param->getDefaultArg()->getSourceRange();
379          Param->setDefaultArg(0);
380        }
381      }
382    } else if (chunk.Kind != DeclaratorChunk::Paren) {
383      MightBeFunction = false;
384    }
385  }
386}
387
388/// MergeCXXFunctionDecl - Merge two declarations of the same C++
389/// function, once we already know that they have the same
390/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
391/// error, false otherwise.
392bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
393                                Scope *S) {
394  bool Invalid = false;
395
396  // C++ [dcl.fct.default]p4:
397  //   For non-template functions, default arguments can be added in
398  //   later declarations of a function in the same
399  //   scope. Declarations in different scopes have completely
400  //   distinct sets of default arguments. That is, declarations in
401  //   inner scopes do not acquire default arguments from
402  //   declarations in outer scopes, and vice versa. In a given
403  //   function declaration, all parameters subsequent to a
404  //   parameter with a default argument shall have default
405  //   arguments supplied in this or previous declarations. A
406  //   default argument shall not be redefined by a later
407  //   declaration (not even to the same value).
408  //
409  // C++ [dcl.fct.default]p6:
410  //   Except for member functions of class templates, the default arguments
411  //   in a member function definition that appears outside of the class
412  //   definition are added to the set of default arguments provided by the
413  //   member function declaration in the class definition.
414  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
415    ParmVarDecl *OldParam = Old->getParamDecl(p);
416    ParmVarDecl *NewParam = New->getParamDecl(p);
417
418    bool OldParamHasDfl = OldParam->hasDefaultArg();
419    bool NewParamHasDfl = NewParam->hasDefaultArg();
420
421    NamedDecl *ND = Old;
422    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
423      // Ignore default parameters of old decl if they are not in
424      // the same scope.
425      OldParamHasDfl = false;
426
427    if (OldParamHasDfl && NewParamHasDfl) {
428
429      unsigned DiagDefaultParamID =
430        diag::err_param_default_argument_redefinition;
431
432      // MSVC accepts that default parameters be redefined for member functions
433      // of template class. The new default parameter's value is ignored.
434      Invalid = true;
435      if (getLangOpts().MicrosoftExt) {
436        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
437        if (MD && MD->getParent()->getDescribedClassTemplate()) {
438          // Merge the old default argument into the new parameter.
439          NewParam->setHasInheritedDefaultArg();
440          if (OldParam->hasUninstantiatedDefaultArg())
441            NewParam->setUninstantiatedDefaultArg(
442                                      OldParam->getUninstantiatedDefaultArg());
443          else
444            NewParam->setDefaultArg(OldParam->getInit());
445          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
446          Invalid = false;
447        }
448      }
449
450      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
451      // hint here. Alternatively, we could walk the type-source information
452      // for NewParam to find the last source location in the type... but it
453      // isn't worth the effort right now. This is the kind of test case that
454      // is hard to get right:
455      //   int f(int);
456      //   void g(int (*fp)(int) = f);
457      //   void g(int (*fp)(int) = &f);
458      Diag(NewParam->getLocation(), DiagDefaultParamID)
459        << NewParam->getDefaultArgRange();
460
461      // Look for the function declaration where the default argument was
462      // actually written, which may be a declaration prior to Old.
463      for (FunctionDecl *Older = Old->getPreviousDecl();
464           Older; Older = Older->getPreviousDecl()) {
465        if (!Older->getParamDecl(p)->hasDefaultArg())
466          break;
467
468        OldParam = Older->getParamDecl(p);
469      }
470
471      Diag(OldParam->getLocation(), diag::note_previous_definition)
472        << OldParam->getDefaultArgRange();
473    } else if (OldParamHasDfl) {
474      // Merge the old default argument into the new parameter.
475      // It's important to use getInit() here;  getDefaultArg()
476      // strips off any top-level ExprWithCleanups.
477      NewParam->setHasInheritedDefaultArg();
478      if (OldParam->hasUninstantiatedDefaultArg())
479        NewParam->setUninstantiatedDefaultArg(
480                                      OldParam->getUninstantiatedDefaultArg());
481      else
482        NewParam->setDefaultArg(OldParam->getInit());
483    } else if (NewParamHasDfl) {
484      if (New->getDescribedFunctionTemplate()) {
485        // Paragraph 4, quoted above, only applies to non-template functions.
486        Diag(NewParam->getLocation(),
487             diag::err_param_default_argument_template_redecl)
488          << NewParam->getDefaultArgRange();
489        Diag(Old->getLocation(), diag::note_template_prev_declaration)
490          << false;
491      } else if (New->getTemplateSpecializationKind()
492                   != TSK_ImplicitInstantiation &&
493                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
494        // C++ [temp.expr.spec]p21:
495        //   Default function arguments shall not be specified in a declaration
496        //   or a definition for one of the following explicit specializations:
497        //     - the explicit specialization of a function template;
498        //     - the explicit specialization of a member function template;
499        //     - the explicit specialization of a member function of a class
500        //       template where the class template specialization to which the
501        //       member function specialization belongs is implicitly
502        //       instantiated.
503        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
504          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
505          << New->getDeclName()
506          << NewParam->getDefaultArgRange();
507      } else if (New->getDeclContext()->isDependentContext()) {
508        // C++ [dcl.fct.default]p6 (DR217):
509        //   Default arguments for a member function of a class template shall
510        //   be specified on the initial declaration of the member function
511        //   within the class template.
512        //
513        // Reading the tea leaves a bit in DR217 and its reference to DR205
514        // leads me to the conclusion that one cannot add default function
515        // arguments for an out-of-line definition of a member function of a
516        // dependent type.
517        int WhichKind = 2;
518        if (CXXRecordDecl *Record
519              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
520          if (Record->getDescribedClassTemplate())
521            WhichKind = 0;
522          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
523            WhichKind = 1;
524          else
525            WhichKind = 2;
526        }
527
528        Diag(NewParam->getLocation(),
529             diag::err_param_default_argument_member_template_redecl)
530          << WhichKind
531          << NewParam->getDefaultArgRange();
532      }
533    }
534  }
535
536  // DR1344: If a default argument is added outside a class definition and that
537  // default argument makes the function a special member function, the program
538  // is ill-formed. This can only happen for constructors.
539  if (isa<CXXConstructorDecl>(New) &&
540      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
541    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
542                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
543    if (NewSM != OldSM) {
544      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
545      assert(NewParam->hasDefaultArg());
546      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
547        << NewParam->getDefaultArgRange() << NewSM;
548      Diag(Old->getLocation(), diag::note_previous_declaration);
549    }
550  }
551
552  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
553  // template has a constexpr specifier then all its declarations shall
554  // contain the constexpr specifier.
555  if (New->isConstexpr() != Old->isConstexpr()) {
556    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
557      << New << New->isConstexpr();
558    Diag(Old->getLocation(), diag::note_previous_declaration);
559    Invalid = true;
560  }
561
562  if (CheckEquivalentExceptionSpec(Old, New))
563    Invalid = true;
564
565  return Invalid;
566}
567
568/// \brief Merge the exception specifications of two variable declarations.
569///
570/// This is called when there's a redeclaration of a VarDecl. The function
571/// checks if the redeclaration might have an exception specification and
572/// validates compatibility and merges the specs if necessary.
573void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
574  // Shortcut if exceptions are disabled.
575  if (!getLangOpts().CXXExceptions)
576    return;
577
578  assert(Context.hasSameType(New->getType(), Old->getType()) &&
579         "Should only be called if types are otherwise the same.");
580
581  QualType NewType = New->getType();
582  QualType OldType = Old->getType();
583
584  // We're only interested in pointers and references to functions, as well
585  // as pointers to member functions.
586  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
587    NewType = R->getPointeeType();
588    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
589  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
590    NewType = P->getPointeeType();
591    OldType = OldType->getAs<PointerType>()->getPointeeType();
592  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
593    NewType = M->getPointeeType();
594    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
595  }
596
597  if (!NewType->isFunctionProtoType())
598    return;
599
600  // There's lots of special cases for functions. For function pointers, system
601  // libraries are hopefully not as broken so that we don't need these
602  // workarounds.
603  if (CheckEquivalentExceptionSpec(
604        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
605        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
606    New->setInvalidDecl();
607  }
608}
609
610/// CheckCXXDefaultArguments - Verify that the default arguments for a
611/// function declaration are well-formed according to C++
612/// [dcl.fct.default].
613void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
614  unsigned NumParams = FD->getNumParams();
615  unsigned p;
616
617  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
618                  isa<CXXMethodDecl>(FD) &&
619                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
620
621  // Find first parameter with a default argument
622  for (p = 0; p < NumParams; ++p) {
623    ParmVarDecl *Param = FD->getParamDecl(p);
624    if (Param->hasDefaultArg()) {
625      // C++11 [expr.prim.lambda]p5:
626      //   [...] Default arguments (8.3.6) shall not be specified in the
627      //   parameter-declaration-clause of a lambda-declarator.
628      //
629      // FIXME: Core issue 974 strikes this sentence, we only provide an
630      // extension warning.
631      if (IsLambda)
632        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
633          << Param->getDefaultArgRange();
634      break;
635    }
636  }
637
638  // C++ [dcl.fct.default]p4:
639  //   In a given function declaration, all parameters
640  //   subsequent to a parameter with a default argument shall
641  //   have default arguments supplied in this or previous
642  //   declarations. A default argument shall not be redefined
643  //   by a later declaration (not even to the same value).
644  unsigned LastMissingDefaultArg = 0;
645  for (; p < NumParams; ++p) {
646    ParmVarDecl *Param = FD->getParamDecl(p);
647    if (!Param->hasDefaultArg()) {
648      if (Param->isInvalidDecl())
649        /* We already complained about this parameter. */;
650      else if (Param->getIdentifier())
651        Diag(Param->getLocation(),
652             diag::err_param_default_argument_missing_name)
653          << Param->getIdentifier();
654      else
655        Diag(Param->getLocation(),
656             diag::err_param_default_argument_missing);
657
658      LastMissingDefaultArg = p;
659    }
660  }
661
662  if (LastMissingDefaultArg > 0) {
663    // Some default arguments were missing. Clear out all of the
664    // default arguments up to (and including) the last missing
665    // default argument, so that we leave the function parameters
666    // in a semantically valid state.
667    for (p = 0; p <= LastMissingDefaultArg; ++p) {
668      ParmVarDecl *Param = FD->getParamDecl(p);
669      if (Param->hasDefaultArg()) {
670        Param->setDefaultArg(0);
671      }
672    }
673  }
674}
675
676// CheckConstexprParameterTypes - Check whether a function's parameter types
677// are all literal types. If so, return true. If not, produce a suitable
678// diagnostic and return false.
679static bool CheckConstexprParameterTypes(Sema &SemaRef,
680                                         const FunctionDecl *FD) {
681  unsigned ArgIndex = 0;
682  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
683  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
684       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
685    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
686    SourceLocation ParamLoc = PD->getLocation();
687    if (!(*i)->isDependentType() &&
688        SemaRef.RequireLiteralType(ParamLoc, *i,
689                                   diag::err_constexpr_non_literal_param,
690                                   ArgIndex+1, PD->getSourceRange(),
691                                   isa<CXXConstructorDecl>(FD)))
692      return false;
693  }
694  return true;
695}
696
697/// \brief Get diagnostic %select index for tag kind for
698/// record diagnostic message.
699/// WARNING: Indexes apply to particular diagnostics only!
700///
701/// \returns diagnostic %select index.
702static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
703  switch (Tag) {
704  case TTK_Struct: return 0;
705  case TTK_Interface: return 1;
706  case TTK_Class:  return 2;
707  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
708  }
709}
710
711// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
712// the requirements of a constexpr function definition or a constexpr
713// constructor definition. If so, return true. If not, produce appropriate
714// diagnostics and return false.
715//
716// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
717bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
718  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
719  if (MD && MD->isInstance()) {
720    // C++11 [dcl.constexpr]p4:
721    //  The definition of a constexpr constructor shall satisfy the following
722    //  constraints:
723    //  - the class shall not have any virtual base classes;
724    const CXXRecordDecl *RD = MD->getParent();
725    if (RD->getNumVBases()) {
726      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
727        << isa<CXXConstructorDecl>(NewFD)
728        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
729      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
730             E = RD->vbases_end(); I != E; ++I)
731        Diag(I->getLocStart(),
732             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
733      return false;
734    }
735  }
736
737  if (!isa<CXXConstructorDecl>(NewFD)) {
738    // C++11 [dcl.constexpr]p3:
739    //  The definition of a constexpr function shall satisfy the following
740    //  constraints:
741    // - it shall not be virtual;
742    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
743    if (Method && Method->isVirtual()) {
744      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
745
746      // If it's not obvious why this function is virtual, find an overridden
747      // function which uses the 'virtual' keyword.
748      const CXXMethodDecl *WrittenVirtual = Method;
749      while (!WrittenVirtual->isVirtualAsWritten())
750        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
751      if (WrittenVirtual != Method)
752        Diag(WrittenVirtual->getLocation(),
753             diag::note_overridden_virtual_function);
754      return false;
755    }
756
757    // - its return type shall be a literal type;
758    QualType RT = NewFD->getResultType();
759    if (!RT->isDependentType() &&
760        RequireLiteralType(NewFD->getLocation(), RT,
761                           diag::err_constexpr_non_literal_return))
762      return false;
763  }
764
765  // - each of its parameter types shall be a literal type;
766  if (!CheckConstexprParameterTypes(*this, NewFD))
767    return false;
768
769  return true;
770}
771
772/// Check the given declaration statement is legal within a constexpr function
773/// body. C++0x [dcl.constexpr]p3,p4.
774///
775/// \return true if the body is OK, false if we have diagnosed a problem.
776static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
777                                   DeclStmt *DS) {
778  // C++0x [dcl.constexpr]p3 and p4:
779  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
780  //  contain only
781  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
782         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
783    switch ((*DclIt)->getKind()) {
784    case Decl::StaticAssert:
785    case Decl::Using:
786    case Decl::UsingShadow:
787    case Decl::UsingDirective:
788    case Decl::UnresolvedUsingTypename:
789      //   - static_assert-declarations
790      //   - using-declarations,
791      //   - using-directives,
792      continue;
793
794    case Decl::Typedef:
795    case Decl::TypeAlias: {
796      //   - typedef declarations and alias-declarations that do not define
797      //     classes or enumerations,
798      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
799      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
800        // Don't allow variably-modified types in constexpr functions.
801        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
802        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
803          << TL.getSourceRange() << TL.getType()
804          << isa<CXXConstructorDecl>(Dcl);
805        return false;
806      }
807      continue;
808    }
809
810    case Decl::Enum:
811    case Decl::CXXRecord:
812      // As an extension, we allow the declaration (but not the definition) of
813      // classes and enumerations in all declarations, not just in typedef and
814      // alias declarations.
815      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
816        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
817          << isa<CXXConstructorDecl>(Dcl);
818        return false;
819      }
820      continue;
821
822    case Decl::Var:
823      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
824        << isa<CXXConstructorDecl>(Dcl);
825      return false;
826
827    default:
828      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
829        << isa<CXXConstructorDecl>(Dcl);
830      return false;
831    }
832  }
833
834  return true;
835}
836
837/// Check that the given field is initialized within a constexpr constructor.
838///
839/// \param Dcl The constexpr constructor being checked.
840/// \param Field The field being checked. This may be a member of an anonymous
841///        struct or union nested within the class being checked.
842/// \param Inits All declarations, including anonymous struct/union members and
843///        indirect members, for which any initialization was provided.
844/// \param Diagnosed Set to true if an error is produced.
845static void CheckConstexprCtorInitializer(Sema &SemaRef,
846                                          const FunctionDecl *Dcl,
847                                          FieldDecl *Field,
848                                          llvm::SmallSet<Decl*, 16> &Inits,
849                                          bool &Diagnosed) {
850  if (Field->isUnnamedBitfield())
851    return;
852
853  if (Field->isAnonymousStructOrUnion() &&
854      Field->getType()->getAsCXXRecordDecl()->isEmpty())
855    return;
856
857  if (!Inits.count(Field)) {
858    if (!Diagnosed) {
859      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
860      Diagnosed = true;
861    }
862    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
863  } else if (Field->isAnonymousStructOrUnion()) {
864    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
865    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
866         I != E; ++I)
867      // If an anonymous union contains an anonymous struct of which any member
868      // is initialized, all members must be initialized.
869      if (!RD->isUnion() || Inits.count(*I))
870        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
871  }
872}
873
874/// Check the body for the given constexpr function declaration only contains
875/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
876///
877/// \return true if the body is OK, false if we have diagnosed a problem.
878bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
879  if (isa<CXXTryStmt>(Body)) {
880    // C++11 [dcl.constexpr]p3:
881    //  The definition of a constexpr function shall satisfy the following
882    //  constraints: [...]
883    // - its function-body shall be = delete, = default, or a
884    //   compound-statement
885    //
886    // C++11 [dcl.constexpr]p4:
887    //  In the definition of a constexpr constructor, [...]
888    // - its function-body shall not be a function-try-block;
889    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
890      << isa<CXXConstructorDecl>(Dcl);
891    return false;
892  }
893
894  // - its function-body shall be [...] a compound-statement that contains only
895  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
896
897  SmallVector<SourceLocation, 4> ReturnStmts;
898  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
899         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
900    switch ((*BodyIt)->getStmtClass()) {
901    case Stmt::NullStmtClass:
902      //   - null statements,
903      continue;
904
905    case Stmt::DeclStmtClass:
906      //   - static_assert-declarations
907      //   - using-declarations,
908      //   - using-directives,
909      //   - typedef declarations and alias-declarations that do not define
910      //     classes or enumerations,
911      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
912        return false;
913      continue;
914
915    case Stmt::ReturnStmtClass:
916      //   - and exactly one return statement;
917      if (isa<CXXConstructorDecl>(Dcl))
918        break;
919
920      ReturnStmts.push_back((*BodyIt)->getLocStart());
921      continue;
922
923    default:
924      break;
925    }
926
927    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
928      << isa<CXXConstructorDecl>(Dcl);
929    return false;
930  }
931
932  if (const CXXConstructorDecl *Constructor
933        = dyn_cast<CXXConstructorDecl>(Dcl)) {
934    const CXXRecordDecl *RD = Constructor->getParent();
935    // DR1359:
936    // - every non-variant non-static data member and base class sub-object
937    //   shall be initialized;
938    // - if the class is a non-empty union, or for each non-empty anonymous
939    //   union member of a non-union class, exactly one non-static data member
940    //   shall be initialized;
941    if (RD->isUnion()) {
942      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
943        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
944        return false;
945      }
946    } else if (!Constructor->isDependentContext() &&
947               !Constructor->isDelegatingConstructor()) {
948      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
949
950      // Skip detailed checking if we have enough initializers, and we would
951      // allow at most one initializer per member.
952      bool AnyAnonStructUnionMembers = false;
953      unsigned Fields = 0;
954      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
955           E = RD->field_end(); I != E; ++I, ++Fields) {
956        if (I->isAnonymousStructOrUnion()) {
957          AnyAnonStructUnionMembers = true;
958          break;
959        }
960      }
961      if (AnyAnonStructUnionMembers ||
962          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
963        // Check initialization of non-static data members. Base classes are
964        // always initialized so do not need to be checked. Dependent bases
965        // might not have initializers in the member initializer list.
966        llvm::SmallSet<Decl*, 16> Inits;
967        for (CXXConstructorDecl::init_const_iterator
968               I = Constructor->init_begin(), E = Constructor->init_end();
969             I != E; ++I) {
970          if (FieldDecl *FD = (*I)->getMember())
971            Inits.insert(FD);
972          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
973            Inits.insert(ID->chain_begin(), ID->chain_end());
974        }
975
976        bool Diagnosed = false;
977        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
978             E = RD->field_end(); I != E; ++I)
979          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
980        if (Diagnosed)
981          return false;
982      }
983    }
984  } else {
985    if (ReturnStmts.empty()) {
986      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
987      return false;
988    }
989    if (ReturnStmts.size() > 1) {
990      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
991      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
992        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
993      return false;
994    }
995  }
996
997  // C++11 [dcl.constexpr]p5:
998  //   if no function argument values exist such that the function invocation
999  //   substitution would produce a constant expression, the program is
1000  //   ill-formed; no diagnostic required.
1001  // C++11 [dcl.constexpr]p3:
1002  //   - every constructor call and implicit conversion used in initializing the
1003  //     return value shall be one of those allowed in a constant expression.
1004  // C++11 [dcl.constexpr]p4:
1005  //   - every constructor involved in initializing non-static data members and
1006  //     base class sub-objects shall be a constexpr constructor.
1007  SmallVector<PartialDiagnosticAt, 8> Diags;
1008  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1009    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1010      << isa<CXXConstructorDecl>(Dcl);
1011    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1012      Diag(Diags[I].first, Diags[I].second);
1013    // Don't return false here: we allow this for compatibility in
1014    // system headers.
1015  }
1016
1017  return true;
1018}
1019
1020/// isCurrentClassName - Determine whether the identifier II is the
1021/// name of the class type currently being defined. In the case of
1022/// nested classes, this will only return true if II is the name of
1023/// the innermost class.
1024bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1025                              const CXXScopeSpec *SS) {
1026  assert(getLangOpts().CPlusPlus && "No class names in C!");
1027
1028  CXXRecordDecl *CurDecl;
1029  if (SS && SS->isSet() && !SS->isInvalid()) {
1030    DeclContext *DC = computeDeclContext(*SS, true);
1031    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1032  } else
1033    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1034
1035  if (CurDecl && CurDecl->getIdentifier())
1036    return &II == CurDecl->getIdentifier();
1037  else
1038    return false;
1039}
1040
1041/// \brief Determine whether the given class is a base class of the given
1042/// class, including looking at dependent bases.
1043static bool findCircularInheritance(const CXXRecordDecl *Class,
1044                                    const CXXRecordDecl *Current) {
1045  SmallVector<const CXXRecordDecl*, 8> Queue;
1046
1047  Class = Class->getCanonicalDecl();
1048  while (true) {
1049    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1050                                                  E = Current->bases_end();
1051         I != E; ++I) {
1052      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1053      if (!Base)
1054        continue;
1055
1056      Base = Base->getDefinition();
1057      if (!Base)
1058        continue;
1059
1060      if (Base->getCanonicalDecl() == Class)
1061        return true;
1062
1063      Queue.push_back(Base);
1064    }
1065
1066    if (Queue.empty())
1067      return false;
1068
1069    Current = Queue.back();
1070    Queue.pop_back();
1071  }
1072
1073  return false;
1074}
1075
1076/// \brief Check the validity of a C++ base class specifier.
1077///
1078/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1079/// and returns NULL otherwise.
1080CXXBaseSpecifier *
1081Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1082                         SourceRange SpecifierRange,
1083                         bool Virtual, AccessSpecifier Access,
1084                         TypeSourceInfo *TInfo,
1085                         SourceLocation EllipsisLoc) {
1086  QualType BaseType = TInfo->getType();
1087
1088  // C++ [class.union]p1:
1089  //   A union shall not have base classes.
1090  if (Class->isUnion()) {
1091    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1092      << SpecifierRange;
1093    return 0;
1094  }
1095
1096  if (EllipsisLoc.isValid() &&
1097      !TInfo->getType()->containsUnexpandedParameterPack()) {
1098    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1099      << TInfo->getTypeLoc().getSourceRange();
1100    EllipsisLoc = SourceLocation();
1101  }
1102
1103  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1104
1105  if (BaseType->isDependentType()) {
1106    // Make sure that we don't have circular inheritance among our dependent
1107    // bases. For non-dependent bases, the check for completeness below handles
1108    // this.
1109    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1110      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1111          ((BaseDecl = BaseDecl->getDefinition()) &&
1112           findCircularInheritance(Class, BaseDecl))) {
1113        Diag(BaseLoc, diag::err_circular_inheritance)
1114          << BaseType << Context.getTypeDeclType(Class);
1115
1116        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1117          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1118            << BaseType;
1119
1120        return 0;
1121      }
1122    }
1123
1124    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1125                                          Class->getTagKind() == TTK_Class,
1126                                          Access, TInfo, EllipsisLoc);
1127  }
1128
1129  // Base specifiers must be record types.
1130  if (!BaseType->isRecordType()) {
1131    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1132    return 0;
1133  }
1134
1135  // C++ [class.union]p1:
1136  //   A union shall not be used as a base class.
1137  if (BaseType->isUnionType()) {
1138    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1139    return 0;
1140  }
1141
1142  // C++ [class.derived]p2:
1143  //   The class-name in a base-specifier shall not be an incompletely
1144  //   defined class.
1145  if (RequireCompleteType(BaseLoc, BaseType,
1146                          diag::err_incomplete_base_class, SpecifierRange)) {
1147    Class->setInvalidDecl();
1148    return 0;
1149  }
1150
1151  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1152  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1153  assert(BaseDecl && "Record type has no declaration");
1154  BaseDecl = BaseDecl->getDefinition();
1155  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1156  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1157  assert(CXXBaseDecl && "Base type is not a C++ type");
1158
1159  // C++ [class]p3:
1160  //   If a class is marked final and it appears as a base-type-specifier in
1161  //   base-clause, the program is ill-formed.
1162  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1163    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1164      << CXXBaseDecl->getDeclName();
1165    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1166      << CXXBaseDecl->getDeclName();
1167    return 0;
1168  }
1169
1170  if (BaseDecl->isInvalidDecl())
1171    Class->setInvalidDecl();
1172
1173  // Create the base specifier.
1174  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1175                                        Class->getTagKind() == TTK_Class,
1176                                        Access, TInfo, EllipsisLoc);
1177}
1178
1179/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1180/// one entry in the base class list of a class specifier, for
1181/// example:
1182///    class foo : public bar, virtual private baz {
1183/// 'public bar' and 'virtual private baz' are each base-specifiers.
1184BaseResult
1185Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1186                         ParsedAttributes &Attributes,
1187                         bool Virtual, AccessSpecifier Access,
1188                         ParsedType basetype, SourceLocation BaseLoc,
1189                         SourceLocation EllipsisLoc) {
1190  if (!classdecl)
1191    return true;
1192
1193  AdjustDeclIfTemplate(classdecl);
1194  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1195  if (!Class)
1196    return true;
1197
1198  // We do not support any C++11 attributes on base-specifiers yet.
1199  // Diagnose any attributes we see.
1200  if (!Attributes.empty()) {
1201    for (AttributeList *Attr = Attributes.getList(); Attr;
1202         Attr = Attr->getNext()) {
1203      if (Attr->isInvalid() ||
1204          Attr->getKind() == AttributeList::IgnoredAttribute)
1205        continue;
1206      Diag(Attr->getLoc(),
1207           Attr->getKind() == AttributeList::UnknownAttribute
1208             ? diag::warn_unknown_attribute_ignored
1209             : diag::err_base_specifier_attribute)
1210        << Attr->getName();
1211    }
1212  }
1213
1214  TypeSourceInfo *TInfo = 0;
1215  GetTypeFromParser(basetype, &TInfo);
1216
1217  if (EllipsisLoc.isInvalid() &&
1218      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1219                                      UPPC_BaseType))
1220    return true;
1221
1222  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1223                                                      Virtual, Access, TInfo,
1224                                                      EllipsisLoc))
1225    return BaseSpec;
1226  else
1227    Class->setInvalidDecl();
1228
1229  return true;
1230}
1231
1232/// \brief Performs the actual work of attaching the given base class
1233/// specifiers to a C++ class.
1234bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1235                                unsigned NumBases) {
1236 if (NumBases == 0)
1237    return false;
1238
1239  // Used to keep track of which base types we have already seen, so
1240  // that we can properly diagnose redundant direct base types. Note
1241  // that the key is always the unqualified canonical type of the base
1242  // class.
1243  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1244
1245  // Copy non-redundant base specifiers into permanent storage.
1246  unsigned NumGoodBases = 0;
1247  bool Invalid = false;
1248  for (unsigned idx = 0; idx < NumBases; ++idx) {
1249    QualType NewBaseType
1250      = Context.getCanonicalType(Bases[idx]->getType());
1251    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1252
1253    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1254    if (KnownBase) {
1255      // C++ [class.mi]p3:
1256      //   A class shall not be specified as a direct base class of a
1257      //   derived class more than once.
1258      Diag(Bases[idx]->getLocStart(),
1259           diag::err_duplicate_base_class)
1260        << KnownBase->getType()
1261        << Bases[idx]->getSourceRange();
1262
1263      // Delete the duplicate base class specifier; we're going to
1264      // overwrite its pointer later.
1265      Context.Deallocate(Bases[idx]);
1266
1267      Invalid = true;
1268    } else {
1269      // Okay, add this new base class.
1270      KnownBase = Bases[idx];
1271      Bases[NumGoodBases++] = Bases[idx];
1272      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1273        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1274        if (Class->isInterface() &&
1275              (!RD->isInterface() ||
1276               KnownBase->getAccessSpecifier() != AS_public)) {
1277          // The Microsoft extension __interface does not permit bases that
1278          // are not themselves public interfaces.
1279          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1280            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1281            << RD->getSourceRange();
1282          Invalid = true;
1283        }
1284        if (RD->hasAttr<WeakAttr>())
1285          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1286      }
1287    }
1288  }
1289
1290  // Attach the remaining base class specifiers to the derived class.
1291  Class->setBases(Bases, NumGoodBases);
1292
1293  // Delete the remaining (good) base class specifiers, since their
1294  // data has been copied into the CXXRecordDecl.
1295  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1296    Context.Deallocate(Bases[idx]);
1297
1298  return Invalid;
1299}
1300
1301/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1302/// class, after checking whether there are any duplicate base
1303/// classes.
1304void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1305                               unsigned NumBases) {
1306  if (!ClassDecl || !Bases || !NumBases)
1307    return;
1308
1309  AdjustDeclIfTemplate(ClassDecl);
1310  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1311                       (CXXBaseSpecifier**)(Bases), NumBases);
1312}
1313
1314/// \brief Determine whether the type \p Derived is a C++ class that is
1315/// derived from the type \p Base.
1316bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1317  if (!getLangOpts().CPlusPlus)
1318    return false;
1319
1320  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1321  if (!DerivedRD)
1322    return false;
1323
1324  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1325  if (!BaseRD)
1326    return false;
1327
1328  // If either the base or the derived type is invalid, don't try to
1329  // check whether one is derived from the other.
1330  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1331    return false;
1332
1333  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1334  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1335}
1336
1337/// \brief Determine whether the type \p Derived is a C++ class that is
1338/// derived from the type \p Base.
1339bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1340  if (!getLangOpts().CPlusPlus)
1341    return false;
1342
1343  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1344  if (!DerivedRD)
1345    return false;
1346
1347  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1348  if (!BaseRD)
1349    return false;
1350
1351  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1352}
1353
1354void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1355                              CXXCastPath &BasePathArray) {
1356  assert(BasePathArray.empty() && "Base path array must be empty!");
1357  assert(Paths.isRecordingPaths() && "Must record paths!");
1358
1359  const CXXBasePath &Path = Paths.front();
1360
1361  // We first go backward and check if we have a virtual base.
1362  // FIXME: It would be better if CXXBasePath had the base specifier for
1363  // the nearest virtual base.
1364  unsigned Start = 0;
1365  for (unsigned I = Path.size(); I != 0; --I) {
1366    if (Path[I - 1].Base->isVirtual()) {
1367      Start = I - 1;
1368      break;
1369    }
1370  }
1371
1372  // Now add all bases.
1373  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1374    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1375}
1376
1377/// \brief Determine whether the given base path includes a virtual
1378/// base class.
1379bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1380  for (CXXCastPath::const_iterator B = BasePath.begin(),
1381                                BEnd = BasePath.end();
1382       B != BEnd; ++B)
1383    if ((*B)->isVirtual())
1384      return true;
1385
1386  return false;
1387}
1388
1389/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1390/// conversion (where Derived and Base are class types) is
1391/// well-formed, meaning that the conversion is unambiguous (and
1392/// that all of the base classes are accessible). Returns true
1393/// and emits a diagnostic if the code is ill-formed, returns false
1394/// otherwise. Loc is the location where this routine should point to
1395/// if there is an error, and Range is the source range to highlight
1396/// if there is an error.
1397bool
1398Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1399                                   unsigned InaccessibleBaseID,
1400                                   unsigned AmbigiousBaseConvID,
1401                                   SourceLocation Loc, SourceRange Range,
1402                                   DeclarationName Name,
1403                                   CXXCastPath *BasePath) {
1404  // First, determine whether the path from Derived to Base is
1405  // ambiguous. This is slightly more expensive than checking whether
1406  // the Derived to Base conversion exists, because here we need to
1407  // explore multiple paths to determine if there is an ambiguity.
1408  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1409                     /*DetectVirtual=*/false);
1410  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1411  assert(DerivationOkay &&
1412         "Can only be used with a derived-to-base conversion");
1413  (void)DerivationOkay;
1414
1415  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1416    if (InaccessibleBaseID) {
1417      // Check that the base class can be accessed.
1418      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1419                                   InaccessibleBaseID)) {
1420        case AR_inaccessible:
1421          return true;
1422        case AR_accessible:
1423        case AR_dependent:
1424        case AR_delayed:
1425          break;
1426      }
1427    }
1428
1429    // Build a base path if necessary.
1430    if (BasePath)
1431      BuildBasePathArray(Paths, *BasePath);
1432    return false;
1433  }
1434
1435  // We know that the derived-to-base conversion is ambiguous, and
1436  // we're going to produce a diagnostic. Perform the derived-to-base
1437  // search just one more time to compute all of the possible paths so
1438  // that we can print them out. This is more expensive than any of
1439  // the previous derived-to-base checks we've done, but at this point
1440  // performance isn't as much of an issue.
1441  Paths.clear();
1442  Paths.setRecordingPaths(true);
1443  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1444  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1445  (void)StillOkay;
1446
1447  // Build up a textual representation of the ambiguous paths, e.g.,
1448  // D -> B -> A, that will be used to illustrate the ambiguous
1449  // conversions in the diagnostic. We only print one of the paths
1450  // to each base class subobject.
1451  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1452
1453  Diag(Loc, AmbigiousBaseConvID)
1454  << Derived << Base << PathDisplayStr << Range << Name;
1455  return true;
1456}
1457
1458bool
1459Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1460                                   SourceLocation Loc, SourceRange Range,
1461                                   CXXCastPath *BasePath,
1462                                   bool IgnoreAccess) {
1463  return CheckDerivedToBaseConversion(Derived, Base,
1464                                      IgnoreAccess ? 0
1465                                       : diag::err_upcast_to_inaccessible_base,
1466                                      diag::err_ambiguous_derived_to_base_conv,
1467                                      Loc, Range, DeclarationName(),
1468                                      BasePath);
1469}
1470
1471
1472/// @brief Builds a string representing ambiguous paths from a
1473/// specific derived class to different subobjects of the same base
1474/// class.
1475///
1476/// This function builds a string that can be used in error messages
1477/// to show the different paths that one can take through the
1478/// inheritance hierarchy to go from the derived class to different
1479/// subobjects of a base class. The result looks something like this:
1480/// @code
1481/// struct D -> struct B -> struct A
1482/// struct D -> struct C -> struct A
1483/// @endcode
1484std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1485  std::string PathDisplayStr;
1486  std::set<unsigned> DisplayedPaths;
1487  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1488       Path != Paths.end(); ++Path) {
1489    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1490      // We haven't displayed a path to this particular base
1491      // class subobject yet.
1492      PathDisplayStr += "\n    ";
1493      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1494      for (CXXBasePath::const_iterator Element = Path->begin();
1495           Element != Path->end(); ++Element)
1496        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1497    }
1498  }
1499
1500  return PathDisplayStr;
1501}
1502
1503//===----------------------------------------------------------------------===//
1504// C++ class member Handling
1505//===----------------------------------------------------------------------===//
1506
1507/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1508bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1509                                SourceLocation ASLoc,
1510                                SourceLocation ColonLoc,
1511                                AttributeList *Attrs) {
1512  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1513  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1514                                                  ASLoc, ColonLoc);
1515  CurContext->addHiddenDecl(ASDecl);
1516  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1517}
1518
1519/// CheckOverrideControl - Check C++11 override control semantics.
1520void Sema::CheckOverrideControl(Decl *D) {
1521  if (D->isInvalidDecl())
1522    return;
1523
1524  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1525
1526  // Do we know which functions this declaration might be overriding?
1527  bool OverridesAreKnown = !MD ||
1528      (!MD->getParent()->hasAnyDependentBases() &&
1529       !MD->getType()->isDependentType());
1530
1531  if (!MD || !MD->isVirtual()) {
1532    if (OverridesAreKnown) {
1533      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1534        Diag(OA->getLocation(),
1535             diag::override_keyword_only_allowed_on_virtual_member_functions)
1536          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1537        D->dropAttr<OverrideAttr>();
1538      }
1539      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1540        Diag(FA->getLocation(),
1541             diag::override_keyword_only_allowed_on_virtual_member_functions)
1542          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1543        D->dropAttr<FinalAttr>();
1544      }
1545    }
1546    return;
1547  }
1548
1549  if (!OverridesAreKnown)
1550    return;
1551
1552  // C++11 [class.virtual]p5:
1553  //   If a virtual function is marked with the virt-specifier override and
1554  //   does not override a member function of a base class, the program is
1555  //   ill-formed.
1556  bool HasOverriddenMethods =
1557    MD->begin_overridden_methods() != MD->end_overridden_methods();
1558  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1559    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1560      << MD->getDeclName();
1561}
1562
1563/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1564/// function overrides a virtual member function marked 'final', according to
1565/// C++11 [class.virtual]p4.
1566bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1567                                                  const CXXMethodDecl *Old) {
1568  if (!Old->hasAttr<FinalAttr>())
1569    return false;
1570
1571  Diag(New->getLocation(), diag::err_final_function_overridden)
1572    << New->getDeclName();
1573  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1574  return true;
1575}
1576
1577static bool InitializationHasSideEffects(const FieldDecl &FD) {
1578  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1579  // FIXME: Destruction of ObjC lifetime types has side-effects.
1580  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1581    return !RD->isCompleteDefinition() ||
1582           !RD->hasTrivialDefaultConstructor() ||
1583           !RD->hasTrivialDestructor();
1584  return false;
1585}
1586
1587/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1588/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1589/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1590/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1591/// present (but parsing it has been deferred).
1592NamedDecl *
1593Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1594                               MultiTemplateParamsArg TemplateParameterLists,
1595                               Expr *BW, const VirtSpecifiers &VS,
1596                               InClassInitStyle InitStyle) {
1597  const DeclSpec &DS = D.getDeclSpec();
1598  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1599  DeclarationName Name = NameInfo.getName();
1600  SourceLocation Loc = NameInfo.getLoc();
1601
1602  // For anonymous bitfields, the location should point to the type.
1603  if (Loc.isInvalid())
1604    Loc = D.getLocStart();
1605
1606  Expr *BitWidth = static_cast<Expr*>(BW);
1607
1608  assert(isa<CXXRecordDecl>(CurContext));
1609  assert(!DS.isFriendSpecified());
1610
1611  bool isFunc = D.isDeclarationOfFunction();
1612
1613  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1614    // The Microsoft extension __interface only permits public member functions
1615    // and prohibits constructors, destructors, operators, non-public member
1616    // functions, static methods and data members.
1617    unsigned InvalidDecl;
1618    bool ShowDeclName = true;
1619    if (!isFunc)
1620      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1621    else if (AS != AS_public)
1622      InvalidDecl = 2;
1623    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1624      InvalidDecl = 3;
1625    else switch (Name.getNameKind()) {
1626      case DeclarationName::CXXConstructorName:
1627        InvalidDecl = 4;
1628        ShowDeclName = false;
1629        break;
1630
1631      case DeclarationName::CXXDestructorName:
1632        InvalidDecl = 5;
1633        ShowDeclName = false;
1634        break;
1635
1636      case DeclarationName::CXXOperatorName:
1637      case DeclarationName::CXXConversionFunctionName:
1638        InvalidDecl = 6;
1639        break;
1640
1641      default:
1642        InvalidDecl = 0;
1643        break;
1644    }
1645
1646    if (InvalidDecl) {
1647      if (ShowDeclName)
1648        Diag(Loc, diag::err_invalid_member_in_interface)
1649          << (InvalidDecl-1) << Name;
1650      else
1651        Diag(Loc, diag::err_invalid_member_in_interface)
1652          << (InvalidDecl-1) << "";
1653      return 0;
1654    }
1655  }
1656
1657  // C++ 9.2p6: A member shall not be declared to have automatic storage
1658  // duration (auto, register) or with the extern storage-class-specifier.
1659  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1660  // data members and cannot be applied to names declared const or static,
1661  // and cannot be applied to reference members.
1662  switch (DS.getStorageClassSpec()) {
1663    case DeclSpec::SCS_unspecified:
1664    case DeclSpec::SCS_typedef:
1665    case DeclSpec::SCS_static:
1666      // FALL THROUGH.
1667      break;
1668    case DeclSpec::SCS_mutable:
1669      if (isFunc) {
1670        if (DS.getStorageClassSpecLoc().isValid())
1671          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1672        else
1673          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1674
1675        // FIXME: It would be nicer if the keyword was ignored only for this
1676        // declarator. Otherwise we could get follow-up errors.
1677        D.getMutableDeclSpec().ClearStorageClassSpecs();
1678      }
1679      break;
1680    default:
1681      if (DS.getStorageClassSpecLoc().isValid())
1682        Diag(DS.getStorageClassSpecLoc(),
1683             diag::err_storageclass_invalid_for_member);
1684      else
1685        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1686      D.getMutableDeclSpec().ClearStorageClassSpecs();
1687  }
1688
1689  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1690                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1691                      !isFunc);
1692
1693  if (DS.isConstexprSpecified() && isInstField) {
1694    SemaDiagnosticBuilder B =
1695        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1696    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1697    if (InitStyle == ICIS_NoInit) {
1698      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1699      D.getMutableDeclSpec().ClearConstexprSpec();
1700      const char *PrevSpec;
1701      unsigned DiagID;
1702      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1703                                         PrevSpec, DiagID, getLangOpts());
1704      (void)Failed;
1705      assert(!Failed && "Making a constexpr member const shouldn't fail");
1706    } else {
1707      B << 1;
1708      const char *PrevSpec;
1709      unsigned DiagID;
1710      if (D.getMutableDeclSpec().SetStorageClassSpec(
1711          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1712        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1713               "This is the only DeclSpec that should fail to be applied");
1714        B << 1;
1715      } else {
1716        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1717        isInstField = false;
1718      }
1719    }
1720  }
1721
1722  NamedDecl *Member;
1723  if (isInstField) {
1724    CXXScopeSpec &SS = D.getCXXScopeSpec();
1725
1726    // Data members must have identifiers for names.
1727    if (!Name.isIdentifier()) {
1728      Diag(Loc, diag::err_bad_variable_name)
1729        << Name;
1730      return 0;
1731    }
1732
1733    IdentifierInfo *II = Name.getAsIdentifierInfo();
1734
1735    // Member field could not be with "template" keyword.
1736    // So TemplateParameterLists should be empty in this case.
1737    if (TemplateParameterLists.size()) {
1738      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1739      if (TemplateParams->size()) {
1740        // There is no such thing as a member field template.
1741        Diag(D.getIdentifierLoc(), diag::err_template_member)
1742            << II
1743            << SourceRange(TemplateParams->getTemplateLoc(),
1744                TemplateParams->getRAngleLoc());
1745      } else {
1746        // There is an extraneous 'template<>' for this member.
1747        Diag(TemplateParams->getTemplateLoc(),
1748            diag::err_template_member_noparams)
1749            << II
1750            << SourceRange(TemplateParams->getTemplateLoc(),
1751                TemplateParams->getRAngleLoc());
1752      }
1753      return 0;
1754    }
1755
1756    if (SS.isSet() && !SS.isInvalid()) {
1757      // The user provided a superfluous scope specifier inside a class
1758      // definition:
1759      //
1760      // class X {
1761      //   int X::member;
1762      // };
1763      if (DeclContext *DC = computeDeclContext(SS, false))
1764        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1765      else
1766        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1767          << Name << SS.getRange();
1768
1769      SS.clear();
1770    }
1771
1772    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1773                         InitStyle, AS);
1774    assert(Member && "HandleField never returns null");
1775  } else {
1776    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1777
1778    Member = HandleDeclarator(S, D, TemplateParameterLists);
1779    if (!Member) {
1780      return 0;
1781    }
1782
1783    // Non-instance-fields can't have a bitfield.
1784    if (BitWidth) {
1785      if (Member->isInvalidDecl()) {
1786        // don't emit another diagnostic.
1787      } else if (isa<VarDecl>(Member)) {
1788        // C++ 9.6p3: A bit-field shall not be a static member.
1789        // "static member 'A' cannot be a bit-field"
1790        Diag(Loc, diag::err_static_not_bitfield)
1791          << Name << BitWidth->getSourceRange();
1792      } else if (isa<TypedefDecl>(Member)) {
1793        // "typedef member 'x' cannot be a bit-field"
1794        Diag(Loc, diag::err_typedef_not_bitfield)
1795          << Name << BitWidth->getSourceRange();
1796      } else {
1797        // A function typedef ("typedef int f(); f a;").
1798        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1799        Diag(Loc, diag::err_not_integral_type_bitfield)
1800          << Name << cast<ValueDecl>(Member)->getType()
1801          << BitWidth->getSourceRange();
1802      }
1803
1804      BitWidth = 0;
1805      Member->setInvalidDecl();
1806    }
1807
1808    Member->setAccess(AS);
1809
1810    // If we have declared a member function template, set the access of the
1811    // templated declaration as well.
1812    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1813      FunTmpl->getTemplatedDecl()->setAccess(AS);
1814  }
1815
1816  if (VS.isOverrideSpecified())
1817    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1818  if (VS.isFinalSpecified())
1819    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1820
1821  if (VS.getLastLocation().isValid()) {
1822    // Update the end location of a method that has a virt-specifiers.
1823    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1824      MD->setRangeEnd(VS.getLastLocation());
1825  }
1826
1827  CheckOverrideControl(Member);
1828
1829  assert((Name || isInstField) && "No identifier for non-field ?");
1830
1831  if (isInstField) {
1832    FieldDecl *FD = cast<FieldDecl>(Member);
1833    FieldCollector->Add(FD);
1834
1835    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1836                                 FD->getLocation())
1837          != DiagnosticsEngine::Ignored) {
1838      // Remember all explicit private FieldDecls that have a name, no side
1839      // effects and are not part of a dependent type declaration.
1840      if (!FD->isImplicit() && FD->getDeclName() &&
1841          FD->getAccess() == AS_private &&
1842          !FD->hasAttr<UnusedAttr>() &&
1843          !FD->getParent()->isDependentContext() &&
1844          !InitializationHasSideEffects(*FD))
1845        UnusedPrivateFields.insert(FD);
1846    }
1847  }
1848
1849  return Member;
1850}
1851
1852namespace {
1853  class UninitializedFieldVisitor
1854      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1855    Sema &S;
1856    ValueDecl *VD;
1857  public:
1858    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1859    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1860                                                        S(S) {
1861      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1862        this->VD = IFD->getAnonField();
1863      else
1864        this->VD = VD;
1865    }
1866
1867    void HandleExpr(Expr *E) {
1868      if (!E) return;
1869
1870      // Expressions like x(x) sometimes lack the surrounding expressions
1871      // but need to be checked anyways.
1872      HandleValue(E);
1873      Visit(E);
1874    }
1875
1876    void HandleValue(Expr *E) {
1877      E = E->IgnoreParens();
1878
1879      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1880        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1881          return;
1882
1883        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1884        // or union.
1885        MemberExpr *FieldME = ME;
1886
1887        Expr *Base = E;
1888        while (isa<MemberExpr>(Base)) {
1889          ME = cast<MemberExpr>(Base);
1890
1891          if (isa<VarDecl>(ME->getMemberDecl()))
1892            return;
1893
1894          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1895            if (!FD->isAnonymousStructOrUnion())
1896              FieldME = ME;
1897
1898          Base = ME->getBase();
1899        }
1900
1901        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1902          unsigned diag = VD->getType()->isReferenceType()
1903              ? diag::warn_reference_field_is_uninit
1904              : diag::warn_field_is_uninit;
1905          S.Diag(FieldME->getExprLoc(), diag) << VD;
1906        }
1907        return;
1908      }
1909
1910      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1911        HandleValue(CO->getTrueExpr());
1912        HandleValue(CO->getFalseExpr());
1913        return;
1914      }
1915
1916      if (BinaryConditionalOperator *BCO =
1917              dyn_cast<BinaryConditionalOperator>(E)) {
1918        HandleValue(BCO->getCommon());
1919        HandleValue(BCO->getFalseExpr());
1920        return;
1921      }
1922
1923      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1924        switch (BO->getOpcode()) {
1925        default:
1926          return;
1927        case(BO_PtrMemD):
1928        case(BO_PtrMemI):
1929          HandleValue(BO->getLHS());
1930          return;
1931        case(BO_Comma):
1932          HandleValue(BO->getRHS());
1933          return;
1934        }
1935      }
1936    }
1937
1938    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1939      if (E->getCastKind() == CK_LValueToRValue)
1940        HandleValue(E->getSubExpr());
1941
1942      Inherited::VisitImplicitCastExpr(E);
1943    }
1944
1945    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1946      Expr *Callee = E->getCallee();
1947      if (isa<MemberExpr>(Callee))
1948        HandleValue(Callee);
1949
1950      Inherited::VisitCXXMemberCallExpr(E);
1951    }
1952  };
1953  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1954                                                       ValueDecl *VD) {
1955    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1956  }
1957} // namespace
1958
1959/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1960/// in-class initializer for a non-static C++ class member, and after
1961/// instantiating an in-class initializer in a class template. Such actions
1962/// are deferred until the class is complete.
1963void
1964Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1965                                       Expr *InitExpr) {
1966  FieldDecl *FD = cast<FieldDecl>(D);
1967  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1968         "must set init style when field is created");
1969
1970  if (!InitExpr) {
1971    FD->setInvalidDecl();
1972    FD->removeInClassInitializer();
1973    return;
1974  }
1975
1976  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1977    FD->setInvalidDecl();
1978    FD->removeInClassInitializer();
1979    return;
1980  }
1981
1982  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1983      != DiagnosticsEngine::Ignored) {
1984    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1985  }
1986
1987  ExprResult Init = InitExpr;
1988  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1989    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1990      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1991        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1992    }
1993    Expr **Inits = &InitExpr;
1994    unsigned NumInits = 1;
1995    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1996    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1997        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1998        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1999    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2000    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2001    if (Init.isInvalid()) {
2002      FD->setInvalidDecl();
2003      return;
2004    }
2005  }
2006
2007  // C++11 [class.base.init]p7:
2008  //   The initialization of each base and member constitutes a
2009  //   full-expression.
2010  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2011  if (Init.isInvalid()) {
2012    FD->setInvalidDecl();
2013    return;
2014  }
2015
2016  InitExpr = Init.release();
2017
2018  FD->setInClassInitializer(InitExpr);
2019}
2020
2021/// \brief Find the direct and/or virtual base specifiers that
2022/// correspond to the given base type, for use in base initialization
2023/// within a constructor.
2024static bool FindBaseInitializer(Sema &SemaRef,
2025                                CXXRecordDecl *ClassDecl,
2026                                QualType BaseType,
2027                                const CXXBaseSpecifier *&DirectBaseSpec,
2028                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2029  // First, check for a direct base class.
2030  DirectBaseSpec = 0;
2031  for (CXXRecordDecl::base_class_const_iterator Base
2032         = ClassDecl->bases_begin();
2033       Base != ClassDecl->bases_end(); ++Base) {
2034    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2035      // We found a direct base of this type. That's what we're
2036      // initializing.
2037      DirectBaseSpec = &*Base;
2038      break;
2039    }
2040  }
2041
2042  // Check for a virtual base class.
2043  // FIXME: We might be able to short-circuit this if we know in advance that
2044  // there are no virtual bases.
2045  VirtualBaseSpec = 0;
2046  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2047    // We haven't found a base yet; search the class hierarchy for a
2048    // virtual base class.
2049    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2050                       /*DetectVirtual=*/false);
2051    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2052                              BaseType, Paths)) {
2053      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2054           Path != Paths.end(); ++Path) {
2055        if (Path->back().Base->isVirtual()) {
2056          VirtualBaseSpec = Path->back().Base;
2057          break;
2058        }
2059      }
2060    }
2061  }
2062
2063  return DirectBaseSpec || VirtualBaseSpec;
2064}
2065
2066/// \brief Handle a C++ member initializer using braced-init-list syntax.
2067MemInitResult
2068Sema::ActOnMemInitializer(Decl *ConstructorD,
2069                          Scope *S,
2070                          CXXScopeSpec &SS,
2071                          IdentifierInfo *MemberOrBase,
2072                          ParsedType TemplateTypeTy,
2073                          const DeclSpec &DS,
2074                          SourceLocation IdLoc,
2075                          Expr *InitList,
2076                          SourceLocation EllipsisLoc) {
2077  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2078                             DS, IdLoc, InitList,
2079                             EllipsisLoc);
2080}
2081
2082/// \brief Handle a C++ member initializer using parentheses syntax.
2083MemInitResult
2084Sema::ActOnMemInitializer(Decl *ConstructorD,
2085                          Scope *S,
2086                          CXXScopeSpec &SS,
2087                          IdentifierInfo *MemberOrBase,
2088                          ParsedType TemplateTypeTy,
2089                          const DeclSpec &DS,
2090                          SourceLocation IdLoc,
2091                          SourceLocation LParenLoc,
2092                          Expr **Args, unsigned NumArgs,
2093                          SourceLocation RParenLoc,
2094                          SourceLocation EllipsisLoc) {
2095  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2096                                           llvm::makeArrayRef(Args, NumArgs),
2097                                           RParenLoc);
2098  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2099                             DS, IdLoc, List, EllipsisLoc);
2100}
2101
2102namespace {
2103
2104// Callback to only accept typo corrections that can be a valid C++ member
2105// intializer: either a non-static field member or a base class.
2106class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2107 public:
2108  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2109      : ClassDecl(ClassDecl) {}
2110
2111  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2112    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2113      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2114        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2115      else
2116        return isa<TypeDecl>(ND);
2117    }
2118    return false;
2119  }
2120
2121 private:
2122  CXXRecordDecl *ClassDecl;
2123};
2124
2125}
2126
2127/// \brief Handle a C++ member initializer.
2128MemInitResult
2129Sema::BuildMemInitializer(Decl *ConstructorD,
2130                          Scope *S,
2131                          CXXScopeSpec &SS,
2132                          IdentifierInfo *MemberOrBase,
2133                          ParsedType TemplateTypeTy,
2134                          const DeclSpec &DS,
2135                          SourceLocation IdLoc,
2136                          Expr *Init,
2137                          SourceLocation EllipsisLoc) {
2138  if (!ConstructorD)
2139    return true;
2140
2141  AdjustDeclIfTemplate(ConstructorD);
2142
2143  CXXConstructorDecl *Constructor
2144    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2145  if (!Constructor) {
2146    // The user wrote a constructor initializer on a function that is
2147    // not a C++ constructor. Ignore the error for now, because we may
2148    // have more member initializers coming; we'll diagnose it just
2149    // once in ActOnMemInitializers.
2150    return true;
2151  }
2152
2153  CXXRecordDecl *ClassDecl = Constructor->getParent();
2154
2155  // C++ [class.base.init]p2:
2156  //   Names in a mem-initializer-id are looked up in the scope of the
2157  //   constructor's class and, if not found in that scope, are looked
2158  //   up in the scope containing the constructor's definition.
2159  //   [Note: if the constructor's class contains a member with the
2160  //   same name as a direct or virtual base class of the class, a
2161  //   mem-initializer-id naming the member or base class and composed
2162  //   of a single identifier refers to the class member. A
2163  //   mem-initializer-id for the hidden base class may be specified
2164  //   using a qualified name. ]
2165  if (!SS.getScopeRep() && !TemplateTypeTy) {
2166    // Look for a member, first.
2167    DeclContext::lookup_result Result
2168      = ClassDecl->lookup(MemberOrBase);
2169    if (!Result.empty()) {
2170      ValueDecl *Member;
2171      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2172          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2173        if (EllipsisLoc.isValid())
2174          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2175            << MemberOrBase
2176            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2177
2178        return BuildMemberInitializer(Member, Init, IdLoc);
2179      }
2180    }
2181  }
2182  // It didn't name a member, so see if it names a class.
2183  QualType BaseType;
2184  TypeSourceInfo *TInfo = 0;
2185
2186  if (TemplateTypeTy) {
2187    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2188  } else if (DS.getTypeSpecType() == TST_decltype) {
2189    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2190  } else {
2191    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2192    LookupParsedName(R, S, &SS);
2193
2194    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2195    if (!TyD) {
2196      if (R.isAmbiguous()) return true;
2197
2198      // We don't want access-control diagnostics here.
2199      R.suppressDiagnostics();
2200
2201      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2202        bool NotUnknownSpecialization = false;
2203        DeclContext *DC = computeDeclContext(SS, false);
2204        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2205          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2206
2207        if (!NotUnknownSpecialization) {
2208          // When the scope specifier can refer to a member of an unknown
2209          // specialization, we take it as a type name.
2210          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2211                                       SS.getWithLocInContext(Context),
2212                                       *MemberOrBase, IdLoc);
2213          if (BaseType.isNull())
2214            return true;
2215
2216          R.clear();
2217          R.setLookupName(MemberOrBase);
2218        }
2219      }
2220
2221      // If no results were found, try to correct typos.
2222      TypoCorrection Corr;
2223      MemInitializerValidatorCCC Validator(ClassDecl);
2224      if (R.empty() && BaseType.isNull() &&
2225          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2226                              Validator, ClassDecl))) {
2227        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2228        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2229        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2230          // We have found a non-static data member with a similar
2231          // name to what was typed; complain and initialize that
2232          // member.
2233          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2234            << MemberOrBase << true << CorrectedQuotedStr
2235            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2236          Diag(Member->getLocation(), diag::note_previous_decl)
2237            << CorrectedQuotedStr;
2238
2239          return BuildMemberInitializer(Member, Init, IdLoc);
2240        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2241          const CXXBaseSpecifier *DirectBaseSpec;
2242          const CXXBaseSpecifier *VirtualBaseSpec;
2243          if (FindBaseInitializer(*this, ClassDecl,
2244                                  Context.getTypeDeclType(Type),
2245                                  DirectBaseSpec, VirtualBaseSpec)) {
2246            // We have found a direct or virtual base class with a
2247            // similar name to what was typed; complain and initialize
2248            // that base class.
2249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2250              << MemberOrBase << false << CorrectedQuotedStr
2251              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2252
2253            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2254                                                             : VirtualBaseSpec;
2255            Diag(BaseSpec->getLocStart(),
2256                 diag::note_base_class_specified_here)
2257              << BaseSpec->getType()
2258              << BaseSpec->getSourceRange();
2259
2260            TyD = Type;
2261          }
2262        }
2263      }
2264
2265      if (!TyD && BaseType.isNull()) {
2266        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2267          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2268        return true;
2269      }
2270    }
2271
2272    if (BaseType.isNull()) {
2273      BaseType = Context.getTypeDeclType(TyD);
2274      if (SS.isSet()) {
2275        NestedNameSpecifier *Qualifier =
2276          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2277
2278        // FIXME: preserve source range information
2279        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2280      }
2281    }
2282  }
2283
2284  if (!TInfo)
2285    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2286
2287  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2288}
2289
2290/// Checks a member initializer expression for cases where reference (or
2291/// pointer) members are bound to by-value parameters (or their addresses).
2292static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2293                                               Expr *Init,
2294                                               SourceLocation IdLoc) {
2295  QualType MemberTy = Member->getType();
2296
2297  // We only handle pointers and references currently.
2298  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2299  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2300    return;
2301
2302  const bool IsPointer = MemberTy->isPointerType();
2303  if (IsPointer) {
2304    if (const UnaryOperator *Op
2305          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2306      // The only case we're worried about with pointers requires taking the
2307      // address.
2308      if (Op->getOpcode() != UO_AddrOf)
2309        return;
2310
2311      Init = Op->getSubExpr();
2312    } else {
2313      // We only handle address-of expression initializers for pointers.
2314      return;
2315    }
2316  }
2317
2318  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2319    // Taking the address of a temporary will be diagnosed as a hard error.
2320    if (IsPointer)
2321      return;
2322
2323    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2324      << Member << Init->getSourceRange();
2325  } else if (const DeclRefExpr *DRE
2326               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2327    // We only warn when referring to a non-reference parameter declaration.
2328    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2329    if (!Parameter || Parameter->getType()->isReferenceType())
2330      return;
2331
2332    S.Diag(Init->getExprLoc(),
2333           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2334                     : diag::warn_bind_ref_member_to_parameter)
2335      << Member << Parameter << Init->getSourceRange();
2336  } else {
2337    // Other initializers are fine.
2338    return;
2339  }
2340
2341  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2342    << (unsigned)IsPointer;
2343}
2344
2345MemInitResult
2346Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2347                             SourceLocation IdLoc) {
2348  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2349  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2350  assert((DirectMember || IndirectMember) &&
2351         "Member must be a FieldDecl or IndirectFieldDecl");
2352
2353  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2354    return true;
2355
2356  if (Member->isInvalidDecl())
2357    return true;
2358
2359  // Diagnose value-uses of fields to initialize themselves, e.g.
2360  //   foo(foo)
2361  // where foo is not also a parameter to the constructor.
2362  // TODO: implement -Wuninitialized and fold this into that framework.
2363  Expr **Args;
2364  unsigned NumArgs;
2365  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2366    Args = ParenList->getExprs();
2367    NumArgs = ParenList->getNumExprs();
2368  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2369    Args = InitList->getInits();
2370    NumArgs = InitList->getNumInits();
2371  } else {
2372    // Template instantiation doesn't reconstruct ParenListExprs for us.
2373    Args = &Init;
2374    NumArgs = 1;
2375  }
2376
2377  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2378        != DiagnosticsEngine::Ignored)
2379    for (unsigned i = 0; i < NumArgs; ++i)
2380      // FIXME: Warn about the case when other fields are used before being
2381      // initialized. For example, let this field be the i'th field. When
2382      // initializing the i'th field, throw a warning if any of the >= i'th
2383      // fields are used, as they are not yet initialized.
2384      // Right now we are only handling the case where the i'th field uses
2385      // itself in its initializer.
2386      // Also need to take into account that some fields may be initialized by
2387      // in-class initializers, see C++11 [class.base.init]p9.
2388      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2389
2390  SourceRange InitRange = Init->getSourceRange();
2391
2392  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2393    // Can't check initialization for a member of dependent type or when
2394    // any of the arguments are type-dependent expressions.
2395    DiscardCleanupsInEvaluationContext();
2396  } else {
2397    bool InitList = false;
2398    if (isa<InitListExpr>(Init)) {
2399      InitList = true;
2400      Args = &Init;
2401      NumArgs = 1;
2402
2403      if (isStdInitializerList(Member->getType(), 0)) {
2404        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2405            << /*at end of ctor*/1 << InitRange;
2406      }
2407    }
2408
2409    // Initialize the member.
2410    InitializedEntity MemberEntity =
2411      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2412                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2413    InitializationKind Kind =
2414      InitList ? InitializationKind::CreateDirectList(IdLoc)
2415               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2416                                                  InitRange.getEnd());
2417
2418    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2419    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2420                                            MultiExprArg(Args, NumArgs),
2421                                            0);
2422    if (MemberInit.isInvalid())
2423      return true;
2424
2425    // C++11 [class.base.init]p7:
2426    //   The initialization of each base and member constitutes a
2427    //   full-expression.
2428    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2429    if (MemberInit.isInvalid())
2430      return true;
2431
2432    Init = MemberInit.get();
2433    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2434  }
2435
2436  if (DirectMember) {
2437    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2438                                            InitRange.getBegin(), Init,
2439                                            InitRange.getEnd());
2440  } else {
2441    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2442                                            InitRange.getBegin(), Init,
2443                                            InitRange.getEnd());
2444  }
2445}
2446
2447MemInitResult
2448Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2449                                 CXXRecordDecl *ClassDecl) {
2450  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2451  if (!LangOpts.CPlusPlus11)
2452    return Diag(NameLoc, diag::err_delegating_ctor)
2453      << TInfo->getTypeLoc().getLocalSourceRange();
2454  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2455
2456  bool InitList = true;
2457  Expr **Args = &Init;
2458  unsigned NumArgs = 1;
2459  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2460    InitList = false;
2461    Args = ParenList->getExprs();
2462    NumArgs = ParenList->getNumExprs();
2463  }
2464
2465  SourceRange InitRange = Init->getSourceRange();
2466  // Initialize the object.
2467  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2468                                     QualType(ClassDecl->getTypeForDecl(), 0));
2469  InitializationKind Kind =
2470    InitList ? InitializationKind::CreateDirectList(NameLoc)
2471             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2472                                                InitRange.getEnd());
2473  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2474  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2475                                              MultiExprArg(Args, NumArgs),
2476                                              0);
2477  if (DelegationInit.isInvalid())
2478    return true;
2479
2480  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2481         "Delegating constructor with no target?");
2482
2483  // C++11 [class.base.init]p7:
2484  //   The initialization of each base and member constitutes a
2485  //   full-expression.
2486  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2487                                       InitRange.getBegin());
2488  if (DelegationInit.isInvalid())
2489    return true;
2490
2491  // If we are in a dependent context, template instantiation will
2492  // perform this type-checking again. Just save the arguments that we
2493  // received in a ParenListExpr.
2494  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2495  // of the information that we have about the base
2496  // initializer. However, deconstructing the ASTs is a dicey process,
2497  // and this approach is far more likely to get the corner cases right.
2498  if (CurContext->isDependentContext())
2499    DelegationInit = Owned(Init);
2500
2501  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2502                                          DelegationInit.takeAs<Expr>(),
2503                                          InitRange.getEnd());
2504}
2505
2506MemInitResult
2507Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2508                           Expr *Init, CXXRecordDecl *ClassDecl,
2509                           SourceLocation EllipsisLoc) {
2510  SourceLocation BaseLoc
2511    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2512
2513  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2514    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2515             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2516
2517  // C++ [class.base.init]p2:
2518  //   [...] Unless the mem-initializer-id names a nonstatic data
2519  //   member of the constructor's class or a direct or virtual base
2520  //   of that class, the mem-initializer is ill-formed. A
2521  //   mem-initializer-list can initialize a base class using any
2522  //   name that denotes that base class type.
2523  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2524
2525  SourceRange InitRange = Init->getSourceRange();
2526  if (EllipsisLoc.isValid()) {
2527    // This is a pack expansion.
2528    if (!BaseType->containsUnexpandedParameterPack())  {
2529      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2530        << SourceRange(BaseLoc, InitRange.getEnd());
2531
2532      EllipsisLoc = SourceLocation();
2533    }
2534  } else {
2535    // Check for any unexpanded parameter packs.
2536    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2537      return true;
2538
2539    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2540      return true;
2541  }
2542
2543  // Check for direct and virtual base classes.
2544  const CXXBaseSpecifier *DirectBaseSpec = 0;
2545  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2546  if (!Dependent) {
2547    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2548                                       BaseType))
2549      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2550
2551    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2552                        VirtualBaseSpec);
2553
2554    // C++ [base.class.init]p2:
2555    // Unless the mem-initializer-id names a nonstatic data member of the
2556    // constructor's class or a direct or virtual base of that class, the
2557    // mem-initializer is ill-formed.
2558    if (!DirectBaseSpec && !VirtualBaseSpec) {
2559      // If the class has any dependent bases, then it's possible that
2560      // one of those types will resolve to the same type as
2561      // BaseType. Therefore, just treat this as a dependent base
2562      // class initialization.  FIXME: Should we try to check the
2563      // initialization anyway? It seems odd.
2564      if (ClassDecl->hasAnyDependentBases())
2565        Dependent = true;
2566      else
2567        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2568          << BaseType << Context.getTypeDeclType(ClassDecl)
2569          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2570    }
2571  }
2572
2573  if (Dependent) {
2574    DiscardCleanupsInEvaluationContext();
2575
2576    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2577                                            /*IsVirtual=*/false,
2578                                            InitRange.getBegin(), Init,
2579                                            InitRange.getEnd(), EllipsisLoc);
2580  }
2581
2582  // C++ [base.class.init]p2:
2583  //   If a mem-initializer-id is ambiguous because it designates both
2584  //   a direct non-virtual base class and an inherited virtual base
2585  //   class, the mem-initializer is ill-formed.
2586  if (DirectBaseSpec && VirtualBaseSpec)
2587    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2588      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2589
2590  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2591  if (!BaseSpec)
2592    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2593
2594  // Initialize the base.
2595  bool InitList = true;
2596  Expr **Args = &Init;
2597  unsigned NumArgs = 1;
2598  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2599    InitList = false;
2600    Args = ParenList->getExprs();
2601    NumArgs = ParenList->getNumExprs();
2602  }
2603
2604  InitializedEntity BaseEntity =
2605    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2606  InitializationKind Kind =
2607    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2608             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2609                                                InitRange.getEnd());
2610  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2611  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2612                                        MultiExprArg(Args, NumArgs), 0);
2613  if (BaseInit.isInvalid())
2614    return true;
2615
2616  // C++11 [class.base.init]p7:
2617  //   The initialization of each base and member constitutes a
2618  //   full-expression.
2619  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2620  if (BaseInit.isInvalid())
2621    return true;
2622
2623  // If we are in a dependent context, template instantiation will
2624  // perform this type-checking again. Just save the arguments that we
2625  // received in a ParenListExpr.
2626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2627  // of the information that we have about the base
2628  // initializer. However, deconstructing the ASTs is a dicey process,
2629  // and this approach is far more likely to get the corner cases right.
2630  if (CurContext->isDependentContext())
2631    BaseInit = Owned(Init);
2632
2633  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2634                                          BaseSpec->isVirtual(),
2635                                          InitRange.getBegin(),
2636                                          BaseInit.takeAs<Expr>(),
2637                                          InitRange.getEnd(), EllipsisLoc);
2638}
2639
2640// Create a static_cast\<T&&>(expr).
2641static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2642  if (T.isNull()) T = E->getType();
2643  QualType TargetType = SemaRef.BuildReferenceType(
2644      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2645  SourceLocation ExprLoc = E->getLocStart();
2646  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2647      TargetType, ExprLoc);
2648
2649  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2650                                   SourceRange(ExprLoc, ExprLoc),
2651                                   E->getSourceRange()).take();
2652}
2653
2654/// ImplicitInitializerKind - How an implicit base or member initializer should
2655/// initialize its base or member.
2656enum ImplicitInitializerKind {
2657  IIK_Default,
2658  IIK_Copy,
2659  IIK_Move,
2660  IIK_Inherit
2661};
2662
2663static bool
2664BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2665                             ImplicitInitializerKind ImplicitInitKind,
2666                             CXXBaseSpecifier *BaseSpec,
2667                             bool IsInheritedVirtualBase,
2668                             CXXCtorInitializer *&CXXBaseInit) {
2669  InitializedEntity InitEntity
2670    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2671                                        IsInheritedVirtualBase);
2672
2673  ExprResult BaseInit;
2674
2675  switch (ImplicitInitKind) {
2676  case IIK_Inherit: {
2677    const CXXRecordDecl *Inherited =
2678        Constructor->getInheritedConstructor()->getParent();
2679    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2680    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2681      // C++11 [class.inhctor]p8:
2682      //   Each expression in the expression-list is of the form
2683      //   static_cast<T&&>(p), where p is the name of the corresponding
2684      //   constructor parameter and T is the declared type of p.
2685      SmallVector<Expr*, 16> Args;
2686      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2687        ParmVarDecl *PD = Constructor->getParamDecl(I);
2688        ExprResult ArgExpr =
2689            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2690                                     VK_LValue, SourceLocation());
2691        if (ArgExpr.isInvalid())
2692          return true;
2693        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2694      }
2695
2696      InitializationKind InitKind = InitializationKind::CreateDirect(
2697          Constructor->getLocation(), SourceLocation(), SourceLocation());
2698      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2699                                     Args.data(), Args.size());
2700      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2701      break;
2702    }
2703  }
2704  // Fall through.
2705  case IIK_Default: {
2706    InitializationKind InitKind
2707      = InitializationKind::CreateDefault(Constructor->getLocation());
2708    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2709    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2710    break;
2711  }
2712
2713  case IIK_Move:
2714  case IIK_Copy: {
2715    bool Moving = ImplicitInitKind == IIK_Move;
2716    ParmVarDecl *Param = Constructor->getParamDecl(0);
2717    QualType ParamType = Param->getType().getNonReferenceType();
2718
2719    Expr *CopyCtorArg =
2720      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2721                          SourceLocation(), Param, false,
2722                          Constructor->getLocation(), ParamType,
2723                          VK_LValue, 0);
2724
2725    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2726
2727    // Cast to the base class to avoid ambiguities.
2728    QualType ArgTy =
2729      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2730                                       ParamType.getQualifiers());
2731
2732    if (Moving) {
2733      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2734    }
2735
2736    CXXCastPath BasePath;
2737    BasePath.push_back(BaseSpec);
2738    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2739                                            CK_UncheckedDerivedToBase,
2740                                            Moving ? VK_XValue : VK_LValue,
2741                                            &BasePath).take();
2742
2743    InitializationKind InitKind
2744      = InitializationKind::CreateDirect(Constructor->getLocation(),
2745                                         SourceLocation(), SourceLocation());
2746    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2747                                   &CopyCtorArg, 1);
2748    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2749                               MultiExprArg(&CopyCtorArg, 1));
2750    break;
2751  }
2752  }
2753
2754  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2755  if (BaseInit.isInvalid())
2756    return true;
2757
2758  CXXBaseInit =
2759    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2760               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2761                                                        SourceLocation()),
2762                                             BaseSpec->isVirtual(),
2763                                             SourceLocation(),
2764                                             BaseInit.takeAs<Expr>(),
2765                                             SourceLocation(),
2766                                             SourceLocation());
2767
2768  return false;
2769}
2770
2771static bool RefersToRValueRef(Expr *MemRef) {
2772  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2773  return Referenced->getType()->isRValueReferenceType();
2774}
2775
2776static bool
2777BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2778                               ImplicitInitializerKind ImplicitInitKind,
2779                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2780                               CXXCtorInitializer *&CXXMemberInit) {
2781  if (Field->isInvalidDecl())
2782    return true;
2783
2784  SourceLocation Loc = Constructor->getLocation();
2785
2786  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2787    bool Moving = ImplicitInitKind == IIK_Move;
2788    ParmVarDecl *Param = Constructor->getParamDecl(0);
2789    QualType ParamType = Param->getType().getNonReferenceType();
2790
2791    // Suppress copying zero-width bitfields.
2792    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2793      return false;
2794
2795    Expr *MemberExprBase =
2796      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2797                          SourceLocation(), Param, false,
2798                          Loc, ParamType, VK_LValue, 0);
2799
2800    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2801
2802    if (Moving) {
2803      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2804    }
2805
2806    // Build a reference to this field within the parameter.
2807    CXXScopeSpec SS;
2808    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2809                              Sema::LookupMemberName);
2810    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2811                                  : cast<ValueDecl>(Field), AS_public);
2812    MemberLookup.resolveKind();
2813    ExprResult CtorArg
2814      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2815                                         ParamType, Loc,
2816                                         /*IsArrow=*/false,
2817                                         SS,
2818                                         /*TemplateKWLoc=*/SourceLocation(),
2819                                         /*FirstQualifierInScope=*/0,
2820                                         MemberLookup,
2821                                         /*TemplateArgs=*/0);
2822    if (CtorArg.isInvalid())
2823      return true;
2824
2825    // C++11 [class.copy]p15:
2826    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2827    //     with static_cast<T&&>(x.m);
2828    if (RefersToRValueRef(CtorArg.get())) {
2829      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2830    }
2831
2832    // When the field we are copying is an array, create index variables for
2833    // each dimension of the array. We use these index variables to subscript
2834    // the source array, and other clients (e.g., CodeGen) will perform the
2835    // necessary iteration with these index variables.
2836    SmallVector<VarDecl *, 4> IndexVariables;
2837    QualType BaseType = Field->getType();
2838    QualType SizeType = SemaRef.Context.getSizeType();
2839    bool InitializingArray = false;
2840    while (const ConstantArrayType *Array
2841                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2842      InitializingArray = true;
2843      // Create the iteration variable for this array index.
2844      IdentifierInfo *IterationVarName = 0;
2845      {
2846        SmallString<8> Str;
2847        llvm::raw_svector_ostream OS(Str);
2848        OS << "__i" << IndexVariables.size();
2849        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2850      }
2851      VarDecl *IterationVar
2852        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2853                          IterationVarName, SizeType,
2854                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2855                          SC_None);
2856      IndexVariables.push_back(IterationVar);
2857
2858      // Create a reference to the iteration variable.
2859      ExprResult IterationVarRef
2860        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2861      assert(!IterationVarRef.isInvalid() &&
2862             "Reference to invented variable cannot fail!");
2863      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2864      assert(!IterationVarRef.isInvalid() &&
2865             "Conversion of invented variable cannot fail!");
2866
2867      // Subscript the array with this iteration variable.
2868      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2869                                                        IterationVarRef.take(),
2870                                                        Loc);
2871      if (CtorArg.isInvalid())
2872        return true;
2873
2874      BaseType = Array->getElementType();
2875    }
2876
2877    // The array subscript expression is an lvalue, which is wrong for moving.
2878    if (Moving && InitializingArray)
2879      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2880
2881    // Construct the entity that we will be initializing. For an array, this
2882    // will be first element in the array, which may require several levels
2883    // of array-subscript entities.
2884    SmallVector<InitializedEntity, 4> Entities;
2885    Entities.reserve(1 + IndexVariables.size());
2886    if (Indirect)
2887      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2888    else
2889      Entities.push_back(InitializedEntity::InitializeMember(Field));
2890    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2891      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2892                                                              0,
2893                                                              Entities.back()));
2894
2895    // Direct-initialize to use the copy constructor.
2896    InitializationKind InitKind =
2897      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2898
2899    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2900    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2901                                   &CtorArgE, 1);
2902
2903    ExprResult MemberInit
2904      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2905                        MultiExprArg(&CtorArgE, 1));
2906    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2907    if (MemberInit.isInvalid())
2908      return true;
2909
2910    if (Indirect) {
2911      assert(IndexVariables.size() == 0 &&
2912             "Indirect field improperly initialized");
2913      CXXMemberInit
2914        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2915                                                   Loc, Loc,
2916                                                   MemberInit.takeAs<Expr>(),
2917                                                   Loc);
2918    } else
2919      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2920                                                 Loc, MemberInit.takeAs<Expr>(),
2921                                                 Loc,
2922                                                 IndexVariables.data(),
2923                                                 IndexVariables.size());
2924    return false;
2925  }
2926
2927  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2928         "Unhandled implicit init kind!");
2929
2930  QualType FieldBaseElementType =
2931    SemaRef.Context.getBaseElementType(Field->getType());
2932
2933  if (FieldBaseElementType->isRecordType()) {
2934    InitializedEntity InitEntity
2935      = Indirect? InitializedEntity::InitializeMember(Indirect)
2936                : InitializedEntity::InitializeMember(Field);
2937    InitializationKind InitKind =
2938      InitializationKind::CreateDefault(Loc);
2939
2940    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2941    ExprResult MemberInit =
2942      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2943
2944    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2945    if (MemberInit.isInvalid())
2946      return true;
2947
2948    if (Indirect)
2949      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2950                                                               Indirect, Loc,
2951                                                               Loc,
2952                                                               MemberInit.get(),
2953                                                               Loc);
2954    else
2955      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2956                                                               Field, Loc, Loc,
2957                                                               MemberInit.get(),
2958                                                               Loc);
2959    return false;
2960  }
2961
2962  if (!Field->getParent()->isUnion()) {
2963    if (FieldBaseElementType->isReferenceType()) {
2964      SemaRef.Diag(Constructor->getLocation(),
2965                   diag::err_uninitialized_member_in_ctor)
2966      << (int)Constructor->isImplicit()
2967      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2968      << 0 << Field->getDeclName();
2969      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2970      return true;
2971    }
2972
2973    if (FieldBaseElementType.isConstQualified()) {
2974      SemaRef.Diag(Constructor->getLocation(),
2975                   diag::err_uninitialized_member_in_ctor)
2976      << (int)Constructor->isImplicit()
2977      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2978      << 1 << Field->getDeclName();
2979      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2980      return true;
2981    }
2982  }
2983
2984  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2985      FieldBaseElementType->isObjCRetainableType() &&
2986      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2987      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2988    // ARC:
2989    //   Default-initialize Objective-C pointers to NULL.
2990    CXXMemberInit
2991      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2992                                                 Loc, Loc,
2993                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2994                                                 Loc);
2995    return false;
2996  }
2997
2998  // Nothing to initialize.
2999  CXXMemberInit = 0;
3000  return false;
3001}
3002
3003namespace {
3004struct BaseAndFieldInfo {
3005  Sema &S;
3006  CXXConstructorDecl *Ctor;
3007  bool AnyErrorsInInits;
3008  ImplicitInitializerKind IIK;
3009  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3010  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3011
3012  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3013    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3014    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3015    if (Generated && Ctor->isCopyConstructor())
3016      IIK = IIK_Copy;
3017    else if (Generated && Ctor->isMoveConstructor())
3018      IIK = IIK_Move;
3019    else if (Ctor->getInheritedConstructor())
3020      IIK = IIK_Inherit;
3021    else
3022      IIK = IIK_Default;
3023  }
3024
3025  bool isImplicitCopyOrMove() const {
3026    switch (IIK) {
3027    case IIK_Copy:
3028    case IIK_Move:
3029      return true;
3030
3031    case IIK_Default:
3032    case IIK_Inherit:
3033      return false;
3034    }
3035
3036    llvm_unreachable("Invalid ImplicitInitializerKind!");
3037  }
3038
3039  bool addFieldInitializer(CXXCtorInitializer *Init) {
3040    AllToInit.push_back(Init);
3041
3042    // Check whether this initializer makes the field "used".
3043    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3044      S.UnusedPrivateFields.remove(Init->getAnyMember());
3045
3046    return false;
3047  }
3048};
3049}
3050
3051/// \brief Determine whether the given indirect field declaration is somewhere
3052/// within an anonymous union.
3053static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3054  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3055                                      CEnd = F->chain_end();
3056       C != CEnd; ++C)
3057    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3058      if (Record->isUnion())
3059        return true;
3060
3061  return false;
3062}
3063
3064/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3065/// array type.
3066static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3067  if (T->isIncompleteArrayType())
3068    return true;
3069
3070  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3071    if (!ArrayT->getSize())
3072      return true;
3073
3074    T = ArrayT->getElementType();
3075  }
3076
3077  return false;
3078}
3079
3080static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3081                                    FieldDecl *Field,
3082                                    IndirectFieldDecl *Indirect = 0) {
3083
3084  // Overwhelmingly common case: we have a direct initializer for this field.
3085  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3086    return Info.addFieldInitializer(Init);
3087
3088  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3089  // has a brace-or-equal-initializer, the entity is initialized as specified
3090  // in [dcl.init].
3091  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3092    CXXCtorInitializer *Init;
3093    if (Indirect)
3094      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3095                                                      SourceLocation(),
3096                                                      SourceLocation(), 0,
3097                                                      SourceLocation());
3098    else
3099      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3100                                                      SourceLocation(),
3101                                                      SourceLocation(), 0,
3102                                                      SourceLocation());
3103    return Info.addFieldInitializer(Init);
3104  }
3105
3106  // Don't build an implicit initializer for union members if none was
3107  // explicitly specified.
3108  if (Field->getParent()->isUnion() ||
3109      (Indirect && isWithinAnonymousUnion(Indirect)))
3110    return false;
3111
3112  // Don't initialize incomplete or zero-length arrays.
3113  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3114    return false;
3115
3116  // Don't try to build an implicit initializer if there were semantic
3117  // errors in any of the initializers (and therefore we might be
3118  // missing some that the user actually wrote).
3119  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3120    return false;
3121
3122  CXXCtorInitializer *Init = 0;
3123  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3124                                     Indirect, Init))
3125    return true;
3126
3127  if (!Init)
3128    return false;
3129
3130  return Info.addFieldInitializer(Init);
3131}
3132
3133bool
3134Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3135                               CXXCtorInitializer *Initializer) {
3136  assert(Initializer->isDelegatingInitializer());
3137  Constructor->setNumCtorInitializers(1);
3138  CXXCtorInitializer **initializer =
3139    new (Context) CXXCtorInitializer*[1];
3140  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3141  Constructor->setCtorInitializers(initializer);
3142
3143  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3144    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3145    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3146  }
3147
3148  DelegatingCtorDecls.push_back(Constructor);
3149
3150  return false;
3151}
3152
3153bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3154                               ArrayRef<CXXCtorInitializer *> Initializers) {
3155  if (Constructor->isDependentContext()) {
3156    // Just store the initializers as written, they will be checked during
3157    // instantiation.
3158    if (!Initializers.empty()) {
3159      Constructor->setNumCtorInitializers(Initializers.size());
3160      CXXCtorInitializer **baseOrMemberInitializers =
3161        new (Context) CXXCtorInitializer*[Initializers.size()];
3162      memcpy(baseOrMemberInitializers, Initializers.data(),
3163             Initializers.size() * sizeof(CXXCtorInitializer*));
3164      Constructor->setCtorInitializers(baseOrMemberInitializers);
3165    }
3166
3167    // Let template instantiation know whether we had errors.
3168    if (AnyErrors)
3169      Constructor->setInvalidDecl();
3170
3171    return false;
3172  }
3173
3174  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3175
3176  // We need to build the initializer AST according to order of construction
3177  // and not what user specified in the Initializers list.
3178  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3179  if (!ClassDecl)
3180    return true;
3181
3182  bool HadError = false;
3183
3184  for (unsigned i = 0; i < Initializers.size(); i++) {
3185    CXXCtorInitializer *Member = Initializers[i];
3186
3187    if (Member->isBaseInitializer())
3188      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3189    else
3190      Info.AllBaseFields[Member->getAnyMember()] = Member;
3191  }
3192
3193  // Keep track of the direct virtual bases.
3194  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3195  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3196       E = ClassDecl->bases_end(); I != E; ++I) {
3197    if (I->isVirtual())
3198      DirectVBases.insert(I);
3199  }
3200
3201  // Push virtual bases before others.
3202  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3203       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3204
3205    if (CXXCtorInitializer *Value
3206        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3207      Info.AllToInit.push_back(Value);
3208    } else if (!AnyErrors) {
3209      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3210      CXXCtorInitializer *CXXBaseInit;
3211      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3212                                       VBase, IsInheritedVirtualBase,
3213                                       CXXBaseInit)) {
3214        HadError = true;
3215        continue;
3216      }
3217
3218      Info.AllToInit.push_back(CXXBaseInit);
3219    }
3220  }
3221
3222  // Non-virtual bases.
3223  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3224       E = ClassDecl->bases_end(); Base != E; ++Base) {
3225    // Virtuals are in the virtual base list and already constructed.
3226    if (Base->isVirtual())
3227      continue;
3228
3229    if (CXXCtorInitializer *Value
3230          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3231      Info.AllToInit.push_back(Value);
3232    } else if (!AnyErrors) {
3233      CXXCtorInitializer *CXXBaseInit;
3234      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3235                                       Base, /*IsInheritedVirtualBase=*/false,
3236                                       CXXBaseInit)) {
3237        HadError = true;
3238        continue;
3239      }
3240
3241      Info.AllToInit.push_back(CXXBaseInit);
3242    }
3243  }
3244
3245  // Fields.
3246  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3247                               MemEnd = ClassDecl->decls_end();
3248       Mem != MemEnd; ++Mem) {
3249    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3250      // C++ [class.bit]p2:
3251      //   A declaration for a bit-field that omits the identifier declares an
3252      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3253      //   initialized.
3254      if (F->isUnnamedBitfield())
3255        continue;
3256
3257      // If we're not generating the implicit copy/move constructor, then we'll
3258      // handle anonymous struct/union fields based on their individual
3259      // indirect fields.
3260      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3261        continue;
3262
3263      if (CollectFieldInitializer(*this, Info, F))
3264        HadError = true;
3265      continue;
3266    }
3267
3268    // Beyond this point, we only consider default initialization.
3269    if (Info.isImplicitCopyOrMove())
3270      continue;
3271
3272    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3273      if (F->getType()->isIncompleteArrayType()) {
3274        assert(ClassDecl->hasFlexibleArrayMember() &&
3275               "Incomplete array type is not valid");
3276        continue;
3277      }
3278
3279      // Initialize each field of an anonymous struct individually.
3280      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3281        HadError = true;
3282
3283      continue;
3284    }
3285  }
3286
3287  unsigned NumInitializers = Info.AllToInit.size();
3288  if (NumInitializers > 0) {
3289    Constructor->setNumCtorInitializers(NumInitializers);
3290    CXXCtorInitializer **baseOrMemberInitializers =
3291      new (Context) CXXCtorInitializer*[NumInitializers];
3292    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3293           NumInitializers * sizeof(CXXCtorInitializer*));
3294    Constructor->setCtorInitializers(baseOrMemberInitializers);
3295
3296    // Constructors implicitly reference the base and member
3297    // destructors.
3298    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3299                                           Constructor->getParent());
3300  }
3301
3302  return HadError;
3303}
3304
3305static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3306  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3307    const RecordDecl *RD = RT->getDecl();
3308    if (RD->isAnonymousStructOrUnion()) {
3309      for (RecordDecl::field_iterator Field = RD->field_begin(),
3310          E = RD->field_end(); Field != E; ++Field)
3311        PopulateKeysForFields(*Field, IdealInits);
3312      return;
3313    }
3314  }
3315  IdealInits.push_back(Field);
3316}
3317
3318static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3319  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3320}
3321
3322static void *GetKeyForMember(ASTContext &Context,
3323                             CXXCtorInitializer *Member) {
3324  if (!Member->isAnyMemberInitializer())
3325    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3326
3327  return Member->getAnyMember();
3328}
3329
3330static void DiagnoseBaseOrMemInitializerOrder(
3331    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3332    ArrayRef<CXXCtorInitializer *> Inits) {
3333  if (Constructor->getDeclContext()->isDependentContext())
3334    return;
3335
3336  // Don't check initializers order unless the warning is enabled at the
3337  // location of at least one initializer.
3338  bool ShouldCheckOrder = false;
3339  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3340    CXXCtorInitializer *Init = Inits[InitIndex];
3341    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3342                                         Init->getSourceLocation())
3343          != DiagnosticsEngine::Ignored) {
3344      ShouldCheckOrder = true;
3345      break;
3346    }
3347  }
3348  if (!ShouldCheckOrder)
3349    return;
3350
3351  // Build the list of bases and members in the order that they'll
3352  // actually be initialized.  The explicit initializers should be in
3353  // this same order but may be missing things.
3354  SmallVector<const void*, 32> IdealInitKeys;
3355
3356  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3357
3358  // 1. Virtual bases.
3359  for (CXXRecordDecl::base_class_const_iterator VBase =
3360       ClassDecl->vbases_begin(),
3361       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3362    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3363
3364  // 2. Non-virtual bases.
3365  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3366       E = ClassDecl->bases_end(); Base != E; ++Base) {
3367    if (Base->isVirtual())
3368      continue;
3369    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3370  }
3371
3372  // 3. Direct fields.
3373  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3374       E = ClassDecl->field_end(); Field != E; ++Field) {
3375    if (Field->isUnnamedBitfield())
3376      continue;
3377
3378    PopulateKeysForFields(*Field, IdealInitKeys);
3379  }
3380
3381  unsigned NumIdealInits = IdealInitKeys.size();
3382  unsigned IdealIndex = 0;
3383
3384  CXXCtorInitializer *PrevInit = 0;
3385  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3386    CXXCtorInitializer *Init = Inits[InitIndex];
3387    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3388
3389    // Scan forward to try to find this initializer in the idealized
3390    // initializers list.
3391    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3392      if (InitKey == IdealInitKeys[IdealIndex])
3393        break;
3394
3395    // If we didn't find this initializer, it must be because we
3396    // scanned past it on a previous iteration.  That can only
3397    // happen if we're out of order;  emit a warning.
3398    if (IdealIndex == NumIdealInits && PrevInit) {
3399      Sema::SemaDiagnosticBuilder D =
3400        SemaRef.Diag(PrevInit->getSourceLocation(),
3401                     diag::warn_initializer_out_of_order);
3402
3403      if (PrevInit->isAnyMemberInitializer())
3404        D << 0 << PrevInit->getAnyMember()->getDeclName();
3405      else
3406        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3407
3408      if (Init->isAnyMemberInitializer())
3409        D << 0 << Init->getAnyMember()->getDeclName();
3410      else
3411        D << 1 << Init->getTypeSourceInfo()->getType();
3412
3413      // Move back to the initializer's location in the ideal list.
3414      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3415        if (InitKey == IdealInitKeys[IdealIndex])
3416          break;
3417
3418      assert(IdealIndex != NumIdealInits &&
3419             "initializer not found in initializer list");
3420    }
3421
3422    PrevInit = Init;
3423  }
3424}
3425
3426namespace {
3427bool CheckRedundantInit(Sema &S,
3428                        CXXCtorInitializer *Init,
3429                        CXXCtorInitializer *&PrevInit) {
3430  if (!PrevInit) {
3431    PrevInit = Init;
3432    return false;
3433  }
3434
3435  if (FieldDecl *Field = Init->getAnyMember())
3436    S.Diag(Init->getSourceLocation(),
3437           diag::err_multiple_mem_initialization)
3438      << Field->getDeclName()
3439      << Init->getSourceRange();
3440  else {
3441    const Type *BaseClass = Init->getBaseClass();
3442    assert(BaseClass && "neither field nor base");
3443    S.Diag(Init->getSourceLocation(),
3444           diag::err_multiple_base_initialization)
3445      << QualType(BaseClass, 0)
3446      << Init->getSourceRange();
3447  }
3448  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3449    << 0 << PrevInit->getSourceRange();
3450
3451  return true;
3452}
3453
3454typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3455typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3456
3457bool CheckRedundantUnionInit(Sema &S,
3458                             CXXCtorInitializer *Init,
3459                             RedundantUnionMap &Unions) {
3460  FieldDecl *Field = Init->getAnyMember();
3461  RecordDecl *Parent = Field->getParent();
3462  NamedDecl *Child = Field;
3463
3464  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3465    if (Parent->isUnion()) {
3466      UnionEntry &En = Unions[Parent];
3467      if (En.first && En.first != Child) {
3468        S.Diag(Init->getSourceLocation(),
3469               diag::err_multiple_mem_union_initialization)
3470          << Field->getDeclName()
3471          << Init->getSourceRange();
3472        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3473          << 0 << En.second->getSourceRange();
3474        return true;
3475      }
3476      if (!En.first) {
3477        En.first = Child;
3478        En.second = Init;
3479      }
3480      if (!Parent->isAnonymousStructOrUnion())
3481        return false;
3482    }
3483
3484    Child = Parent;
3485    Parent = cast<RecordDecl>(Parent->getDeclContext());
3486  }
3487
3488  return false;
3489}
3490}
3491
3492/// ActOnMemInitializers - Handle the member initializers for a constructor.
3493void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3494                                SourceLocation ColonLoc,
3495                                ArrayRef<CXXCtorInitializer*> MemInits,
3496                                bool AnyErrors) {
3497  if (!ConstructorDecl)
3498    return;
3499
3500  AdjustDeclIfTemplate(ConstructorDecl);
3501
3502  CXXConstructorDecl *Constructor
3503    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3504
3505  if (!Constructor) {
3506    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3507    return;
3508  }
3509
3510  // Mapping for the duplicate initializers check.
3511  // For member initializers, this is keyed with a FieldDecl*.
3512  // For base initializers, this is keyed with a Type*.
3513  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3514
3515  // Mapping for the inconsistent anonymous-union initializers check.
3516  RedundantUnionMap MemberUnions;
3517
3518  bool HadError = false;
3519  for (unsigned i = 0; i < MemInits.size(); i++) {
3520    CXXCtorInitializer *Init = MemInits[i];
3521
3522    // Set the source order index.
3523    Init->setSourceOrder(i);
3524
3525    if (Init->isAnyMemberInitializer()) {
3526      FieldDecl *Field = Init->getAnyMember();
3527      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3528          CheckRedundantUnionInit(*this, Init, MemberUnions))
3529        HadError = true;
3530    } else if (Init->isBaseInitializer()) {
3531      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3532      if (CheckRedundantInit(*this, Init, Members[Key]))
3533        HadError = true;
3534    } else {
3535      assert(Init->isDelegatingInitializer());
3536      // This must be the only initializer
3537      if (MemInits.size() != 1) {
3538        Diag(Init->getSourceLocation(),
3539             diag::err_delegating_initializer_alone)
3540          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3541        // We will treat this as being the only initializer.
3542      }
3543      SetDelegatingInitializer(Constructor, MemInits[i]);
3544      // Return immediately as the initializer is set.
3545      return;
3546    }
3547  }
3548
3549  if (HadError)
3550    return;
3551
3552  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3553
3554  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3555}
3556
3557void
3558Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3559                                             CXXRecordDecl *ClassDecl) {
3560  // Ignore dependent contexts. Also ignore unions, since their members never
3561  // have destructors implicitly called.
3562  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3563    return;
3564
3565  // FIXME: all the access-control diagnostics are positioned on the
3566  // field/base declaration.  That's probably good; that said, the
3567  // user might reasonably want to know why the destructor is being
3568  // emitted, and we currently don't say.
3569
3570  // Non-static data members.
3571  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3572       E = ClassDecl->field_end(); I != E; ++I) {
3573    FieldDecl *Field = *I;
3574    if (Field->isInvalidDecl())
3575      continue;
3576
3577    // Don't destroy incomplete or zero-length arrays.
3578    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3579      continue;
3580
3581    QualType FieldType = Context.getBaseElementType(Field->getType());
3582
3583    const RecordType* RT = FieldType->getAs<RecordType>();
3584    if (!RT)
3585      continue;
3586
3587    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3588    if (FieldClassDecl->isInvalidDecl())
3589      continue;
3590    if (FieldClassDecl->hasIrrelevantDestructor())
3591      continue;
3592    // The destructor for an implicit anonymous union member is never invoked.
3593    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3594      continue;
3595
3596    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3597    assert(Dtor && "No dtor found for FieldClassDecl!");
3598    CheckDestructorAccess(Field->getLocation(), Dtor,
3599                          PDiag(diag::err_access_dtor_field)
3600                            << Field->getDeclName()
3601                            << FieldType);
3602
3603    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3604    DiagnoseUseOfDecl(Dtor, Location);
3605  }
3606
3607  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3608
3609  // Bases.
3610  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3611       E = ClassDecl->bases_end(); Base != E; ++Base) {
3612    // Bases are always records in a well-formed non-dependent class.
3613    const RecordType *RT = Base->getType()->getAs<RecordType>();
3614
3615    // Remember direct virtual bases.
3616    if (Base->isVirtual())
3617      DirectVirtualBases.insert(RT);
3618
3619    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3620    // If our base class is invalid, we probably can't get its dtor anyway.
3621    if (BaseClassDecl->isInvalidDecl())
3622      continue;
3623    if (BaseClassDecl->hasIrrelevantDestructor())
3624      continue;
3625
3626    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3627    assert(Dtor && "No dtor found for BaseClassDecl!");
3628
3629    // FIXME: caret should be on the start of the class name
3630    CheckDestructorAccess(Base->getLocStart(), Dtor,
3631                          PDiag(diag::err_access_dtor_base)
3632                            << Base->getType()
3633                            << Base->getSourceRange(),
3634                          Context.getTypeDeclType(ClassDecl));
3635
3636    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3637    DiagnoseUseOfDecl(Dtor, Location);
3638  }
3639
3640  // Virtual bases.
3641  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3642       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3643
3644    // Bases are always records in a well-formed non-dependent class.
3645    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3646
3647    // Ignore direct virtual bases.
3648    if (DirectVirtualBases.count(RT))
3649      continue;
3650
3651    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3652    // If our base class is invalid, we probably can't get its dtor anyway.
3653    if (BaseClassDecl->isInvalidDecl())
3654      continue;
3655    if (BaseClassDecl->hasIrrelevantDestructor())
3656      continue;
3657
3658    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3659    assert(Dtor && "No dtor found for BaseClassDecl!");
3660    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3661                          PDiag(diag::err_access_dtor_vbase)
3662                            << VBase->getType(),
3663                          Context.getTypeDeclType(ClassDecl));
3664
3665    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3666    DiagnoseUseOfDecl(Dtor, Location);
3667  }
3668}
3669
3670void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3671  if (!CDtorDecl)
3672    return;
3673
3674  if (CXXConstructorDecl *Constructor
3675      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3676    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3677}
3678
3679bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3680                                  unsigned DiagID, AbstractDiagSelID SelID) {
3681  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3682    unsigned DiagID;
3683    AbstractDiagSelID SelID;
3684
3685  public:
3686    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3687      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3688
3689    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3690      if (Suppressed) return;
3691      if (SelID == -1)
3692        S.Diag(Loc, DiagID) << T;
3693      else
3694        S.Diag(Loc, DiagID) << SelID << T;
3695    }
3696  } Diagnoser(DiagID, SelID);
3697
3698  return RequireNonAbstractType(Loc, T, Diagnoser);
3699}
3700
3701bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3702                                  TypeDiagnoser &Diagnoser) {
3703  if (!getLangOpts().CPlusPlus)
3704    return false;
3705
3706  if (const ArrayType *AT = Context.getAsArrayType(T))
3707    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3708
3709  if (const PointerType *PT = T->getAs<PointerType>()) {
3710    // Find the innermost pointer type.
3711    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3712      PT = T;
3713
3714    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3715      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3716  }
3717
3718  const RecordType *RT = T->getAs<RecordType>();
3719  if (!RT)
3720    return false;
3721
3722  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3723
3724  // We can't answer whether something is abstract until it has a
3725  // definition.  If it's currently being defined, we'll walk back
3726  // over all the declarations when we have a full definition.
3727  const CXXRecordDecl *Def = RD->getDefinition();
3728  if (!Def || Def->isBeingDefined())
3729    return false;
3730
3731  if (!RD->isAbstract())
3732    return false;
3733
3734  Diagnoser.diagnose(*this, Loc, T);
3735  DiagnoseAbstractType(RD);
3736
3737  return true;
3738}
3739
3740void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3741  // Check if we've already emitted the list of pure virtual functions
3742  // for this class.
3743  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3744    return;
3745
3746  CXXFinalOverriderMap FinalOverriders;
3747  RD->getFinalOverriders(FinalOverriders);
3748
3749  // Keep a set of seen pure methods so we won't diagnose the same method
3750  // more than once.
3751  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3752
3753  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3754                                   MEnd = FinalOverriders.end();
3755       M != MEnd;
3756       ++M) {
3757    for (OverridingMethods::iterator SO = M->second.begin(),
3758                                  SOEnd = M->second.end();
3759         SO != SOEnd; ++SO) {
3760      // C++ [class.abstract]p4:
3761      //   A class is abstract if it contains or inherits at least one
3762      //   pure virtual function for which the final overrider is pure
3763      //   virtual.
3764
3765      //
3766      if (SO->second.size() != 1)
3767        continue;
3768
3769      if (!SO->second.front().Method->isPure())
3770        continue;
3771
3772      if (!SeenPureMethods.insert(SO->second.front().Method))
3773        continue;
3774
3775      Diag(SO->second.front().Method->getLocation(),
3776           diag::note_pure_virtual_function)
3777        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3778    }
3779  }
3780
3781  if (!PureVirtualClassDiagSet)
3782    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3783  PureVirtualClassDiagSet->insert(RD);
3784}
3785
3786namespace {
3787struct AbstractUsageInfo {
3788  Sema &S;
3789  CXXRecordDecl *Record;
3790  CanQualType AbstractType;
3791  bool Invalid;
3792
3793  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3794    : S(S), Record(Record),
3795      AbstractType(S.Context.getCanonicalType(
3796                   S.Context.getTypeDeclType(Record))),
3797      Invalid(false) {}
3798
3799  void DiagnoseAbstractType() {
3800    if (Invalid) return;
3801    S.DiagnoseAbstractType(Record);
3802    Invalid = true;
3803  }
3804
3805  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3806};
3807
3808struct CheckAbstractUsage {
3809  AbstractUsageInfo &Info;
3810  const NamedDecl *Ctx;
3811
3812  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3813    : Info(Info), Ctx(Ctx) {}
3814
3815  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3816    switch (TL.getTypeLocClass()) {
3817#define ABSTRACT_TYPELOC(CLASS, PARENT)
3818#define TYPELOC(CLASS, PARENT) \
3819    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3820#include "clang/AST/TypeLocNodes.def"
3821    }
3822  }
3823
3824  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3825    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3826    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3827      if (!TL.getArg(I))
3828        continue;
3829
3830      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3831      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3832    }
3833  }
3834
3835  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3836    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3837  }
3838
3839  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3840    // Visit the type parameters from a permissive context.
3841    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3842      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3843      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3844        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3845          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3846      // TODO: other template argument types?
3847    }
3848  }
3849
3850  // Visit pointee types from a permissive context.
3851#define CheckPolymorphic(Type) \
3852  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3853    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3854  }
3855  CheckPolymorphic(PointerTypeLoc)
3856  CheckPolymorphic(ReferenceTypeLoc)
3857  CheckPolymorphic(MemberPointerTypeLoc)
3858  CheckPolymorphic(BlockPointerTypeLoc)
3859  CheckPolymorphic(AtomicTypeLoc)
3860
3861  /// Handle all the types we haven't given a more specific
3862  /// implementation for above.
3863  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3864    // Every other kind of type that we haven't called out already
3865    // that has an inner type is either (1) sugar or (2) contains that
3866    // inner type in some way as a subobject.
3867    if (TypeLoc Next = TL.getNextTypeLoc())
3868      return Visit(Next, Sel);
3869
3870    // If there's no inner type and we're in a permissive context,
3871    // don't diagnose.
3872    if (Sel == Sema::AbstractNone) return;
3873
3874    // Check whether the type matches the abstract type.
3875    QualType T = TL.getType();
3876    if (T->isArrayType()) {
3877      Sel = Sema::AbstractArrayType;
3878      T = Info.S.Context.getBaseElementType(T);
3879    }
3880    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3881    if (CT != Info.AbstractType) return;
3882
3883    // It matched; do some magic.
3884    if (Sel == Sema::AbstractArrayType) {
3885      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3886        << T << TL.getSourceRange();
3887    } else {
3888      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3889        << Sel << T << TL.getSourceRange();
3890    }
3891    Info.DiagnoseAbstractType();
3892  }
3893};
3894
3895void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3896                                  Sema::AbstractDiagSelID Sel) {
3897  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3898}
3899
3900}
3901
3902/// Check for invalid uses of an abstract type in a method declaration.
3903static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3904                                    CXXMethodDecl *MD) {
3905  // No need to do the check on definitions, which require that
3906  // the return/param types be complete.
3907  if (MD->doesThisDeclarationHaveABody())
3908    return;
3909
3910  // For safety's sake, just ignore it if we don't have type source
3911  // information.  This should never happen for non-implicit methods,
3912  // but...
3913  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3914    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3915}
3916
3917/// Check for invalid uses of an abstract type within a class definition.
3918static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3919                                    CXXRecordDecl *RD) {
3920  for (CXXRecordDecl::decl_iterator
3921         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3922    Decl *D = *I;
3923    if (D->isImplicit()) continue;
3924
3925    // Methods and method templates.
3926    if (isa<CXXMethodDecl>(D)) {
3927      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3928    } else if (isa<FunctionTemplateDecl>(D)) {
3929      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3930      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3931
3932    // Fields and static variables.
3933    } else if (isa<FieldDecl>(D)) {
3934      FieldDecl *FD = cast<FieldDecl>(D);
3935      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3936        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3937    } else if (isa<VarDecl>(D)) {
3938      VarDecl *VD = cast<VarDecl>(D);
3939      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3940        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3941
3942    // Nested classes and class templates.
3943    } else if (isa<CXXRecordDecl>(D)) {
3944      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3945    } else if (isa<ClassTemplateDecl>(D)) {
3946      CheckAbstractClassUsage(Info,
3947                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3948    }
3949  }
3950}
3951
3952/// \brief Perform semantic checks on a class definition that has been
3953/// completing, introducing implicitly-declared members, checking for
3954/// abstract types, etc.
3955void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3956  if (!Record)
3957    return;
3958
3959  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3960    AbstractUsageInfo Info(*this, Record);
3961    CheckAbstractClassUsage(Info, Record);
3962  }
3963
3964  // If this is not an aggregate type and has no user-declared constructor,
3965  // complain about any non-static data members of reference or const scalar
3966  // type, since they will never get initializers.
3967  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3968      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3969      !Record->isLambda()) {
3970    bool Complained = false;
3971    for (RecordDecl::field_iterator F = Record->field_begin(),
3972                                 FEnd = Record->field_end();
3973         F != FEnd; ++F) {
3974      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3975        continue;
3976
3977      if (F->getType()->isReferenceType() ||
3978          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3979        if (!Complained) {
3980          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3981            << Record->getTagKind() << Record;
3982          Complained = true;
3983        }
3984
3985        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3986          << F->getType()->isReferenceType()
3987          << F->getDeclName();
3988      }
3989    }
3990  }
3991
3992  if (Record->isDynamicClass() && !Record->isDependentType())
3993    DynamicClasses.push_back(Record);
3994
3995  if (Record->getIdentifier()) {
3996    // C++ [class.mem]p13:
3997    //   If T is the name of a class, then each of the following shall have a
3998    //   name different from T:
3999    //     - every member of every anonymous union that is a member of class T.
4000    //
4001    // C++ [class.mem]p14:
4002    //   In addition, if class T has a user-declared constructor (12.1), every
4003    //   non-static data member of class T shall have a name different from T.
4004    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4005    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4006         ++I) {
4007      NamedDecl *D = *I;
4008      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4009          isa<IndirectFieldDecl>(D)) {
4010        Diag(D->getLocation(), diag::err_member_name_of_class)
4011          << D->getDeclName();
4012        break;
4013      }
4014    }
4015  }
4016
4017  // Warn if the class has virtual methods but non-virtual public destructor.
4018  if (Record->isPolymorphic() && !Record->isDependentType()) {
4019    CXXDestructorDecl *dtor = Record->getDestructor();
4020    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4021      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4022           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4023  }
4024
4025  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4026    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4027    DiagnoseAbstractType(Record);
4028  }
4029
4030  if (!Record->isDependentType()) {
4031    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4032                                     MEnd = Record->method_end();
4033         M != MEnd; ++M) {
4034      // See if a method overloads virtual methods in a base
4035      // class without overriding any.
4036      if (!M->isStatic())
4037        DiagnoseHiddenVirtualMethods(Record, *M);
4038
4039      // Check whether the explicitly-defaulted special members are valid.
4040      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4041        CheckExplicitlyDefaultedSpecialMember(*M);
4042
4043      // For an explicitly defaulted or deleted special member, we defer
4044      // determining triviality until the class is complete. That time is now!
4045      if (!M->isImplicit() && !M->isUserProvided()) {
4046        CXXSpecialMember CSM = getSpecialMember(*M);
4047        if (CSM != CXXInvalid) {
4048          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4049
4050          // Inform the class that we've finished declaring this member.
4051          Record->finishedDefaultedOrDeletedMember(*M);
4052        }
4053      }
4054    }
4055  }
4056
4057  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4058  // function that is not a constructor declares that member function to be
4059  // const. [...] The class of which that function is a member shall be
4060  // a literal type.
4061  //
4062  // If the class has virtual bases, any constexpr members will already have
4063  // been diagnosed by the checks performed on the member declaration, so
4064  // suppress this (less useful) diagnostic.
4065  //
4066  // We delay this until we know whether an explicitly-defaulted (or deleted)
4067  // destructor for the class is trivial.
4068  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4069      !Record->isLiteral() && !Record->getNumVBases()) {
4070    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4071                                     MEnd = Record->method_end();
4072         M != MEnd; ++M) {
4073      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4074        switch (Record->getTemplateSpecializationKind()) {
4075        case TSK_ImplicitInstantiation:
4076        case TSK_ExplicitInstantiationDeclaration:
4077        case TSK_ExplicitInstantiationDefinition:
4078          // If a template instantiates to a non-literal type, but its members
4079          // instantiate to constexpr functions, the template is technically
4080          // ill-formed, but we allow it for sanity.
4081          continue;
4082
4083        case TSK_Undeclared:
4084        case TSK_ExplicitSpecialization:
4085          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4086                             diag::err_constexpr_method_non_literal);
4087          break;
4088        }
4089
4090        // Only produce one error per class.
4091        break;
4092      }
4093    }
4094  }
4095
4096  // Declare inheriting constructors. We do this eagerly here because:
4097  // - The standard requires an eager diagnostic for conflicting inheriting
4098  //   constructors from different classes.
4099  // - The lazy declaration of the other implicit constructors is so as to not
4100  //   waste space and performance on classes that are not meant to be
4101  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4102  //   have inheriting constructors.
4103  DeclareInheritingConstructors(Record);
4104}
4105
4106/// Is the special member function which would be selected to perform the
4107/// specified operation on the specified class type a constexpr constructor?
4108static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4109                                     Sema::CXXSpecialMember CSM,
4110                                     bool ConstArg) {
4111  Sema::SpecialMemberOverloadResult *SMOR =
4112      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4113                            false, false, false, false);
4114  if (!SMOR || !SMOR->getMethod())
4115    // A constructor we wouldn't select can't be "involved in initializing"
4116    // anything.
4117    return true;
4118  return SMOR->getMethod()->isConstexpr();
4119}
4120
4121/// Determine whether the specified special member function would be constexpr
4122/// if it were implicitly defined.
4123static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4124                                              Sema::CXXSpecialMember CSM,
4125                                              bool ConstArg) {
4126  if (!S.getLangOpts().CPlusPlus11)
4127    return false;
4128
4129  // C++11 [dcl.constexpr]p4:
4130  // In the definition of a constexpr constructor [...]
4131  switch (CSM) {
4132  case Sema::CXXDefaultConstructor:
4133    // Since default constructor lookup is essentially trivial (and cannot
4134    // involve, for instance, template instantiation), we compute whether a
4135    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4136    //
4137    // This is important for performance; we need to know whether the default
4138    // constructor is constexpr to determine whether the type is a literal type.
4139    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4140
4141  case Sema::CXXCopyConstructor:
4142  case Sema::CXXMoveConstructor:
4143    // For copy or move constructors, we need to perform overload resolution.
4144    break;
4145
4146  case Sema::CXXCopyAssignment:
4147  case Sema::CXXMoveAssignment:
4148  case Sema::CXXDestructor:
4149  case Sema::CXXInvalid:
4150    return false;
4151  }
4152
4153  //   -- if the class is a non-empty union, or for each non-empty anonymous
4154  //      union member of a non-union class, exactly one non-static data member
4155  //      shall be initialized; [DR1359]
4156  //
4157  // If we squint, this is guaranteed, since exactly one non-static data member
4158  // will be initialized (if the constructor isn't deleted), we just don't know
4159  // which one.
4160  if (ClassDecl->isUnion())
4161    return true;
4162
4163  //   -- the class shall not have any virtual base classes;
4164  if (ClassDecl->getNumVBases())
4165    return false;
4166
4167  //   -- every constructor involved in initializing [...] base class
4168  //      sub-objects shall be a constexpr constructor;
4169  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4170                                       BEnd = ClassDecl->bases_end();
4171       B != BEnd; ++B) {
4172    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4173    if (!BaseType) continue;
4174
4175    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4176    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4177      return false;
4178  }
4179
4180  //   -- every constructor involved in initializing non-static data members
4181  //      [...] shall be a constexpr constructor;
4182  //   -- every non-static data member and base class sub-object shall be
4183  //      initialized
4184  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4185                               FEnd = ClassDecl->field_end();
4186       F != FEnd; ++F) {
4187    if (F->isInvalidDecl())
4188      continue;
4189    if (const RecordType *RecordTy =
4190            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4191      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4192      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4193        return false;
4194    }
4195  }
4196
4197  // All OK, it's constexpr!
4198  return true;
4199}
4200
4201static Sema::ImplicitExceptionSpecification
4202computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4203  switch (S.getSpecialMember(MD)) {
4204  case Sema::CXXDefaultConstructor:
4205    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4206  case Sema::CXXCopyConstructor:
4207    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4208  case Sema::CXXCopyAssignment:
4209    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4210  case Sema::CXXMoveConstructor:
4211    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4212  case Sema::CXXMoveAssignment:
4213    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4214  case Sema::CXXDestructor:
4215    return S.ComputeDefaultedDtorExceptionSpec(MD);
4216  case Sema::CXXInvalid:
4217    break;
4218  }
4219  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4220         "only special members have implicit exception specs");
4221  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4222}
4223
4224static void
4225updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4226                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4227  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4228  ExceptSpec.getEPI(EPI);
4229  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4230      S.Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI));
4231  FD->setType(QualType(NewFPT, 0));
4232}
4233
4234void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4235  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4236  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4237    return;
4238
4239  // Evaluate the exception specification.
4240  ImplicitExceptionSpecification ExceptSpec =
4241      computeImplicitExceptionSpec(*this, Loc, MD);
4242
4243  // Update the type of the special member to use it.
4244  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4245
4246  // A user-provided destructor can be defined outside the class. When that
4247  // happens, be sure to update the exception specification on both
4248  // declarations.
4249  const FunctionProtoType *CanonicalFPT =
4250    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4251  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4252    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4253                        CanonicalFPT, ExceptSpec);
4254}
4255
4256void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4257  CXXRecordDecl *RD = MD->getParent();
4258  CXXSpecialMember CSM = getSpecialMember(MD);
4259
4260  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4261         "not an explicitly-defaulted special member");
4262
4263  // Whether this was the first-declared instance of the constructor.
4264  // This affects whether we implicitly add an exception spec and constexpr.
4265  bool First = MD == MD->getCanonicalDecl();
4266
4267  bool HadError = false;
4268
4269  // C++11 [dcl.fct.def.default]p1:
4270  //   A function that is explicitly defaulted shall
4271  //     -- be a special member function (checked elsewhere),
4272  //     -- have the same type (except for ref-qualifiers, and except that a
4273  //        copy operation can take a non-const reference) as an implicit
4274  //        declaration, and
4275  //     -- not have default arguments.
4276  unsigned ExpectedParams = 1;
4277  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4278    ExpectedParams = 0;
4279  if (MD->getNumParams() != ExpectedParams) {
4280    // This also checks for default arguments: a copy or move constructor with a
4281    // default argument is classified as a default constructor, and assignment
4282    // operations and destructors can't have default arguments.
4283    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4284      << CSM << MD->getSourceRange();
4285    HadError = true;
4286  } else if (MD->isVariadic()) {
4287    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4288      << CSM << MD->getSourceRange();
4289    HadError = true;
4290  }
4291
4292  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4293
4294  bool CanHaveConstParam = false;
4295  if (CSM == CXXCopyConstructor)
4296    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4297  else if (CSM == CXXCopyAssignment)
4298    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4299
4300  QualType ReturnType = Context.VoidTy;
4301  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4302    // Check for return type matching.
4303    ReturnType = Type->getResultType();
4304    QualType ExpectedReturnType =
4305        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4306    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4307      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4308        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4309      HadError = true;
4310    }
4311
4312    // A defaulted special member cannot have cv-qualifiers.
4313    if (Type->getTypeQuals()) {
4314      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4315        << (CSM == CXXMoveAssignment);
4316      HadError = true;
4317    }
4318  }
4319
4320  // Check for parameter type matching.
4321  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4322  bool HasConstParam = false;
4323  if (ExpectedParams && ArgType->isReferenceType()) {
4324    // Argument must be reference to possibly-const T.
4325    QualType ReferentType = ArgType->getPointeeType();
4326    HasConstParam = ReferentType.isConstQualified();
4327
4328    if (ReferentType.isVolatileQualified()) {
4329      Diag(MD->getLocation(),
4330           diag::err_defaulted_special_member_volatile_param) << CSM;
4331      HadError = true;
4332    }
4333
4334    if (HasConstParam && !CanHaveConstParam) {
4335      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4336        Diag(MD->getLocation(),
4337             diag::err_defaulted_special_member_copy_const_param)
4338          << (CSM == CXXCopyAssignment);
4339        // FIXME: Explain why this special member can't be const.
4340      } else {
4341        Diag(MD->getLocation(),
4342             diag::err_defaulted_special_member_move_const_param)
4343          << (CSM == CXXMoveAssignment);
4344      }
4345      HadError = true;
4346    }
4347  } else if (ExpectedParams) {
4348    // A copy assignment operator can take its argument by value, but a
4349    // defaulted one cannot.
4350    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4351    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4352    HadError = true;
4353  }
4354
4355  // C++11 [dcl.fct.def.default]p2:
4356  //   An explicitly-defaulted function may be declared constexpr only if it
4357  //   would have been implicitly declared as constexpr,
4358  // Do not apply this rule to members of class templates, since core issue 1358
4359  // makes such functions always instantiate to constexpr functions. For
4360  // non-constructors, this is checked elsewhere.
4361  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4362                                                     HasConstParam);
4363  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4364      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4365    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4366    // FIXME: Explain why the constructor can't be constexpr.
4367    HadError = true;
4368  }
4369
4370  //   and may have an explicit exception-specification only if it is compatible
4371  //   with the exception-specification on the implicit declaration.
4372  if (Type->hasExceptionSpec()) {
4373    // Delay the check if this is the first declaration of the special member,
4374    // since we may not have parsed some necessary in-class initializers yet.
4375    if (First) {
4376      // If the exception specification needs to be instantiated, do so now,
4377      // before we clobber it with an EST_Unevaluated specification below.
4378      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4379        InstantiateExceptionSpec(MD->getLocStart(), MD);
4380        Type = MD->getType()->getAs<FunctionProtoType>();
4381      }
4382      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4383    } else
4384      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4385  }
4386
4387  //   If a function is explicitly defaulted on its first declaration,
4388  if (First) {
4389    //  -- it is implicitly considered to be constexpr if the implicit
4390    //     definition would be,
4391    MD->setConstexpr(Constexpr);
4392
4393    //  -- it is implicitly considered to have the same exception-specification
4394    //     as if it had been implicitly declared,
4395    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4396    EPI.ExceptionSpecType = EST_Unevaluated;
4397    EPI.ExceptionSpecDecl = MD;
4398    MD->setType(Context.getFunctionType(ReturnType,
4399                                        ArrayRef<QualType>(&ArgType,
4400                                                           ExpectedParams),
4401                                        EPI));
4402  }
4403
4404  if (ShouldDeleteSpecialMember(MD, CSM)) {
4405    if (First) {
4406      SetDeclDeleted(MD, MD->getLocation());
4407    } else {
4408      // C++11 [dcl.fct.def.default]p4:
4409      //   [For a] user-provided explicitly-defaulted function [...] if such a
4410      //   function is implicitly defined as deleted, the program is ill-formed.
4411      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4412      HadError = true;
4413    }
4414  }
4415
4416  if (HadError)
4417    MD->setInvalidDecl();
4418}
4419
4420/// Check whether the exception specification provided for an
4421/// explicitly-defaulted special member matches the exception specification
4422/// that would have been generated for an implicit special member, per
4423/// C++11 [dcl.fct.def.default]p2.
4424void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4425    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4426  // Compute the implicit exception specification.
4427  FunctionProtoType::ExtProtoInfo EPI;
4428  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4429  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4430    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4431
4432  // Ensure that it matches.
4433  CheckEquivalentExceptionSpec(
4434    PDiag(diag::err_incorrect_defaulted_exception_spec)
4435      << getSpecialMember(MD), PDiag(),
4436    ImplicitType, SourceLocation(),
4437    SpecifiedType, MD->getLocation());
4438}
4439
4440void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4441  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4442       I != N; ++I)
4443    CheckExplicitlyDefaultedMemberExceptionSpec(
4444      DelayedDefaultedMemberExceptionSpecs[I].first,
4445      DelayedDefaultedMemberExceptionSpecs[I].second);
4446
4447  DelayedDefaultedMemberExceptionSpecs.clear();
4448}
4449
4450namespace {
4451struct SpecialMemberDeletionInfo {
4452  Sema &S;
4453  CXXMethodDecl *MD;
4454  Sema::CXXSpecialMember CSM;
4455  bool Diagnose;
4456
4457  // Properties of the special member, computed for convenience.
4458  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4459  SourceLocation Loc;
4460
4461  bool AllFieldsAreConst;
4462
4463  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4464                            Sema::CXXSpecialMember CSM, bool Diagnose)
4465    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4466      IsConstructor(false), IsAssignment(false), IsMove(false),
4467      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4468      AllFieldsAreConst(true) {
4469    switch (CSM) {
4470      case Sema::CXXDefaultConstructor:
4471      case Sema::CXXCopyConstructor:
4472        IsConstructor = true;
4473        break;
4474      case Sema::CXXMoveConstructor:
4475        IsConstructor = true;
4476        IsMove = true;
4477        break;
4478      case Sema::CXXCopyAssignment:
4479        IsAssignment = true;
4480        break;
4481      case Sema::CXXMoveAssignment:
4482        IsAssignment = true;
4483        IsMove = true;
4484        break;
4485      case Sema::CXXDestructor:
4486        break;
4487      case Sema::CXXInvalid:
4488        llvm_unreachable("invalid special member kind");
4489    }
4490
4491    if (MD->getNumParams()) {
4492      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4493      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4494    }
4495  }
4496
4497  bool inUnion() const { return MD->getParent()->isUnion(); }
4498
4499  /// Look up the corresponding special member in the given class.
4500  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4501                                              unsigned Quals) {
4502    unsigned TQ = MD->getTypeQualifiers();
4503    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4504    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4505      Quals = 0;
4506    return S.LookupSpecialMember(Class, CSM,
4507                                 ConstArg || (Quals & Qualifiers::Const),
4508                                 VolatileArg || (Quals & Qualifiers::Volatile),
4509                                 MD->getRefQualifier() == RQ_RValue,
4510                                 TQ & Qualifiers::Const,
4511                                 TQ & Qualifiers::Volatile);
4512  }
4513
4514  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4515
4516  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4517  bool shouldDeleteForField(FieldDecl *FD);
4518  bool shouldDeleteForAllConstMembers();
4519
4520  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4521                                     unsigned Quals);
4522  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4523                                    Sema::SpecialMemberOverloadResult *SMOR,
4524                                    bool IsDtorCallInCtor);
4525
4526  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4527};
4528}
4529
4530/// Is the given special member inaccessible when used on the given
4531/// sub-object.
4532bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4533                                             CXXMethodDecl *target) {
4534  /// If we're operating on a base class, the object type is the
4535  /// type of this special member.
4536  QualType objectTy;
4537  AccessSpecifier access = target->getAccess();
4538  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4539    objectTy = S.Context.getTypeDeclType(MD->getParent());
4540    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4541
4542  // If we're operating on a field, the object type is the type of the field.
4543  } else {
4544    objectTy = S.Context.getTypeDeclType(target->getParent());
4545  }
4546
4547  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4548}
4549
4550/// Check whether we should delete a special member due to the implicit
4551/// definition containing a call to a special member of a subobject.
4552bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4553    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4554    bool IsDtorCallInCtor) {
4555  CXXMethodDecl *Decl = SMOR->getMethod();
4556  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4557
4558  int DiagKind = -1;
4559
4560  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4561    DiagKind = !Decl ? 0 : 1;
4562  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4563    DiagKind = 2;
4564  else if (!isAccessible(Subobj, Decl))
4565    DiagKind = 3;
4566  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4567           !Decl->isTrivial()) {
4568    // A member of a union must have a trivial corresponding special member.
4569    // As a weird special case, a destructor call from a union's constructor
4570    // must be accessible and non-deleted, but need not be trivial. Such a
4571    // destructor is never actually called, but is semantically checked as
4572    // if it were.
4573    DiagKind = 4;
4574  }
4575
4576  if (DiagKind == -1)
4577    return false;
4578
4579  if (Diagnose) {
4580    if (Field) {
4581      S.Diag(Field->getLocation(),
4582             diag::note_deleted_special_member_class_subobject)
4583        << CSM << MD->getParent() << /*IsField*/true
4584        << Field << DiagKind << IsDtorCallInCtor;
4585    } else {
4586      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4587      S.Diag(Base->getLocStart(),
4588             diag::note_deleted_special_member_class_subobject)
4589        << CSM << MD->getParent() << /*IsField*/false
4590        << Base->getType() << DiagKind << IsDtorCallInCtor;
4591    }
4592
4593    if (DiagKind == 1)
4594      S.NoteDeletedFunction(Decl);
4595    // FIXME: Explain inaccessibility if DiagKind == 3.
4596  }
4597
4598  return true;
4599}
4600
4601/// Check whether we should delete a special member function due to having a
4602/// direct or virtual base class or non-static data member of class type M.
4603bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4604    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4605  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4606
4607  // C++11 [class.ctor]p5:
4608  // -- any direct or virtual base class, or non-static data member with no
4609  //    brace-or-equal-initializer, has class type M (or array thereof) and
4610  //    either M has no default constructor or overload resolution as applied
4611  //    to M's default constructor results in an ambiguity or in a function
4612  //    that is deleted or inaccessible
4613  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4614  // -- a direct or virtual base class B that cannot be copied/moved because
4615  //    overload resolution, as applied to B's corresponding special member,
4616  //    results in an ambiguity or a function that is deleted or inaccessible
4617  //    from the defaulted special member
4618  // C++11 [class.dtor]p5:
4619  // -- any direct or virtual base class [...] has a type with a destructor
4620  //    that is deleted or inaccessible
4621  if (!(CSM == Sema::CXXDefaultConstructor &&
4622        Field && Field->hasInClassInitializer()) &&
4623      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4624    return true;
4625
4626  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4627  // -- any direct or virtual base class or non-static data member has a
4628  //    type with a destructor that is deleted or inaccessible
4629  if (IsConstructor) {
4630    Sema::SpecialMemberOverloadResult *SMOR =
4631        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4632                              false, false, false, false, false);
4633    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4634      return true;
4635  }
4636
4637  return false;
4638}
4639
4640/// Check whether we should delete a special member function due to the class
4641/// having a particular direct or virtual base class.
4642bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4643  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4644  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4645}
4646
4647/// Check whether we should delete a special member function due to the class
4648/// having a particular non-static data member.
4649bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4650  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4651  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4652
4653  if (CSM == Sema::CXXDefaultConstructor) {
4654    // For a default constructor, all references must be initialized in-class
4655    // and, if a union, it must have a non-const member.
4656    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4657      if (Diagnose)
4658        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4659          << MD->getParent() << FD << FieldType << /*Reference*/0;
4660      return true;
4661    }
4662    // C++11 [class.ctor]p5: any non-variant non-static data member of
4663    // const-qualified type (or array thereof) with no
4664    // brace-or-equal-initializer does not have a user-provided default
4665    // constructor.
4666    if (!inUnion() && FieldType.isConstQualified() &&
4667        !FD->hasInClassInitializer() &&
4668        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4669      if (Diagnose)
4670        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4671          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4672      return true;
4673    }
4674
4675    if (inUnion() && !FieldType.isConstQualified())
4676      AllFieldsAreConst = false;
4677  } else if (CSM == Sema::CXXCopyConstructor) {
4678    // For a copy constructor, data members must not be of rvalue reference
4679    // type.
4680    if (FieldType->isRValueReferenceType()) {
4681      if (Diagnose)
4682        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4683          << MD->getParent() << FD << FieldType;
4684      return true;
4685    }
4686  } else if (IsAssignment) {
4687    // For an assignment operator, data members must not be of reference type.
4688    if (FieldType->isReferenceType()) {
4689      if (Diagnose)
4690        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4691          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4692      return true;
4693    }
4694    if (!FieldRecord && FieldType.isConstQualified()) {
4695      // C++11 [class.copy]p23:
4696      // -- a non-static data member of const non-class type (or array thereof)
4697      if (Diagnose)
4698        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4699          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4700      return true;
4701    }
4702  }
4703
4704  if (FieldRecord) {
4705    // Some additional restrictions exist on the variant members.
4706    if (!inUnion() && FieldRecord->isUnion() &&
4707        FieldRecord->isAnonymousStructOrUnion()) {
4708      bool AllVariantFieldsAreConst = true;
4709
4710      // FIXME: Handle anonymous unions declared within anonymous unions.
4711      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4712                                         UE = FieldRecord->field_end();
4713           UI != UE; ++UI) {
4714        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4715
4716        if (!UnionFieldType.isConstQualified())
4717          AllVariantFieldsAreConst = false;
4718
4719        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4720        if (UnionFieldRecord &&
4721            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4722                                          UnionFieldType.getCVRQualifiers()))
4723          return true;
4724      }
4725
4726      // At least one member in each anonymous union must be non-const
4727      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4728          FieldRecord->field_begin() != FieldRecord->field_end()) {
4729        if (Diagnose)
4730          S.Diag(FieldRecord->getLocation(),
4731                 diag::note_deleted_default_ctor_all_const)
4732            << MD->getParent() << /*anonymous union*/1;
4733        return true;
4734      }
4735
4736      // Don't check the implicit member of the anonymous union type.
4737      // This is technically non-conformant, but sanity demands it.
4738      return false;
4739    }
4740
4741    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4742                                      FieldType.getCVRQualifiers()))
4743      return true;
4744  }
4745
4746  return false;
4747}
4748
4749/// C++11 [class.ctor] p5:
4750///   A defaulted default constructor for a class X is defined as deleted if
4751/// X is a union and all of its variant members are of const-qualified type.
4752bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4753  // This is a silly definition, because it gives an empty union a deleted
4754  // default constructor. Don't do that.
4755  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4756      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4757    if (Diagnose)
4758      S.Diag(MD->getParent()->getLocation(),
4759             diag::note_deleted_default_ctor_all_const)
4760        << MD->getParent() << /*not anonymous union*/0;
4761    return true;
4762  }
4763  return false;
4764}
4765
4766/// Determine whether a defaulted special member function should be defined as
4767/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4768/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4769bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4770                                     bool Diagnose) {
4771  if (MD->isInvalidDecl())
4772    return false;
4773  CXXRecordDecl *RD = MD->getParent();
4774  assert(!RD->isDependentType() && "do deletion after instantiation");
4775  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4776    return false;
4777
4778  // C++11 [expr.lambda.prim]p19:
4779  //   The closure type associated with a lambda-expression has a
4780  //   deleted (8.4.3) default constructor and a deleted copy
4781  //   assignment operator.
4782  if (RD->isLambda() &&
4783      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4784    if (Diagnose)
4785      Diag(RD->getLocation(), diag::note_lambda_decl);
4786    return true;
4787  }
4788
4789  // For an anonymous struct or union, the copy and assignment special members
4790  // will never be used, so skip the check. For an anonymous union declared at
4791  // namespace scope, the constructor and destructor are used.
4792  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4793      RD->isAnonymousStructOrUnion())
4794    return false;
4795
4796  // C++11 [class.copy]p7, p18:
4797  //   If the class definition declares a move constructor or move assignment
4798  //   operator, an implicitly declared copy constructor or copy assignment
4799  //   operator is defined as deleted.
4800  if (MD->isImplicit() &&
4801      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4802    CXXMethodDecl *UserDeclaredMove = 0;
4803
4804    // In Microsoft mode, a user-declared move only causes the deletion of the
4805    // corresponding copy operation, not both copy operations.
4806    if (RD->hasUserDeclaredMoveConstructor() &&
4807        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4808      if (!Diagnose) return true;
4809
4810      // Find any user-declared move constructor.
4811      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4812                                        E = RD->ctor_end(); I != E; ++I) {
4813        if (I->isMoveConstructor()) {
4814          UserDeclaredMove = *I;
4815          break;
4816        }
4817      }
4818      assert(UserDeclaredMove);
4819    } else if (RD->hasUserDeclaredMoveAssignment() &&
4820               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4821      if (!Diagnose) return true;
4822
4823      // Find any user-declared move assignment operator.
4824      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4825                                          E = RD->method_end(); I != E; ++I) {
4826        if (I->isMoveAssignmentOperator()) {
4827          UserDeclaredMove = *I;
4828          break;
4829        }
4830      }
4831      assert(UserDeclaredMove);
4832    }
4833
4834    if (UserDeclaredMove) {
4835      Diag(UserDeclaredMove->getLocation(),
4836           diag::note_deleted_copy_user_declared_move)
4837        << (CSM == CXXCopyAssignment) << RD
4838        << UserDeclaredMove->isMoveAssignmentOperator();
4839      return true;
4840    }
4841  }
4842
4843  // Do access control from the special member function
4844  ContextRAII MethodContext(*this, MD);
4845
4846  // C++11 [class.dtor]p5:
4847  // -- for a virtual destructor, lookup of the non-array deallocation function
4848  //    results in an ambiguity or in a function that is deleted or inaccessible
4849  if (CSM == CXXDestructor && MD->isVirtual()) {
4850    FunctionDecl *OperatorDelete = 0;
4851    DeclarationName Name =
4852      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4853    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4854                                 OperatorDelete, false)) {
4855      if (Diagnose)
4856        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4857      return true;
4858    }
4859  }
4860
4861  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4862
4863  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4864                                          BE = RD->bases_end(); BI != BE; ++BI)
4865    if (!BI->isVirtual() &&
4866        SMI.shouldDeleteForBase(BI))
4867      return true;
4868
4869  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4870                                          BE = RD->vbases_end(); BI != BE; ++BI)
4871    if (SMI.shouldDeleteForBase(BI))
4872      return true;
4873
4874  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4875                                     FE = RD->field_end(); FI != FE; ++FI)
4876    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4877        SMI.shouldDeleteForField(*FI))
4878      return true;
4879
4880  if (SMI.shouldDeleteForAllConstMembers())
4881    return true;
4882
4883  return false;
4884}
4885
4886/// Perform lookup for a special member of the specified kind, and determine
4887/// whether it is trivial. If the triviality can be determined without the
4888/// lookup, skip it. This is intended for use when determining whether a
4889/// special member of a containing object is trivial, and thus does not ever
4890/// perform overload resolution for default constructors.
4891///
4892/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4893/// member that was most likely to be intended to be trivial, if any.
4894static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4895                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4896                                     CXXMethodDecl **Selected) {
4897  if (Selected)
4898    *Selected = 0;
4899
4900  switch (CSM) {
4901  case Sema::CXXInvalid:
4902    llvm_unreachable("not a special member");
4903
4904  case Sema::CXXDefaultConstructor:
4905    // C++11 [class.ctor]p5:
4906    //   A default constructor is trivial if:
4907    //    - all the [direct subobjects] have trivial default constructors
4908    //
4909    // Note, no overload resolution is performed in this case.
4910    if (RD->hasTrivialDefaultConstructor())
4911      return true;
4912
4913    if (Selected) {
4914      // If there's a default constructor which could have been trivial, dig it
4915      // out. Otherwise, if there's any user-provided default constructor, point
4916      // to that as an example of why there's not a trivial one.
4917      CXXConstructorDecl *DefCtor = 0;
4918      if (RD->needsImplicitDefaultConstructor())
4919        S.DeclareImplicitDefaultConstructor(RD);
4920      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4921                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4922        if (!CI->isDefaultConstructor())
4923          continue;
4924        DefCtor = *CI;
4925        if (!DefCtor->isUserProvided())
4926          break;
4927      }
4928
4929      *Selected = DefCtor;
4930    }
4931
4932    return false;
4933
4934  case Sema::CXXDestructor:
4935    // C++11 [class.dtor]p5:
4936    //   A destructor is trivial if:
4937    //    - all the direct [subobjects] have trivial destructors
4938    if (RD->hasTrivialDestructor())
4939      return true;
4940
4941    if (Selected) {
4942      if (RD->needsImplicitDestructor())
4943        S.DeclareImplicitDestructor(RD);
4944      *Selected = RD->getDestructor();
4945    }
4946
4947    return false;
4948
4949  case Sema::CXXCopyConstructor:
4950    // C++11 [class.copy]p12:
4951    //   A copy constructor is trivial if:
4952    //    - the constructor selected to copy each direct [subobject] is trivial
4953    if (RD->hasTrivialCopyConstructor()) {
4954      if (Quals == Qualifiers::Const)
4955        // We must either select the trivial copy constructor or reach an
4956        // ambiguity; no need to actually perform overload resolution.
4957        return true;
4958    } else if (!Selected) {
4959      return false;
4960    }
4961    // In C++98, we are not supposed to perform overload resolution here, but we
4962    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4963    // cases like B as having a non-trivial copy constructor:
4964    //   struct A { template<typename T> A(T&); };
4965    //   struct B { mutable A a; };
4966    goto NeedOverloadResolution;
4967
4968  case Sema::CXXCopyAssignment:
4969    // C++11 [class.copy]p25:
4970    //   A copy assignment operator is trivial if:
4971    //    - the assignment operator selected to copy each direct [subobject] is
4972    //      trivial
4973    if (RD->hasTrivialCopyAssignment()) {
4974      if (Quals == Qualifiers::Const)
4975        return true;
4976    } else if (!Selected) {
4977      return false;
4978    }
4979    // In C++98, we are not supposed to perform overload resolution here, but we
4980    // treat that as a language defect.
4981    goto NeedOverloadResolution;
4982
4983  case Sema::CXXMoveConstructor:
4984  case Sema::CXXMoveAssignment:
4985  NeedOverloadResolution:
4986    Sema::SpecialMemberOverloadResult *SMOR =
4987      S.LookupSpecialMember(RD, CSM,
4988                            Quals & Qualifiers::Const,
4989                            Quals & Qualifiers::Volatile,
4990                            /*RValueThis*/false, /*ConstThis*/false,
4991                            /*VolatileThis*/false);
4992
4993    // The standard doesn't describe how to behave if the lookup is ambiguous.
4994    // We treat it as not making the member non-trivial, just like the standard
4995    // mandates for the default constructor. This should rarely matter, because
4996    // the member will also be deleted.
4997    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4998      return true;
4999
5000    if (!SMOR->getMethod()) {
5001      assert(SMOR->getKind() ==
5002             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5003      return false;
5004    }
5005
5006    // We deliberately don't check if we found a deleted special member. We're
5007    // not supposed to!
5008    if (Selected)
5009      *Selected = SMOR->getMethod();
5010    return SMOR->getMethod()->isTrivial();
5011  }
5012
5013  llvm_unreachable("unknown special method kind");
5014}
5015
5016static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5017  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5018       CI != CE; ++CI)
5019    if (!CI->isImplicit())
5020      return *CI;
5021
5022  // Look for constructor templates.
5023  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5024  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5025    if (CXXConstructorDecl *CD =
5026          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5027      return CD;
5028  }
5029
5030  return 0;
5031}
5032
5033/// The kind of subobject we are checking for triviality. The values of this
5034/// enumeration are used in diagnostics.
5035enum TrivialSubobjectKind {
5036  /// The subobject is a base class.
5037  TSK_BaseClass,
5038  /// The subobject is a non-static data member.
5039  TSK_Field,
5040  /// The object is actually the complete object.
5041  TSK_CompleteObject
5042};
5043
5044/// Check whether the special member selected for a given type would be trivial.
5045static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5046                                      QualType SubType,
5047                                      Sema::CXXSpecialMember CSM,
5048                                      TrivialSubobjectKind Kind,
5049                                      bool Diagnose) {
5050  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5051  if (!SubRD)
5052    return true;
5053
5054  CXXMethodDecl *Selected;
5055  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5056                               Diagnose ? &Selected : 0))
5057    return true;
5058
5059  if (Diagnose) {
5060    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5061      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5062        << Kind << SubType.getUnqualifiedType();
5063      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5064        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5065    } else if (!Selected)
5066      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5067        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5068    else if (Selected->isUserProvided()) {
5069      if (Kind == TSK_CompleteObject)
5070        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5071          << Kind << SubType.getUnqualifiedType() << CSM;
5072      else {
5073        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5074          << Kind << SubType.getUnqualifiedType() << CSM;
5075        S.Diag(Selected->getLocation(), diag::note_declared_at);
5076      }
5077    } else {
5078      if (Kind != TSK_CompleteObject)
5079        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5080          << Kind << SubType.getUnqualifiedType() << CSM;
5081
5082      // Explain why the defaulted or deleted special member isn't trivial.
5083      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5084    }
5085  }
5086
5087  return false;
5088}
5089
5090/// Check whether the members of a class type allow a special member to be
5091/// trivial.
5092static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5093                                     Sema::CXXSpecialMember CSM,
5094                                     bool ConstArg, bool Diagnose) {
5095  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5096                                     FE = RD->field_end(); FI != FE; ++FI) {
5097    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5098      continue;
5099
5100    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5101
5102    // Pretend anonymous struct or union members are members of this class.
5103    if (FI->isAnonymousStructOrUnion()) {
5104      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5105                                    CSM, ConstArg, Diagnose))
5106        return false;
5107      continue;
5108    }
5109
5110    // C++11 [class.ctor]p5:
5111    //   A default constructor is trivial if [...]
5112    //    -- no non-static data member of its class has a
5113    //       brace-or-equal-initializer
5114    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5115      if (Diagnose)
5116        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5117      return false;
5118    }
5119
5120    // Objective C ARC 4.3.5:
5121    //   [...] nontrivally ownership-qualified types are [...] not trivially
5122    //   default constructible, copy constructible, move constructible, copy
5123    //   assignable, move assignable, or destructible [...]
5124    if (S.getLangOpts().ObjCAutoRefCount &&
5125        FieldType.hasNonTrivialObjCLifetime()) {
5126      if (Diagnose)
5127        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5128          << RD << FieldType.getObjCLifetime();
5129      return false;
5130    }
5131
5132    if (ConstArg && !FI->isMutable())
5133      FieldType.addConst();
5134    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5135                                   TSK_Field, Diagnose))
5136      return false;
5137  }
5138
5139  return true;
5140}
5141
5142/// Diagnose why the specified class does not have a trivial special member of
5143/// the given kind.
5144void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5145  QualType Ty = Context.getRecordType(RD);
5146  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5147    Ty.addConst();
5148
5149  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5150                            TSK_CompleteObject, /*Diagnose*/true);
5151}
5152
5153/// Determine whether a defaulted or deleted special member function is trivial,
5154/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5155/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5156bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5157                                  bool Diagnose) {
5158  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5159
5160  CXXRecordDecl *RD = MD->getParent();
5161
5162  bool ConstArg = false;
5163
5164  // C++11 [class.copy]p12, p25:
5165  //   A [special member] is trivial if its declared parameter type is the same
5166  //   as if it had been implicitly declared [...]
5167  switch (CSM) {
5168  case CXXDefaultConstructor:
5169  case CXXDestructor:
5170    // Trivial default constructors and destructors cannot have parameters.
5171    break;
5172
5173  case CXXCopyConstructor:
5174  case CXXCopyAssignment: {
5175    // Trivial copy operations always have const, non-volatile parameter types.
5176    ConstArg = true;
5177    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5178    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5179    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5180      if (Diagnose)
5181        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5182          << Param0->getSourceRange() << Param0->getType()
5183          << Context.getLValueReferenceType(
5184               Context.getRecordType(RD).withConst());
5185      return false;
5186    }
5187    break;
5188  }
5189
5190  case CXXMoveConstructor:
5191  case CXXMoveAssignment: {
5192    // Trivial move operations always have non-cv-qualified parameters.
5193    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5194    const RValueReferenceType *RT =
5195      Param0->getType()->getAs<RValueReferenceType>();
5196    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5197      if (Diagnose)
5198        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5199          << Param0->getSourceRange() << Param0->getType()
5200          << Context.getRValueReferenceType(Context.getRecordType(RD));
5201      return false;
5202    }
5203    break;
5204  }
5205
5206  case CXXInvalid:
5207    llvm_unreachable("not a special member");
5208  }
5209
5210  // FIXME: We require that the parameter-declaration-clause is equivalent to
5211  // that of an implicit declaration, not just that the declared parameter type
5212  // matches, in order to prevent absuridities like a function simultaneously
5213  // being a trivial copy constructor and a non-trivial default constructor.
5214  // This issue has not yet been assigned a core issue number.
5215  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5216    if (Diagnose)
5217      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5218           diag::note_nontrivial_default_arg)
5219        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5220    return false;
5221  }
5222  if (MD->isVariadic()) {
5223    if (Diagnose)
5224      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5225    return false;
5226  }
5227
5228  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5229  //   A copy/move [constructor or assignment operator] is trivial if
5230  //    -- the [member] selected to copy/move each direct base class subobject
5231  //       is trivial
5232  //
5233  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5234  //   A [default constructor or destructor] is trivial if
5235  //    -- all the direct base classes have trivial [default constructors or
5236  //       destructors]
5237  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5238                                          BE = RD->bases_end(); BI != BE; ++BI)
5239    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5240                                   ConstArg ? BI->getType().withConst()
5241                                            : BI->getType(),
5242                                   CSM, TSK_BaseClass, Diagnose))
5243      return false;
5244
5245  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5246  //   A copy/move [constructor or assignment operator] for a class X is
5247  //   trivial if
5248  //    -- for each non-static data member of X that is of class type (or array
5249  //       thereof), the constructor selected to copy/move that member is
5250  //       trivial
5251  //
5252  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5253  //   A [default constructor or destructor] is trivial if
5254  //    -- for all of the non-static data members of its class that are of class
5255  //       type (or array thereof), each such class has a trivial [default
5256  //       constructor or destructor]
5257  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5258    return false;
5259
5260  // C++11 [class.dtor]p5:
5261  //   A destructor is trivial if [...]
5262  //    -- the destructor is not virtual
5263  if (CSM == CXXDestructor && MD->isVirtual()) {
5264    if (Diagnose)
5265      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5266    return false;
5267  }
5268
5269  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5270  //   A [special member] for class X is trivial if [...]
5271  //    -- class X has no virtual functions and no virtual base classes
5272  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5273    if (!Diagnose)
5274      return false;
5275
5276    if (RD->getNumVBases()) {
5277      // Check for virtual bases. We already know that the corresponding
5278      // member in all bases is trivial, so vbases must all be direct.
5279      CXXBaseSpecifier &BS = *RD->vbases_begin();
5280      assert(BS.isVirtual());
5281      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5282      return false;
5283    }
5284
5285    // Must have a virtual method.
5286    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5287                                        ME = RD->method_end(); MI != ME; ++MI) {
5288      if (MI->isVirtual()) {
5289        SourceLocation MLoc = MI->getLocStart();
5290        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5291        return false;
5292      }
5293    }
5294
5295    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5296  }
5297
5298  // Looks like it's trivial!
5299  return true;
5300}
5301
5302/// \brief Data used with FindHiddenVirtualMethod
5303namespace {
5304  struct FindHiddenVirtualMethodData {
5305    Sema *S;
5306    CXXMethodDecl *Method;
5307    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5308    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5309  };
5310}
5311
5312/// \brief Check whether any most overriden method from MD in Methods
5313static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5314                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5315  if (MD->size_overridden_methods() == 0)
5316    return Methods.count(MD->getCanonicalDecl());
5317  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5318                                      E = MD->end_overridden_methods();
5319       I != E; ++I)
5320    if (CheckMostOverridenMethods(*I, Methods))
5321      return true;
5322  return false;
5323}
5324
5325/// \brief Member lookup function that determines whether a given C++
5326/// method overloads virtual methods in a base class without overriding any,
5327/// to be used with CXXRecordDecl::lookupInBases().
5328static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5329                                    CXXBasePath &Path,
5330                                    void *UserData) {
5331  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5332
5333  FindHiddenVirtualMethodData &Data
5334    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5335
5336  DeclarationName Name = Data.Method->getDeclName();
5337  assert(Name.getNameKind() == DeclarationName::Identifier);
5338
5339  bool foundSameNameMethod = false;
5340  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5341  for (Path.Decls = BaseRecord->lookup(Name);
5342       !Path.Decls.empty();
5343       Path.Decls = Path.Decls.slice(1)) {
5344    NamedDecl *D = Path.Decls.front();
5345    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5346      MD = MD->getCanonicalDecl();
5347      foundSameNameMethod = true;
5348      // Interested only in hidden virtual methods.
5349      if (!MD->isVirtual())
5350        continue;
5351      // If the method we are checking overrides a method from its base
5352      // don't warn about the other overloaded methods.
5353      if (!Data.S->IsOverload(Data.Method, MD, false))
5354        return true;
5355      // Collect the overload only if its hidden.
5356      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5357        overloadedMethods.push_back(MD);
5358    }
5359  }
5360
5361  if (foundSameNameMethod)
5362    Data.OverloadedMethods.append(overloadedMethods.begin(),
5363                                   overloadedMethods.end());
5364  return foundSameNameMethod;
5365}
5366
5367/// \brief Add the most overriden methods from MD to Methods
5368static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5369                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5370  if (MD->size_overridden_methods() == 0)
5371    Methods.insert(MD->getCanonicalDecl());
5372  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5373                                      E = MD->end_overridden_methods();
5374       I != E; ++I)
5375    AddMostOverridenMethods(*I, Methods);
5376}
5377
5378/// \brief See if a method overloads virtual methods in a base class without
5379/// overriding any.
5380void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5381  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5382                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5383    return;
5384  if (!MD->getDeclName().isIdentifier())
5385    return;
5386
5387  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5388                     /*bool RecordPaths=*/false,
5389                     /*bool DetectVirtual=*/false);
5390  FindHiddenVirtualMethodData Data;
5391  Data.Method = MD;
5392  Data.S = this;
5393
5394  // Keep the base methods that were overriden or introduced in the subclass
5395  // by 'using' in a set. A base method not in this set is hidden.
5396  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5397  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5398    NamedDecl *ND = *I;
5399    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5400      ND = shad->getTargetDecl();
5401    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5402      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5403  }
5404
5405  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5406      !Data.OverloadedMethods.empty()) {
5407    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5408      << MD << (Data.OverloadedMethods.size() > 1);
5409
5410    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5411      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5412      Diag(overloadedMD->getLocation(),
5413           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5414    }
5415  }
5416}
5417
5418void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5419                                             Decl *TagDecl,
5420                                             SourceLocation LBrac,
5421                                             SourceLocation RBrac,
5422                                             AttributeList *AttrList) {
5423  if (!TagDecl)
5424    return;
5425
5426  AdjustDeclIfTemplate(TagDecl);
5427
5428  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5429    if (l->getKind() != AttributeList::AT_Visibility)
5430      continue;
5431    l->setInvalid();
5432    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5433      l->getName();
5434  }
5435
5436  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5437              // strict aliasing violation!
5438              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5439              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5440
5441  CheckCompletedCXXClass(
5442                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5443}
5444
5445/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5446/// special functions, such as the default constructor, copy
5447/// constructor, or destructor, to the given C++ class (C++
5448/// [special]p1).  This routine can only be executed just before the
5449/// definition of the class is complete.
5450void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5451  if (!ClassDecl->hasUserDeclaredConstructor())
5452    ++ASTContext::NumImplicitDefaultConstructors;
5453
5454  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5455    ++ASTContext::NumImplicitCopyConstructors;
5456
5457    // If the properties or semantics of the copy constructor couldn't be
5458    // determined while the class was being declared, force a declaration
5459    // of it now.
5460    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5461      DeclareImplicitCopyConstructor(ClassDecl);
5462  }
5463
5464  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5465    ++ASTContext::NumImplicitMoveConstructors;
5466
5467    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5468      DeclareImplicitMoveConstructor(ClassDecl);
5469  }
5470
5471  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5472    ++ASTContext::NumImplicitCopyAssignmentOperators;
5473
5474    // If we have a dynamic class, then the copy assignment operator may be
5475    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5476    // it shows up in the right place in the vtable and that we diagnose
5477    // problems with the implicit exception specification.
5478    if (ClassDecl->isDynamicClass() ||
5479        ClassDecl->needsOverloadResolutionForCopyAssignment())
5480      DeclareImplicitCopyAssignment(ClassDecl);
5481  }
5482
5483  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5484    ++ASTContext::NumImplicitMoveAssignmentOperators;
5485
5486    // Likewise for the move assignment operator.
5487    if (ClassDecl->isDynamicClass() ||
5488        ClassDecl->needsOverloadResolutionForMoveAssignment())
5489      DeclareImplicitMoveAssignment(ClassDecl);
5490  }
5491
5492  if (!ClassDecl->hasUserDeclaredDestructor()) {
5493    ++ASTContext::NumImplicitDestructors;
5494
5495    // If we have a dynamic class, then the destructor may be virtual, so we
5496    // have to declare the destructor immediately. This ensures that, e.g., it
5497    // shows up in the right place in the vtable and that we diagnose problems
5498    // with the implicit exception specification.
5499    if (ClassDecl->isDynamicClass() ||
5500        ClassDecl->needsOverloadResolutionForDestructor())
5501      DeclareImplicitDestructor(ClassDecl);
5502  }
5503}
5504
5505void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5506  if (!D)
5507    return;
5508
5509  int NumParamList = D->getNumTemplateParameterLists();
5510  for (int i = 0; i < NumParamList; i++) {
5511    TemplateParameterList* Params = D->getTemplateParameterList(i);
5512    for (TemplateParameterList::iterator Param = Params->begin(),
5513                                      ParamEnd = Params->end();
5514          Param != ParamEnd; ++Param) {
5515      NamedDecl *Named = cast<NamedDecl>(*Param);
5516      if (Named->getDeclName()) {
5517        S->AddDecl(Named);
5518        IdResolver.AddDecl(Named);
5519      }
5520    }
5521  }
5522}
5523
5524void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5525  if (!D)
5526    return;
5527
5528  TemplateParameterList *Params = 0;
5529  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5530    Params = Template->getTemplateParameters();
5531  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5532           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5533    Params = PartialSpec->getTemplateParameters();
5534  else
5535    return;
5536
5537  for (TemplateParameterList::iterator Param = Params->begin(),
5538                                    ParamEnd = Params->end();
5539       Param != ParamEnd; ++Param) {
5540    NamedDecl *Named = cast<NamedDecl>(*Param);
5541    if (Named->getDeclName()) {
5542      S->AddDecl(Named);
5543      IdResolver.AddDecl(Named);
5544    }
5545  }
5546}
5547
5548void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5549  if (!RecordD) return;
5550  AdjustDeclIfTemplate(RecordD);
5551  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5552  PushDeclContext(S, Record);
5553}
5554
5555void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5556  if (!RecordD) return;
5557  PopDeclContext();
5558}
5559
5560/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5561/// parsing a top-level (non-nested) C++ class, and we are now
5562/// parsing those parts of the given Method declaration that could
5563/// not be parsed earlier (C++ [class.mem]p2), such as default
5564/// arguments. This action should enter the scope of the given
5565/// Method declaration as if we had just parsed the qualified method
5566/// name. However, it should not bring the parameters into scope;
5567/// that will be performed by ActOnDelayedCXXMethodParameter.
5568void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5569}
5570
5571/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5572/// C++ method declaration. We're (re-)introducing the given
5573/// function parameter into scope for use in parsing later parts of
5574/// the method declaration. For example, we could see an
5575/// ActOnParamDefaultArgument event for this parameter.
5576void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5577  if (!ParamD)
5578    return;
5579
5580  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5581
5582  // If this parameter has an unparsed default argument, clear it out
5583  // to make way for the parsed default argument.
5584  if (Param->hasUnparsedDefaultArg())
5585    Param->setDefaultArg(0);
5586
5587  S->AddDecl(Param);
5588  if (Param->getDeclName())
5589    IdResolver.AddDecl(Param);
5590}
5591
5592/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5593/// processing the delayed method declaration for Method. The method
5594/// declaration is now considered finished. There may be a separate
5595/// ActOnStartOfFunctionDef action later (not necessarily
5596/// immediately!) for this method, if it was also defined inside the
5597/// class body.
5598void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5599  if (!MethodD)
5600    return;
5601
5602  AdjustDeclIfTemplate(MethodD);
5603
5604  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5605
5606  // Now that we have our default arguments, check the constructor
5607  // again. It could produce additional diagnostics or affect whether
5608  // the class has implicitly-declared destructors, among other
5609  // things.
5610  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5611    CheckConstructor(Constructor);
5612
5613  // Check the default arguments, which we may have added.
5614  if (!Method->isInvalidDecl())
5615    CheckCXXDefaultArguments(Method);
5616}
5617
5618/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5619/// the well-formedness of the constructor declarator @p D with type @p
5620/// R. If there are any errors in the declarator, this routine will
5621/// emit diagnostics and set the invalid bit to true.  In any case, the type
5622/// will be updated to reflect a well-formed type for the constructor and
5623/// returned.
5624QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5625                                          StorageClass &SC) {
5626  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5627
5628  // C++ [class.ctor]p3:
5629  //   A constructor shall not be virtual (10.3) or static (9.4). A
5630  //   constructor can be invoked for a const, volatile or const
5631  //   volatile object. A constructor shall not be declared const,
5632  //   volatile, or const volatile (9.3.2).
5633  if (isVirtual) {
5634    if (!D.isInvalidType())
5635      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5636        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5637        << SourceRange(D.getIdentifierLoc());
5638    D.setInvalidType();
5639  }
5640  if (SC == SC_Static) {
5641    if (!D.isInvalidType())
5642      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5643        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5644        << SourceRange(D.getIdentifierLoc());
5645    D.setInvalidType();
5646    SC = SC_None;
5647  }
5648
5649  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5650  if (FTI.TypeQuals != 0) {
5651    if (FTI.TypeQuals & Qualifiers::Const)
5652      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5653        << "const" << SourceRange(D.getIdentifierLoc());
5654    if (FTI.TypeQuals & Qualifiers::Volatile)
5655      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5656        << "volatile" << SourceRange(D.getIdentifierLoc());
5657    if (FTI.TypeQuals & Qualifiers::Restrict)
5658      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5659        << "restrict" << SourceRange(D.getIdentifierLoc());
5660    D.setInvalidType();
5661  }
5662
5663  // C++0x [class.ctor]p4:
5664  //   A constructor shall not be declared with a ref-qualifier.
5665  if (FTI.hasRefQualifier()) {
5666    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5667      << FTI.RefQualifierIsLValueRef
5668      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5669    D.setInvalidType();
5670  }
5671
5672  // Rebuild the function type "R" without any type qualifiers (in
5673  // case any of the errors above fired) and with "void" as the
5674  // return type, since constructors don't have return types.
5675  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5676  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5677    return R;
5678
5679  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5680  EPI.TypeQuals = 0;
5681  EPI.RefQualifier = RQ_None;
5682
5683  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5684}
5685
5686/// CheckConstructor - Checks a fully-formed constructor for
5687/// well-formedness, issuing any diagnostics required. Returns true if
5688/// the constructor declarator is invalid.
5689void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5690  CXXRecordDecl *ClassDecl
5691    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5692  if (!ClassDecl)
5693    return Constructor->setInvalidDecl();
5694
5695  // C++ [class.copy]p3:
5696  //   A declaration of a constructor for a class X is ill-formed if
5697  //   its first parameter is of type (optionally cv-qualified) X and
5698  //   either there are no other parameters or else all other
5699  //   parameters have default arguments.
5700  if (!Constructor->isInvalidDecl() &&
5701      ((Constructor->getNumParams() == 1) ||
5702       (Constructor->getNumParams() > 1 &&
5703        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5704      Constructor->getTemplateSpecializationKind()
5705                                              != TSK_ImplicitInstantiation) {
5706    QualType ParamType = Constructor->getParamDecl(0)->getType();
5707    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5708    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5709      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5710      const char *ConstRef
5711        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5712                                                        : " const &";
5713      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5714        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5715
5716      // FIXME: Rather that making the constructor invalid, we should endeavor
5717      // to fix the type.
5718      Constructor->setInvalidDecl();
5719    }
5720  }
5721}
5722
5723/// CheckDestructor - Checks a fully-formed destructor definition for
5724/// well-formedness, issuing any diagnostics required.  Returns true
5725/// on error.
5726bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5727  CXXRecordDecl *RD = Destructor->getParent();
5728
5729  if (Destructor->isVirtual()) {
5730    SourceLocation Loc;
5731
5732    if (!Destructor->isImplicit())
5733      Loc = Destructor->getLocation();
5734    else
5735      Loc = RD->getLocation();
5736
5737    // If we have a virtual destructor, look up the deallocation function
5738    FunctionDecl *OperatorDelete = 0;
5739    DeclarationName Name =
5740    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5741    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5742      return true;
5743
5744    MarkFunctionReferenced(Loc, OperatorDelete);
5745
5746    Destructor->setOperatorDelete(OperatorDelete);
5747  }
5748
5749  return false;
5750}
5751
5752static inline bool
5753FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5754  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5755          FTI.ArgInfo[0].Param &&
5756          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5757}
5758
5759/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5760/// the well-formednes of the destructor declarator @p D with type @p
5761/// R. If there are any errors in the declarator, this routine will
5762/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5763/// will be updated to reflect a well-formed type for the destructor and
5764/// returned.
5765QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5766                                         StorageClass& SC) {
5767  // C++ [class.dtor]p1:
5768  //   [...] A typedef-name that names a class is a class-name
5769  //   (7.1.3); however, a typedef-name that names a class shall not
5770  //   be used as the identifier in the declarator for a destructor
5771  //   declaration.
5772  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5773  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5774    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5775      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5776  else if (const TemplateSpecializationType *TST =
5777             DeclaratorType->getAs<TemplateSpecializationType>())
5778    if (TST->isTypeAlias())
5779      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5780        << DeclaratorType << 1;
5781
5782  // C++ [class.dtor]p2:
5783  //   A destructor is used to destroy objects of its class type. A
5784  //   destructor takes no parameters, and no return type can be
5785  //   specified for it (not even void). The address of a destructor
5786  //   shall not be taken. A destructor shall not be static. A
5787  //   destructor can be invoked for a const, volatile or const
5788  //   volatile object. A destructor shall not be declared const,
5789  //   volatile or const volatile (9.3.2).
5790  if (SC == SC_Static) {
5791    if (!D.isInvalidType())
5792      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5793        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5794        << SourceRange(D.getIdentifierLoc())
5795        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5796
5797    SC = SC_None;
5798  }
5799  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5800    // Destructors don't have return types, but the parser will
5801    // happily parse something like:
5802    //
5803    //   class X {
5804    //     float ~X();
5805    //   };
5806    //
5807    // The return type will be eliminated later.
5808    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5809      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5810      << SourceRange(D.getIdentifierLoc());
5811  }
5812
5813  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5814  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5815    if (FTI.TypeQuals & Qualifiers::Const)
5816      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5817        << "const" << SourceRange(D.getIdentifierLoc());
5818    if (FTI.TypeQuals & Qualifiers::Volatile)
5819      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5820        << "volatile" << SourceRange(D.getIdentifierLoc());
5821    if (FTI.TypeQuals & Qualifiers::Restrict)
5822      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5823        << "restrict" << SourceRange(D.getIdentifierLoc());
5824    D.setInvalidType();
5825  }
5826
5827  // C++0x [class.dtor]p2:
5828  //   A destructor shall not be declared with a ref-qualifier.
5829  if (FTI.hasRefQualifier()) {
5830    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5831      << FTI.RefQualifierIsLValueRef
5832      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5833    D.setInvalidType();
5834  }
5835
5836  // Make sure we don't have any parameters.
5837  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5838    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5839
5840    // Delete the parameters.
5841    FTI.freeArgs();
5842    D.setInvalidType();
5843  }
5844
5845  // Make sure the destructor isn't variadic.
5846  if (FTI.isVariadic) {
5847    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5848    D.setInvalidType();
5849  }
5850
5851  // Rebuild the function type "R" without any type qualifiers or
5852  // parameters (in case any of the errors above fired) and with
5853  // "void" as the return type, since destructors don't have return
5854  // types.
5855  if (!D.isInvalidType())
5856    return R;
5857
5858  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5859  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5860  EPI.Variadic = false;
5861  EPI.TypeQuals = 0;
5862  EPI.RefQualifier = RQ_None;
5863  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5864}
5865
5866/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5867/// well-formednes of the conversion function declarator @p D with
5868/// type @p R. If there are any errors in the declarator, this routine
5869/// will emit diagnostics and return true. Otherwise, it will return
5870/// false. Either way, the type @p R will be updated to reflect a
5871/// well-formed type for the conversion operator.
5872void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5873                                     StorageClass& SC) {
5874  // C++ [class.conv.fct]p1:
5875  //   Neither parameter types nor return type can be specified. The
5876  //   type of a conversion function (8.3.5) is "function taking no
5877  //   parameter returning conversion-type-id."
5878  if (SC == SC_Static) {
5879    if (!D.isInvalidType())
5880      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5881        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5882        << SourceRange(D.getIdentifierLoc());
5883    D.setInvalidType();
5884    SC = SC_None;
5885  }
5886
5887  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5888
5889  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5890    // Conversion functions don't have return types, but the parser will
5891    // happily parse something like:
5892    //
5893    //   class X {
5894    //     float operator bool();
5895    //   };
5896    //
5897    // The return type will be changed later anyway.
5898    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5899      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5900      << SourceRange(D.getIdentifierLoc());
5901    D.setInvalidType();
5902  }
5903
5904  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5905
5906  // Make sure we don't have any parameters.
5907  if (Proto->getNumArgs() > 0) {
5908    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5909
5910    // Delete the parameters.
5911    D.getFunctionTypeInfo().freeArgs();
5912    D.setInvalidType();
5913  } else if (Proto->isVariadic()) {
5914    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5915    D.setInvalidType();
5916  }
5917
5918  // Diagnose "&operator bool()" and other such nonsense.  This
5919  // is actually a gcc extension which we don't support.
5920  if (Proto->getResultType() != ConvType) {
5921    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5922      << Proto->getResultType();
5923    D.setInvalidType();
5924    ConvType = Proto->getResultType();
5925  }
5926
5927  // C++ [class.conv.fct]p4:
5928  //   The conversion-type-id shall not represent a function type nor
5929  //   an array type.
5930  if (ConvType->isArrayType()) {
5931    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5932    ConvType = Context.getPointerType(ConvType);
5933    D.setInvalidType();
5934  } else if (ConvType->isFunctionType()) {
5935    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5936    ConvType = Context.getPointerType(ConvType);
5937    D.setInvalidType();
5938  }
5939
5940  // Rebuild the function type "R" without any parameters (in case any
5941  // of the errors above fired) and with the conversion type as the
5942  // return type.
5943  if (D.isInvalidType())
5944    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5945                                Proto->getExtProtoInfo());
5946
5947  // C++0x explicit conversion operators.
5948  if (D.getDeclSpec().isExplicitSpecified())
5949    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5950         getLangOpts().CPlusPlus11 ?
5951           diag::warn_cxx98_compat_explicit_conversion_functions :
5952           diag::ext_explicit_conversion_functions)
5953      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5954}
5955
5956/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5957/// the declaration of the given C++ conversion function. This routine
5958/// is responsible for recording the conversion function in the C++
5959/// class, if possible.
5960Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5961  assert(Conversion && "Expected to receive a conversion function declaration");
5962
5963  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5964
5965  // Make sure we aren't redeclaring the conversion function.
5966  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5967
5968  // C++ [class.conv.fct]p1:
5969  //   [...] A conversion function is never used to convert a
5970  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5971  //   same object type (or a reference to it), to a (possibly
5972  //   cv-qualified) base class of that type (or a reference to it),
5973  //   or to (possibly cv-qualified) void.
5974  // FIXME: Suppress this warning if the conversion function ends up being a
5975  // virtual function that overrides a virtual function in a base class.
5976  QualType ClassType
5977    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5978  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5979    ConvType = ConvTypeRef->getPointeeType();
5980  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5981      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5982    /* Suppress diagnostics for instantiations. */;
5983  else if (ConvType->isRecordType()) {
5984    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5985    if (ConvType == ClassType)
5986      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5987        << ClassType;
5988    else if (IsDerivedFrom(ClassType, ConvType))
5989      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5990        <<  ClassType << ConvType;
5991  } else if (ConvType->isVoidType()) {
5992    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5993      << ClassType << ConvType;
5994  }
5995
5996  if (FunctionTemplateDecl *ConversionTemplate
5997                                = Conversion->getDescribedFunctionTemplate())
5998    return ConversionTemplate;
5999
6000  return Conversion;
6001}
6002
6003//===----------------------------------------------------------------------===//
6004// Namespace Handling
6005//===----------------------------------------------------------------------===//
6006
6007/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6008/// reopened.
6009static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6010                                            SourceLocation Loc,
6011                                            IdentifierInfo *II, bool *IsInline,
6012                                            NamespaceDecl *PrevNS) {
6013  assert(*IsInline != PrevNS->isInline());
6014
6015  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6016  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6017  // inline namespaces, with the intention of bringing names into namespace std.
6018  //
6019  // We support this just well enough to get that case working; this is not
6020  // sufficient to support reopening namespaces as inline in general.
6021  if (*IsInline && II && II->getName().startswith("__atomic") &&
6022      S.getSourceManager().isInSystemHeader(Loc)) {
6023    // Mark all prior declarations of the namespace as inline.
6024    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6025         NS = NS->getPreviousDecl())
6026      NS->setInline(*IsInline);
6027    // Patch up the lookup table for the containing namespace. This isn't really
6028    // correct, but it's good enough for this particular case.
6029    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6030                                    E = PrevNS->decls_end(); I != E; ++I)
6031      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6032        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6033    return;
6034  }
6035
6036  if (PrevNS->isInline())
6037    // The user probably just forgot the 'inline', so suggest that it
6038    // be added back.
6039    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6040      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6041  else
6042    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6043      << IsInline;
6044
6045  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6046  *IsInline = PrevNS->isInline();
6047}
6048
6049/// ActOnStartNamespaceDef - This is called at the start of a namespace
6050/// definition.
6051Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6052                                   SourceLocation InlineLoc,
6053                                   SourceLocation NamespaceLoc,
6054                                   SourceLocation IdentLoc,
6055                                   IdentifierInfo *II,
6056                                   SourceLocation LBrace,
6057                                   AttributeList *AttrList) {
6058  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6059  // For anonymous namespace, take the location of the left brace.
6060  SourceLocation Loc = II ? IdentLoc : LBrace;
6061  bool IsInline = InlineLoc.isValid();
6062  bool IsInvalid = false;
6063  bool IsStd = false;
6064  bool AddToKnown = false;
6065  Scope *DeclRegionScope = NamespcScope->getParent();
6066
6067  NamespaceDecl *PrevNS = 0;
6068  if (II) {
6069    // C++ [namespace.def]p2:
6070    //   The identifier in an original-namespace-definition shall not
6071    //   have been previously defined in the declarative region in
6072    //   which the original-namespace-definition appears. The
6073    //   identifier in an original-namespace-definition is the name of
6074    //   the namespace. Subsequently in that declarative region, it is
6075    //   treated as an original-namespace-name.
6076    //
6077    // Since namespace names are unique in their scope, and we don't
6078    // look through using directives, just look for any ordinary names.
6079
6080    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6081    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6082    Decl::IDNS_Namespace;
6083    NamedDecl *PrevDecl = 0;
6084    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6085    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6086         ++I) {
6087      if ((*I)->getIdentifierNamespace() & IDNS) {
6088        PrevDecl = *I;
6089        break;
6090      }
6091    }
6092
6093    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6094
6095    if (PrevNS) {
6096      // This is an extended namespace definition.
6097      if (IsInline != PrevNS->isInline())
6098        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6099                                        &IsInline, PrevNS);
6100    } else if (PrevDecl) {
6101      // This is an invalid name redefinition.
6102      Diag(Loc, diag::err_redefinition_different_kind)
6103        << II;
6104      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6105      IsInvalid = true;
6106      // Continue on to push Namespc as current DeclContext and return it.
6107    } else if (II->isStr("std") &&
6108               CurContext->getRedeclContext()->isTranslationUnit()) {
6109      // This is the first "real" definition of the namespace "std", so update
6110      // our cache of the "std" namespace to point at this definition.
6111      PrevNS = getStdNamespace();
6112      IsStd = true;
6113      AddToKnown = !IsInline;
6114    } else {
6115      // We've seen this namespace for the first time.
6116      AddToKnown = !IsInline;
6117    }
6118  } else {
6119    // Anonymous namespaces.
6120
6121    // Determine whether the parent already has an anonymous namespace.
6122    DeclContext *Parent = CurContext->getRedeclContext();
6123    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6124      PrevNS = TU->getAnonymousNamespace();
6125    } else {
6126      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6127      PrevNS = ND->getAnonymousNamespace();
6128    }
6129
6130    if (PrevNS && IsInline != PrevNS->isInline())
6131      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6132                                      &IsInline, PrevNS);
6133  }
6134
6135  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6136                                                 StartLoc, Loc, II, PrevNS);
6137  if (IsInvalid)
6138    Namespc->setInvalidDecl();
6139
6140  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6141
6142  // FIXME: Should we be merging attributes?
6143  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6144    PushNamespaceVisibilityAttr(Attr, Loc);
6145
6146  if (IsStd)
6147    StdNamespace = Namespc;
6148  if (AddToKnown)
6149    KnownNamespaces[Namespc] = false;
6150
6151  if (II) {
6152    PushOnScopeChains(Namespc, DeclRegionScope);
6153  } else {
6154    // Link the anonymous namespace into its parent.
6155    DeclContext *Parent = CurContext->getRedeclContext();
6156    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6157      TU->setAnonymousNamespace(Namespc);
6158    } else {
6159      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6160    }
6161
6162    CurContext->addDecl(Namespc);
6163
6164    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6165    //   behaves as if it were replaced by
6166    //     namespace unique { /* empty body */ }
6167    //     using namespace unique;
6168    //     namespace unique { namespace-body }
6169    //   where all occurrences of 'unique' in a translation unit are
6170    //   replaced by the same identifier and this identifier differs
6171    //   from all other identifiers in the entire program.
6172
6173    // We just create the namespace with an empty name and then add an
6174    // implicit using declaration, just like the standard suggests.
6175    //
6176    // CodeGen enforces the "universally unique" aspect by giving all
6177    // declarations semantically contained within an anonymous
6178    // namespace internal linkage.
6179
6180    if (!PrevNS) {
6181      UsingDirectiveDecl* UD
6182        = UsingDirectiveDecl::Create(Context, Parent,
6183                                     /* 'using' */ LBrace,
6184                                     /* 'namespace' */ SourceLocation(),
6185                                     /* qualifier */ NestedNameSpecifierLoc(),
6186                                     /* identifier */ SourceLocation(),
6187                                     Namespc,
6188                                     /* Ancestor */ Parent);
6189      UD->setImplicit();
6190      Parent->addDecl(UD);
6191    }
6192  }
6193
6194  ActOnDocumentableDecl(Namespc);
6195
6196  // Although we could have an invalid decl (i.e. the namespace name is a
6197  // redefinition), push it as current DeclContext and try to continue parsing.
6198  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6199  // for the namespace has the declarations that showed up in that particular
6200  // namespace definition.
6201  PushDeclContext(NamespcScope, Namespc);
6202  return Namespc;
6203}
6204
6205/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6206/// is a namespace alias, returns the namespace it points to.
6207static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6208  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6209    return AD->getNamespace();
6210  return dyn_cast_or_null<NamespaceDecl>(D);
6211}
6212
6213/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6214/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6215void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6216  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6217  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6218  Namespc->setRBraceLoc(RBrace);
6219  PopDeclContext();
6220  if (Namespc->hasAttr<VisibilityAttr>())
6221    PopPragmaVisibility(true, RBrace);
6222}
6223
6224CXXRecordDecl *Sema::getStdBadAlloc() const {
6225  return cast_or_null<CXXRecordDecl>(
6226                                  StdBadAlloc.get(Context.getExternalSource()));
6227}
6228
6229NamespaceDecl *Sema::getStdNamespace() const {
6230  return cast_or_null<NamespaceDecl>(
6231                                 StdNamespace.get(Context.getExternalSource()));
6232}
6233
6234/// \brief Retrieve the special "std" namespace, which may require us to
6235/// implicitly define the namespace.
6236NamespaceDecl *Sema::getOrCreateStdNamespace() {
6237  if (!StdNamespace) {
6238    // The "std" namespace has not yet been defined, so build one implicitly.
6239    StdNamespace = NamespaceDecl::Create(Context,
6240                                         Context.getTranslationUnitDecl(),
6241                                         /*Inline=*/false,
6242                                         SourceLocation(), SourceLocation(),
6243                                         &PP.getIdentifierTable().get("std"),
6244                                         /*PrevDecl=*/0);
6245    getStdNamespace()->setImplicit(true);
6246  }
6247
6248  return getStdNamespace();
6249}
6250
6251bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6252  assert(getLangOpts().CPlusPlus &&
6253         "Looking for std::initializer_list outside of C++.");
6254
6255  // We're looking for implicit instantiations of
6256  // template <typename E> class std::initializer_list.
6257
6258  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6259    return false;
6260
6261  ClassTemplateDecl *Template = 0;
6262  const TemplateArgument *Arguments = 0;
6263
6264  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6265
6266    ClassTemplateSpecializationDecl *Specialization =
6267        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6268    if (!Specialization)
6269      return false;
6270
6271    Template = Specialization->getSpecializedTemplate();
6272    Arguments = Specialization->getTemplateArgs().data();
6273  } else if (const TemplateSpecializationType *TST =
6274                 Ty->getAs<TemplateSpecializationType>()) {
6275    Template = dyn_cast_or_null<ClassTemplateDecl>(
6276        TST->getTemplateName().getAsTemplateDecl());
6277    Arguments = TST->getArgs();
6278  }
6279  if (!Template)
6280    return false;
6281
6282  if (!StdInitializerList) {
6283    // Haven't recognized std::initializer_list yet, maybe this is it.
6284    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6285    if (TemplateClass->getIdentifier() !=
6286            &PP.getIdentifierTable().get("initializer_list") ||
6287        !getStdNamespace()->InEnclosingNamespaceSetOf(
6288            TemplateClass->getDeclContext()))
6289      return false;
6290    // This is a template called std::initializer_list, but is it the right
6291    // template?
6292    TemplateParameterList *Params = Template->getTemplateParameters();
6293    if (Params->getMinRequiredArguments() != 1)
6294      return false;
6295    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6296      return false;
6297
6298    // It's the right template.
6299    StdInitializerList = Template;
6300  }
6301
6302  if (Template != StdInitializerList)
6303    return false;
6304
6305  // This is an instance of std::initializer_list. Find the argument type.
6306  if (Element)
6307    *Element = Arguments[0].getAsType();
6308  return true;
6309}
6310
6311static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6312  NamespaceDecl *Std = S.getStdNamespace();
6313  if (!Std) {
6314    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6315    return 0;
6316  }
6317
6318  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6319                      Loc, Sema::LookupOrdinaryName);
6320  if (!S.LookupQualifiedName(Result, Std)) {
6321    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6322    return 0;
6323  }
6324  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6325  if (!Template) {
6326    Result.suppressDiagnostics();
6327    // We found something weird. Complain about the first thing we found.
6328    NamedDecl *Found = *Result.begin();
6329    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6330    return 0;
6331  }
6332
6333  // We found some template called std::initializer_list. Now verify that it's
6334  // correct.
6335  TemplateParameterList *Params = Template->getTemplateParameters();
6336  if (Params->getMinRequiredArguments() != 1 ||
6337      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6338    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6339    return 0;
6340  }
6341
6342  return Template;
6343}
6344
6345QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6346  if (!StdInitializerList) {
6347    StdInitializerList = LookupStdInitializerList(*this, Loc);
6348    if (!StdInitializerList)
6349      return QualType();
6350  }
6351
6352  TemplateArgumentListInfo Args(Loc, Loc);
6353  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6354                                       Context.getTrivialTypeSourceInfo(Element,
6355                                                                        Loc)));
6356  return Context.getCanonicalType(
6357      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6358}
6359
6360bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6361  // C++ [dcl.init.list]p2:
6362  //   A constructor is an initializer-list constructor if its first parameter
6363  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6364  //   std::initializer_list<E> for some type E, and either there are no other
6365  //   parameters or else all other parameters have default arguments.
6366  if (Ctor->getNumParams() < 1 ||
6367      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6368    return false;
6369
6370  QualType ArgType = Ctor->getParamDecl(0)->getType();
6371  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6372    ArgType = RT->getPointeeType().getUnqualifiedType();
6373
6374  return isStdInitializerList(ArgType, 0);
6375}
6376
6377/// \brief Determine whether a using statement is in a context where it will be
6378/// apply in all contexts.
6379static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6380  switch (CurContext->getDeclKind()) {
6381    case Decl::TranslationUnit:
6382      return true;
6383    case Decl::LinkageSpec:
6384      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6385    default:
6386      return false;
6387  }
6388}
6389
6390namespace {
6391
6392// Callback to only accept typo corrections that are namespaces.
6393class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6394 public:
6395  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6396    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6397      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6398    }
6399    return false;
6400  }
6401};
6402
6403}
6404
6405static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6406                                       CXXScopeSpec &SS,
6407                                       SourceLocation IdentLoc,
6408                                       IdentifierInfo *Ident) {
6409  NamespaceValidatorCCC Validator;
6410  R.clear();
6411  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6412                                               R.getLookupKind(), Sc, &SS,
6413                                               Validator)) {
6414    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6415    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6416    if (DeclContext *DC = S.computeDeclContext(SS, false))
6417      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6418        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6419        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6420                                        CorrectedStr);
6421    else
6422      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6423        << Ident << CorrectedQuotedStr
6424        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6425
6426    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6427         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6428
6429    R.addDecl(Corrected.getCorrectionDecl());
6430    return true;
6431  }
6432  return false;
6433}
6434
6435Decl *Sema::ActOnUsingDirective(Scope *S,
6436                                          SourceLocation UsingLoc,
6437                                          SourceLocation NamespcLoc,
6438                                          CXXScopeSpec &SS,
6439                                          SourceLocation IdentLoc,
6440                                          IdentifierInfo *NamespcName,
6441                                          AttributeList *AttrList) {
6442  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6443  assert(NamespcName && "Invalid NamespcName.");
6444  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6445
6446  // This can only happen along a recovery path.
6447  while (S->getFlags() & Scope::TemplateParamScope)
6448    S = S->getParent();
6449  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6450
6451  UsingDirectiveDecl *UDir = 0;
6452  NestedNameSpecifier *Qualifier = 0;
6453  if (SS.isSet())
6454    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6455
6456  // Lookup namespace name.
6457  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6458  LookupParsedName(R, S, &SS);
6459  if (R.isAmbiguous())
6460    return 0;
6461
6462  if (R.empty()) {
6463    R.clear();
6464    // Allow "using namespace std;" or "using namespace ::std;" even if
6465    // "std" hasn't been defined yet, for GCC compatibility.
6466    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6467        NamespcName->isStr("std")) {
6468      Diag(IdentLoc, diag::ext_using_undefined_std);
6469      R.addDecl(getOrCreateStdNamespace());
6470      R.resolveKind();
6471    }
6472    // Otherwise, attempt typo correction.
6473    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6474  }
6475
6476  if (!R.empty()) {
6477    NamedDecl *Named = R.getFoundDecl();
6478    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6479        && "expected namespace decl");
6480    // C++ [namespace.udir]p1:
6481    //   A using-directive specifies that the names in the nominated
6482    //   namespace can be used in the scope in which the
6483    //   using-directive appears after the using-directive. During
6484    //   unqualified name lookup (3.4.1), the names appear as if they
6485    //   were declared in the nearest enclosing namespace which
6486    //   contains both the using-directive and the nominated
6487    //   namespace. [Note: in this context, "contains" means "contains
6488    //   directly or indirectly". ]
6489
6490    // Find enclosing context containing both using-directive and
6491    // nominated namespace.
6492    NamespaceDecl *NS = getNamespaceDecl(Named);
6493    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6494    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6495      CommonAncestor = CommonAncestor->getParent();
6496
6497    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6498                                      SS.getWithLocInContext(Context),
6499                                      IdentLoc, Named, CommonAncestor);
6500
6501    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6502        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6503      Diag(IdentLoc, diag::warn_using_directive_in_header);
6504    }
6505
6506    PushUsingDirective(S, UDir);
6507  } else {
6508    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6509  }
6510
6511  if (UDir)
6512    ProcessDeclAttributeList(S, UDir, AttrList);
6513
6514  return UDir;
6515}
6516
6517void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6518  // If the scope has an associated entity and the using directive is at
6519  // namespace or translation unit scope, add the UsingDirectiveDecl into
6520  // its lookup structure so qualified name lookup can find it.
6521  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6522  if (Ctx && !Ctx->isFunctionOrMethod())
6523    Ctx->addDecl(UDir);
6524  else
6525    // Otherwise, it is at block sope. The using-directives will affect lookup
6526    // only to the end of the scope.
6527    S->PushUsingDirective(UDir);
6528}
6529
6530
6531Decl *Sema::ActOnUsingDeclaration(Scope *S,
6532                                  AccessSpecifier AS,
6533                                  bool HasUsingKeyword,
6534                                  SourceLocation UsingLoc,
6535                                  CXXScopeSpec &SS,
6536                                  UnqualifiedId &Name,
6537                                  AttributeList *AttrList,
6538                                  bool IsTypeName,
6539                                  SourceLocation TypenameLoc) {
6540  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6541
6542  switch (Name.getKind()) {
6543  case UnqualifiedId::IK_ImplicitSelfParam:
6544  case UnqualifiedId::IK_Identifier:
6545  case UnqualifiedId::IK_OperatorFunctionId:
6546  case UnqualifiedId::IK_LiteralOperatorId:
6547  case UnqualifiedId::IK_ConversionFunctionId:
6548    break;
6549
6550  case UnqualifiedId::IK_ConstructorName:
6551  case UnqualifiedId::IK_ConstructorTemplateId:
6552    // C++11 inheriting constructors.
6553    Diag(Name.getLocStart(),
6554         getLangOpts().CPlusPlus11 ?
6555           diag::warn_cxx98_compat_using_decl_constructor :
6556           diag::err_using_decl_constructor)
6557      << SS.getRange();
6558
6559    if (getLangOpts().CPlusPlus11) break;
6560
6561    return 0;
6562
6563  case UnqualifiedId::IK_DestructorName:
6564    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6565      << SS.getRange();
6566    return 0;
6567
6568  case UnqualifiedId::IK_TemplateId:
6569    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6570      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6571    return 0;
6572  }
6573
6574  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6575  DeclarationName TargetName = TargetNameInfo.getName();
6576  if (!TargetName)
6577    return 0;
6578
6579  // Warn about access declarations.
6580  // TODO: store that the declaration was written without 'using' and
6581  // talk about access decls instead of using decls in the
6582  // diagnostics.
6583  if (!HasUsingKeyword) {
6584    UsingLoc = Name.getLocStart();
6585
6586    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6587      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6588  }
6589
6590  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6591      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6592    return 0;
6593
6594  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6595                                        TargetNameInfo, AttrList,
6596                                        /* IsInstantiation */ false,
6597                                        IsTypeName, TypenameLoc);
6598  if (UD)
6599    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6600
6601  return UD;
6602}
6603
6604/// \brief Determine whether a using declaration considers the given
6605/// declarations as "equivalent", e.g., if they are redeclarations of
6606/// the same entity or are both typedefs of the same type.
6607static bool
6608IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6609                         bool &SuppressRedeclaration) {
6610  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6611    SuppressRedeclaration = false;
6612    return true;
6613  }
6614
6615  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6616    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6617      SuppressRedeclaration = true;
6618      return Context.hasSameType(TD1->getUnderlyingType(),
6619                                 TD2->getUnderlyingType());
6620    }
6621
6622  return false;
6623}
6624
6625
6626/// Determines whether to create a using shadow decl for a particular
6627/// decl, given the set of decls existing prior to this using lookup.
6628bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6629                                const LookupResult &Previous) {
6630  // Diagnose finding a decl which is not from a base class of the
6631  // current class.  We do this now because there are cases where this
6632  // function will silently decide not to build a shadow decl, which
6633  // will pre-empt further diagnostics.
6634  //
6635  // We don't need to do this in C++0x because we do the check once on
6636  // the qualifier.
6637  //
6638  // FIXME: diagnose the following if we care enough:
6639  //   struct A { int foo; };
6640  //   struct B : A { using A::foo; };
6641  //   template <class T> struct C : A {};
6642  //   template <class T> struct D : C<T> { using B::foo; } // <---
6643  // This is invalid (during instantiation) in C++03 because B::foo
6644  // resolves to the using decl in B, which is not a base class of D<T>.
6645  // We can't diagnose it immediately because C<T> is an unknown
6646  // specialization.  The UsingShadowDecl in D<T> then points directly
6647  // to A::foo, which will look well-formed when we instantiate.
6648  // The right solution is to not collapse the shadow-decl chain.
6649  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6650    DeclContext *OrigDC = Orig->getDeclContext();
6651
6652    // Handle enums and anonymous structs.
6653    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6654    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6655    while (OrigRec->isAnonymousStructOrUnion())
6656      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6657
6658    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6659      if (OrigDC == CurContext) {
6660        Diag(Using->getLocation(),
6661             diag::err_using_decl_nested_name_specifier_is_current_class)
6662          << Using->getQualifierLoc().getSourceRange();
6663        Diag(Orig->getLocation(), diag::note_using_decl_target);
6664        return true;
6665      }
6666
6667      Diag(Using->getQualifierLoc().getBeginLoc(),
6668           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6669        << Using->getQualifier()
6670        << cast<CXXRecordDecl>(CurContext)
6671        << Using->getQualifierLoc().getSourceRange();
6672      Diag(Orig->getLocation(), diag::note_using_decl_target);
6673      return true;
6674    }
6675  }
6676
6677  if (Previous.empty()) return false;
6678
6679  NamedDecl *Target = Orig;
6680  if (isa<UsingShadowDecl>(Target))
6681    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6682
6683  // If the target happens to be one of the previous declarations, we
6684  // don't have a conflict.
6685  //
6686  // FIXME: but we might be increasing its access, in which case we
6687  // should redeclare it.
6688  NamedDecl *NonTag = 0, *Tag = 0;
6689  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6690         I != E; ++I) {
6691    NamedDecl *D = (*I)->getUnderlyingDecl();
6692    bool Result;
6693    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6694      return Result;
6695
6696    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6697  }
6698
6699  if (Target->isFunctionOrFunctionTemplate()) {
6700    FunctionDecl *FD;
6701    if (isa<FunctionTemplateDecl>(Target))
6702      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6703    else
6704      FD = cast<FunctionDecl>(Target);
6705
6706    NamedDecl *OldDecl = 0;
6707    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6708    case Ovl_Overload:
6709      return false;
6710
6711    case Ovl_NonFunction:
6712      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6713      break;
6714
6715    // We found a decl with the exact signature.
6716    case Ovl_Match:
6717      // If we're in a record, we want to hide the target, so we
6718      // return true (without a diagnostic) to tell the caller not to
6719      // build a shadow decl.
6720      if (CurContext->isRecord())
6721        return true;
6722
6723      // If we're not in a record, this is an error.
6724      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6725      break;
6726    }
6727
6728    Diag(Target->getLocation(), diag::note_using_decl_target);
6729    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6730    return true;
6731  }
6732
6733  // Target is not a function.
6734
6735  if (isa<TagDecl>(Target)) {
6736    // No conflict between a tag and a non-tag.
6737    if (!Tag) return false;
6738
6739    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6740    Diag(Target->getLocation(), diag::note_using_decl_target);
6741    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6742    return true;
6743  }
6744
6745  // No conflict between a tag and a non-tag.
6746  if (!NonTag) return false;
6747
6748  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6749  Diag(Target->getLocation(), diag::note_using_decl_target);
6750  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6751  return true;
6752}
6753
6754/// Builds a shadow declaration corresponding to a 'using' declaration.
6755UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6756                                            UsingDecl *UD,
6757                                            NamedDecl *Orig) {
6758
6759  // If we resolved to another shadow declaration, just coalesce them.
6760  NamedDecl *Target = Orig;
6761  if (isa<UsingShadowDecl>(Target)) {
6762    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6763    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6764  }
6765
6766  UsingShadowDecl *Shadow
6767    = UsingShadowDecl::Create(Context, CurContext,
6768                              UD->getLocation(), UD, Target);
6769  UD->addShadowDecl(Shadow);
6770
6771  Shadow->setAccess(UD->getAccess());
6772  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6773    Shadow->setInvalidDecl();
6774
6775  if (S)
6776    PushOnScopeChains(Shadow, S);
6777  else
6778    CurContext->addDecl(Shadow);
6779
6780
6781  return Shadow;
6782}
6783
6784/// Hides a using shadow declaration.  This is required by the current
6785/// using-decl implementation when a resolvable using declaration in a
6786/// class is followed by a declaration which would hide or override
6787/// one or more of the using decl's targets; for example:
6788///
6789///   struct Base { void foo(int); };
6790///   struct Derived : Base {
6791///     using Base::foo;
6792///     void foo(int);
6793///   };
6794///
6795/// The governing language is C++03 [namespace.udecl]p12:
6796///
6797///   When a using-declaration brings names from a base class into a
6798///   derived class scope, member functions in the derived class
6799///   override and/or hide member functions with the same name and
6800///   parameter types in a base class (rather than conflicting).
6801///
6802/// There are two ways to implement this:
6803///   (1) optimistically create shadow decls when they're not hidden
6804///       by existing declarations, or
6805///   (2) don't create any shadow decls (or at least don't make them
6806///       visible) until we've fully parsed/instantiated the class.
6807/// The problem with (1) is that we might have to retroactively remove
6808/// a shadow decl, which requires several O(n) operations because the
6809/// decl structures are (very reasonably) not designed for removal.
6810/// (2) avoids this but is very fiddly and phase-dependent.
6811void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6812  if (Shadow->getDeclName().getNameKind() ==
6813        DeclarationName::CXXConversionFunctionName)
6814    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6815
6816  // Remove it from the DeclContext...
6817  Shadow->getDeclContext()->removeDecl(Shadow);
6818
6819  // ...and the scope, if applicable...
6820  if (S) {
6821    S->RemoveDecl(Shadow);
6822    IdResolver.RemoveDecl(Shadow);
6823  }
6824
6825  // ...and the using decl.
6826  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6827
6828  // TODO: complain somehow if Shadow was used.  It shouldn't
6829  // be possible for this to happen, because...?
6830}
6831
6832/// Builds a using declaration.
6833///
6834/// \param IsInstantiation - Whether this call arises from an
6835///   instantiation of an unresolved using declaration.  We treat
6836///   the lookup differently for these declarations.
6837NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6838                                       SourceLocation UsingLoc,
6839                                       CXXScopeSpec &SS,
6840                                       const DeclarationNameInfo &NameInfo,
6841                                       AttributeList *AttrList,
6842                                       bool IsInstantiation,
6843                                       bool IsTypeName,
6844                                       SourceLocation TypenameLoc) {
6845  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6846  SourceLocation IdentLoc = NameInfo.getLoc();
6847  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6848
6849  // FIXME: We ignore attributes for now.
6850
6851  if (SS.isEmpty()) {
6852    Diag(IdentLoc, diag::err_using_requires_qualname);
6853    return 0;
6854  }
6855
6856  // Do the redeclaration lookup in the current scope.
6857  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6858                        ForRedeclaration);
6859  Previous.setHideTags(false);
6860  if (S) {
6861    LookupName(Previous, S);
6862
6863    // It is really dumb that we have to do this.
6864    LookupResult::Filter F = Previous.makeFilter();
6865    while (F.hasNext()) {
6866      NamedDecl *D = F.next();
6867      if (!isDeclInScope(D, CurContext, S))
6868        F.erase();
6869    }
6870    F.done();
6871  } else {
6872    assert(IsInstantiation && "no scope in non-instantiation");
6873    assert(CurContext->isRecord() && "scope not record in instantiation");
6874    LookupQualifiedName(Previous, CurContext);
6875  }
6876
6877  // Check for invalid redeclarations.
6878  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6879    return 0;
6880
6881  // Check for bad qualifiers.
6882  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6883    return 0;
6884
6885  DeclContext *LookupContext = computeDeclContext(SS);
6886  NamedDecl *D;
6887  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6888  if (!LookupContext) {
6889    if (IsTypeName) {
6890      // FIXME: not all declaration name kinds are legal here
6891      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6892                                              UsingLoc, TypenameLoc,
6893                                              QualifierLoc,
6894                                              IdentLoc, NameInfo.getName());
6895    } else {
6896      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6897                                           QualifierLoc, NameInfo);
6898    }
6899  } else {
6900    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6901                          NameInfo, IsTypeName);
6902  }
6903  D->setAccess(AS);
6904  CurContext->addDecl(D);
6905
6906  if (!LookupContext) return D;
6907  UsingDecl *UD = cast<UsingDecl>(D);
6908
6909  if (RequireCompleteDeclContext(SS, LookupContext)) {
6910    UD->setInvalidDecl();
6911    return UD;
6912  }
6913
6914  // The normal rules do not apply to inheriting constructor declarations.
6915  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6916    if (CheckInheritingConstructorUsingDecl(UD))
6917      UD->setInvalidDecl();
6918    return UD;
6919  }
6920
6921  // Otherwise, look up the target name.
6922
6923  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6924
6925  // Unlike most lookups, we don't always want to hide tag
6926  // declarations: tag names are visible through the using declaration
6927  // even if hidden by ordinary names, *except* in a dependent context
6928  // where it's important for the sanity of two-phase lookup.
6929  if (!IsInstantiation)
6930    R.setHideTags(false);
6931
6932  // For the purposes of this lookup, we have a base object type
6933  // equal to that of the current context.
6934  if (CurContext->isRecord()) {
6935    R.setBaseObjectType(
6936                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6937  }
6938
6939  LookupQualifiedName(R, LookupContext);
6940
6941  if (R.empty()) {
6942    Diag(IdentLoc, diag::err_no_member)
6943      << NameInfo.getName() << LookupContext << SS.getRange();
6944    UD->setInvalidDecl();
6945    return UD;
6946  }
6947
6948  if (R.isAmbiguous()) {
6949    UD->setInvalidDecl();
6950    return UD;
6951  }
6952
6953  if (IsTypeName) {
6954    // If we asked for a typename and got a non-type decl, error out.
6955    if (!R.getAsSingle<TypeDecl>()) {
6956      Diag(IdentLoc, diag::err_using_typename_non_type);
6957      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6958        Diag((*I)->getUnderlyingDecl()->getLocation(),
6959             diag::note_using_decl_target);
6960      UD->setInvalidDecl();
6961      return UD;
6962    }
6963  } else {
6964    // If we asked for a non-typename and we got a type, error out,
6965    // but only if this is an instantiation of an unresolved using
6966    // decl.  Otherwise just silently find the type name.
6967    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6968      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6969      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6970      UD->setInvalidDecl();
6971      return UD;
6972    }
6973  }
6974
6975  // C++0x N2914 [namespace.udecl]p6:
6976  // A using-declaration shall not name a namespace.
6977  if (R.getAsSingle<NamespaceDecl>()) {
6978    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6979      << SS.getRange();
6980    UD->setInvalidDecl();
6981    return UD;
6982  }
6983
6984  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6985    if (!CheckUsingShadowDecl(UD, *I, Previous))
6986      BuildUsingShadowDecl(S, UD, *I);
6987  }
6988
6989  return UD;
6990}
6991
6992/// Additional checks for a using declaration referring to a constructor name.
6993bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6994  assert(!UD->isTypeName() && "expecting a constructor name");
6995
6996  const Type *SourceType = UD->getQualifier()->getAsType();
6997  assert(SourceType &&
6998         "Using decl naming constructor doesn't have type in scope spec.");
6999  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7000
7001  // Check whether the named type is a direct base class.
7002  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7003  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7004  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7005       BaseIt != BaseE; ++BaseIt) {
7006    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7007    if (CanonicalSourceType == BaseType)
7008      break;
7009    if (BaseIt->getType()->isDependentType())
7010      break;
7011  }
7012
7013  if (BaseIt == BaseE) {
7014    // Did not find SourceType in the bases.
7015    Diag(UD->getUsingLocation(),
7016         diag::err_using_decl_constructor_not_in_direct_base)
7017      << UD->getNameInfo().getSourceRange()
7018      << QualType(SourceType, 0) << TargetClass;
7019    return true;
7020  }
7021
7022  if (!CurContext->isDependentContext())
7023    BaseIt->setInheritConstructors();
7024
7025  return false;
7026}
7027
7028/// Checks that the given using declaration is not an invalid
7029/// redeclaration.  Note that this is checking only for the using decl
7030/// itself, not for any ill-formedness among the UsingShadowDecls.
7031bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7032                                       bool isTypeName,
7033                                       const CXXScopeSpec &SS,
7034                                       SourceLocation NameLoc,
7035                                       const LookupResult &Prev) {
7036  // C++03 [namespace.udecl]p8:
7037  // C++0x [namespace.udecl]p10:
7038  //   A using-declaration is a declaration and can therefore be used
7039  //   repeatedly where (and only where) multiple declarations are
7040  //   allowed.
7041  //
7042  // That's in non-member contexts.
7043  if (!CurContext->getRedeclContext()->isRecord())
7044    return false;
7045
7046  NestedNameSpecifier *Qual
7047    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7048
7049  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7050    NamedDecl *D = *I;
7051
7052    bool DTypename;
7053    NestedNameSpecifier *DQual;
7054    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7055      DTypename = UD->isTypeName();
7056      DQual = UD->getQualifier();
7057    } else if (UnresolvedUsingValueDecl *UD
7058                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7059      DTypename = false;
7060      DQual = UD->getQualifier();
7061    } else if (UnresolvedUsingTypenameDecl *UD
7062                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7063      DTypename = true;
7064      DQual = UD->getQualifier();
7065    } else continue;
7066
7067    // using decls differ if one says 'typename' and the other doesn't.
7068    // FIXME: non-dependent using decls?
7069    if (isTypeName != DTypename) continue;
7070
7071    // using decls differ if they name different scopes (but note that
7072    // template instantiation can cause this check to trigger when it
7073    // didn't before instantiation).
7074    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7075        Context.getCanonicalNestedNameSpecifier(DQual))
7076      continue;
7077
7078    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7079    Diag(D->getLocation(), diag::note_using_decl) << 1;
7080    return true;
7081  }
7082
7083  return false;
7084}
7085
7086
7087/// Checks that the given nested-name qualifier used in a using decl
7088/// in the current context is appropriately related to the current
7089/// scope.  If an error is found, diagnoses it and returns true.
7090bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7091                                   const CXXScopeSpec &SS,
7092                                   SourceLocation NameLoc) {
7093  DeclContext *NamedContext = computeDeclContext(SS);
7094
7095  if (!CurContext->isRecord()) {
7096    // C++03 [namespace.udecl]p3:
7097    // C++0x [namespace.udecl]p8:
7098    //   A using-declaration for a class member shall be a member-declaration.
7099
7100    // If we weren't able to compute a valid scope, it must be a
7101    // dependent class scope.
7102    if (!NamedContext || NamedContext->isRecord()) {
7103      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7104        << SS.getRange();
7105      return true;
7106    }
7107
7108    // Otherwise, everything is known to be fine.
7109    return false;
7110  }
7111
7112  // The current scope is a record.
7113
7114  // If the named context is dependent, we can't decide much.
7115  if (!NamedContext) {
7116    // FIXME: in C++0x, we can diagnose if we can prove that the
7117    // nested-name-specifier does not refer to a base class, which is
7118    // still possible in some cases.
7119
7120    // Otherwise we have to conservatively report that things might be
7121    // okay.
7122    return false;
7123  }
7124
7125  if (!NamedContext->isRecord()) {
7126    // Ideally this would point at the last name in the specifier,
7127    // but we don't have that level of source info.
7128    Diag(SS.getRange().getBegin(),
7129         diag::err_using_decl_nested_name_specifier_is_not_class)
7130      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7131    return true;
7132  }
7133
7134  if (!NamedContext->isDependentContext() &&
7135      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7136    return true;
7137
7138  if (getLangOpts().CPlusPlus11) {
7139    // C++0x [namespace.udecl]p3:
7140    //   In a using-declaration used as a member-declaration, the
7141    //   nested-name-specifier shall name a base class of the class
7142    //   being defined.
7143
7144    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7145                                 cast<CXXRecordDecl>(NamedContext))) {
7146      if (CurContext == NamedContext) {
7147        Diag(NameLoc,
7148             diag::err_using_decl_nested_name_specifier_is_current_class)
7149          << SS.getRange();
7150        return true;
7151      }
7152
7153      Diag(SS.getRange().getBegin(),
7154           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7155        << (NestedNameSpecifier*) SS.getScopeRep()
7156        << cast<CXXRecordDecl>(CurContext)
7157        << SS.getRange();
7158      return true;
7159    }
7160
7161    return false;
7162  }
7163
7164  // C++03 [namespace.udecl]p4:
7165  //   A using-declaration used as a member-declaration shall refer
7166  //   to a member of a base class of the class being defined [etc.].
7167
7168  // Salient point: SS doesn't have to name a base class as long as
7169  // lookup only finds members from base classes.  Therefore we can
7170  // diagnose here only if we can prove that that can't happen,
7171  // i.e. if the class hierarchies provably don't intersect.
7172
7173  // TODO: it would be nice if "definitely valid" results were cached
7174  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7175  // need to be repeated.
7176
7177  struct UserData {
7178    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7179
7180    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7181      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7182      Data->Bases.insert(Base);
7183      return true;
7184    }
7185
7186    bool hasDependentBases(const CXXRecordDecl *Class) {
7187      return !Class->forallBases(collect, this);
7188    }
7189
7190    /// Returns true if the base is dependent or is one of the
7191    /// accumulated base classes.
7192    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7193      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7194      return !Data->Bases.count(Base);
7195    }
7196
7197    bool mightShareBases(const CXXRecordDecl *Class) {
7198      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7199    }
7200  };
7201
7202  UserData Data;
7203
7204  // Returns false if we find a dependent base.
7205  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7206    return false;
7207
7208  // Returns false if the class has a dependent base or if it or one
7209  // of its bases is present in the base set of the current context.
7210  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7211    return false;
7212
7213  Diag(SS.getRange().getBegin(),
7214       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7215    << (NestedNameSpecifier*) SS.getScopeRep()
7216    << cast<CXXRecordDecl>(CurContext)
7217    << SS.getRange();
7218
7219  return true;
7220}
7221
7222Decl *Sema::ActOnAliasDeclaration(Scope *S,
7223                                  AccessSpecifier AS,
7224                                  MultiTemplateParamsArg TemplateParamLists,
7225                                  SourceLocation UsingLoc,
7226                                  UnqualifiedId &Name,
7227                                  AttributeList *AttrList,
7228                                  TypeResult Type) {
7229  // Skip up to the relevant declaration scope.
7230  while (S->getFlags() & Scope::TemplateParamScope)
7231    S = S->getParent();
7232  assert((S->getFlags() & Scope::DeclScope) &&
7233         "got alias-declaration outside of declaration scope");
7234
7235  if (Type.isInvalid())
7236    return 0;
7237
7238  bool Invalid = false;
7239  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7240  TypeSourceInfo *TInfo = 0;
7241  GetTypeFromParser(Type.get(), &TInfo);
7242
7243  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7244    return 0;
7245
7246  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7247                                      UPPC_DeclarationType)) {
7248    Invalid = true;
7249    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7250                                             TInfo->getTypeLoc().getBeginLoc());
7251  }
7252
7253  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7254  LookupName(Previous, S);
7255
7256  // Warn about shadowing the name of a template parameter.
7257  if (Previous.isSingleResult() &&
7258      Previous.getFoundDecl()->isTemplateParameter()) {
7259    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7260    Previous.clear();
7261  }
7262
7263  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7264         "name in alias declaration must be an identifier");
7265  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7266                                               Name.StartLocation,
7267                                               Name.Identifier, TInfo);
7268
7269  NewTD->setAccess(AS);
7270
7271  if (Invalid)
7272    NewTD->setInvalidDecl();
7273
7274  ProcessDeclAttributeList(S, NewTD, AttrList);
7275
7276  CheckTypedefForVariablyModifiedType(S, NewTD);
7277  Invalid |= NewTD->isInvalidDecl();
7278
7279  bool Redeclaration = false;
7280
7281  NamedDecl *NewND;
7282  if (TemplateParamLists.size()) {
7283    TypeAliasTemplateDecl *OldDecl = 0;
7284    TemplateParameterList *OldTemplateParams = 0;
7285
7286    if (TemplateParamLists.size() != 1) {
7287      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7288        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7289         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7290    }
7291    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7292
7293    // Only consider previous declarations in the same scope.
7294    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7295                         /*ExplicitInstantiationOrSpecialization*/false);
7296    if (!Previous.empty()) {
7297      Redeclaration = true;
7298
7299      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7300      if (!OldDecl && !Invalid) {
7301        Diag(UsingLoc, diag::err_redefinition_different_kind)
7302          << Name.Identifier;
7303
7304        NamedDecl *OldD = Previous.getRepresentativeDecl();
7305        if (OldD->getLocation().isValid())
7306          Diag(OldD->getLocation(), diag::note_previous_definition);
7307
7308        Invalid = true;
7309      }
7310
7311      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7312        if (TemplateParameterListsAreEqual(TemplateParams,
7313                                           OldDecl->getTemplateParameters(),
7314                                           /*Complain=*/true,
7315                                           TPL_TemplateMatch))
7316          OldTemplateParams = OldDecl->getTemplateParameters();
7317        else
7318          Invalid = true;
7319
7320        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7321        if (!Invalid &&
7322            !Context.hasSameType(OldTD->getUnderlyingType(),
7323                                 NewTD->getUnderlyingType())) {
7324          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7325          // but we can't reasonably accept it.
7326          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7327            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7328          if (OldTD->getLocation().isValid())
7329            Diag(OldTD->getLocation(), diag::note_previous_definition);
7330          Invalid = true;
7331        }
7332      }
7333    }
7334
7335    // Merge any previous default template arguments into our parameters,
7336    // and check the parameter list.
7337    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7338                                   TPC_TypeAliasTemplate))
7339      return 0;
7340
7341    TypeAliasTemplateDecl *NewDecl =
7342      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7343                                    Name.Identifier, TemplateParams,
7344                                    NewTD);
7345
7346    NewDecl->setAccess(AS);
7347
7348    if (Invalid)
7349      NewDecl->setInvalidDecl();
7350    else if (OldDecl)
7351      NewDecl->setPreviousDeclaration(OldDecl);
7352
7353    NewND = NewDecl;
7354  } else {
7355    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7356    NewND = NewTD;
7357  }
7358
7359  if (!Redeclaration)
7360    PushOnScopeChains(NewND, S);
7361
7362  ActOnDocumentableDecl(NewND);
7363  return NewND;
7364}
7365
7366Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7367                                             SourceLocation NamespaceLoc,
7368                                             SourceLocation AliasLoc,
7369                                             IdentifierInfo *Alias,
7370                                             CXXScopeSpec &SS,
7371                                             SourceLocation IdentLoc,
7372                                             IdentifierInfo *Ident) {
7373
7374  // Lookup the namespace name.
7375  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7376  LookupParsedName(R, S, &SS);
7377
7378  // Check if we have a previous declaration with the same name.
7379  NamedDecl *PrevDecl
7380    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7381                       ForRedeclaration);
7382  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7383    PrevDecl = 0;
7384
7385  if (PrevDecl) {
7386    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7387      // We already have an alias with the same name that points to the same
7388      // namespace, so don't create a new one.
7389      // FIXME: At some point, we'll want to create the (redundant)
7390      // declaration to maintain better source information.
7391      if (!R.isAmbiguous() && !R.empty() &&
7392          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7393        return 0;
7394    }
7395
7396    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7397      diag::err_redefinition_different_kind;
7398    Diag(AliasLoc, DiagID) << Alias;
7399    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7400    return 0;
7401  }
7402
7403  if (R.isAmbiguous())
7404    return 0;
7405
7406  if (R.empty()) {
7407    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7408      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7409      return 0;
7410    }
7411  }
7412
7413  NamespaceAliasDecl *AliasDecl =
7414    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7415                               Alias, SS.getWithLocInContext(Context),
7416                               IdentLoc, R.getFoundDecl());
7417
7418  PushOnScopeChains(AliasDecl, S);
7419  return AliasDecl;
7420}
7421
7422Sema::ImplicitExceptionSpecification
7423Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7424                                               CXXMethodDecl *MD) {
7425  CXXRecordDecl *ClassDecl = MD->getParent();
7426
7427  // C++ [except.spec]p14:
7428  //   An implicitly declared special member function (Clause 12) shall have an
7429  //   exception-specification. [...]
7430  ImplicitExceptionSpecification ExceptSpec(*this);
7431  if (ClassDecl->isInvalidDecl())
7432    return ExceptSpec;
7433
7434  // Direct base-class constructors.
7435  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7436                                       BEnd = ClassDecl->bases_end();
7437       B != BEnd; ++B) {
7438    if (B->isVirtual()) // Handled below.
7439      continue;
7440
7441    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7442      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7443      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7444      // If this is a deleted function, add it anyway. This might be conformant
7445      // with the standard. This might not. I'm not sure. It might not matter.
7446      if (Constructor)
7447        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7448    }
7449  }
7450
7451  // Virtual base-class constructors.
7452  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7453                                       BEnd = ClassDecl->vbases_end();
7454       B != BEnd; ++B) {
7455    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7456      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7457      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7458      // If this is a deleted function, add it anyway. This might be conformant
7459      // with the standard. This might not. I'm not sure. It might not matter.
7460      if (Constructor)
7461        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7462    }
7463  }
7464
7465  // Field constructors.
7466  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7467                               FEnd = ClassDecl->field_end();
7468       F != FEnd; ++F) {
7469    if (F->hasInClassInitializer()) {
7470      if (Expr *E = F->getInClassInitializer())
7471        ExceptSpec.CalledExpr(E);
7472      else if (!F->isInvalidDecl())
7473        // DR1351:
7474        //   If the brace-or-equal-initializer of a non-static data member
7475        //   invokes a defaulted default constructor of its class or of an
7476        //   enclosing class in a potentially evaluated subexpression, the
7477        //   program is ill-formed.
7478        //
7479        // This resolution is unworkable: the exception specification of the
7480        // default constructor can be needed in an unevaluated context, in
7481        // particular, in the operand of a noexcept-expression, and we can be
7482        // unable to compute an exception specification for an enclosed class.
7483        //
7484        // We do not allow an in-class initializer to require the evaluation
7485        // of the exception specification for any in-class initializer whose
7486        // definition is not lexically complete.
7487        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7488    } else if (const RecordType *RecordTy
7489              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7490      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7491      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7492      // If this is a deleted function, add it anyway. This might be conformant
7493      // with the standard. This might not. I'm not sure. It might not matter.
7494      // In particular, the problem is that this function never gets called. It
7495      // might just be ill-formed because this function attempts to refer to
7496      // a deleted function here.
7497      if (Constructor)
7498        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7499    }
7500  }
7501
7502  return ExceptSpec;
7503}
7504
7505Sema::ImplicitExceptionSpecification
7506Sema::ComputeInheritingCtorExceptionSpec(CXXMethodDecl *MD) {
7507  ImplicitExceptionSpecification ExceptSpec(*this);
7508  // FIXME: Compute the exception spec.
7509  return ExceptSpec;
7510}
7511
7512namespace {
7513/// RAII object to register a special member as being currently declared.
7514struct DeclaringSpecialMember {
7515  Sema &S;
7516  Sema::SpecialMemberDecl D;
7517  bool WasAlreadyBeingDeclared;
7518
7519  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7520    : S(S), D(RD, CSM) {
7521    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7522    if (WasAlreadyBeingDeclared)
7523      // This almost never happens, but if it does, ensure that our cache
7524      // doesn't contain a stale result.
7525      S.SpecialMemberCache.clear();
7526
7527    // FIXME: Register a note to be produced if we encounter an error while
7528    // declaring the special member.
7529  }
7530  ~DeclaringSpecialMember() {
7531    if (!WasAlreadyBeingDeclared)
7532      S.SpecialMembersBeingDeclared.erase(D);
7533  }
7534
7535  /// \brief Are we already trying to declare this special member?
7536  bool isAlreadyBeingDeclared() const {
7537    return WasAlreadyBeingDeclared;
7538  }
7539};
7540}
7541
7542CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7543                                                     CXXRecordDecl *ClassDecl) {
7544  // C++ [class.ctor]p5:
7545  //   A default constructor for a class X is a constructor of class X
7546  //   that can be called without an argument. If there is no
7547  //   user-declared constructor for class X, a default constructor is
7548  //   implicitly declared. An implicitly-declared default constructor
7549  //   is an inline public member of its class.
7550  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7551         "Should not build implicit default constructor!");
7552
7553  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7554  if (DSM.isAlreadyBeingDeclared())
7555    return 0;
7556
7557  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7558                                                     CXXDefaultConstructor,
7559                                                     false);
7560
7561  // Create the actual constructor declaration.
7562  CanQualType ClassType
7563    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7564  SourceLocation ClassLoc = ClassDecl->getLocation();
7565  DeclarationName Name
7566    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7567  DeclarationNameInfo NameInfo(Name, ClassLoc);
7568  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7569      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7570      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7571      Constexpr);
7572  DefaultCon->setAccess(AS_public);
7573  DefaultCon->setDefaulted();
7574  DefaultCon->setImplicit();
7575
7576  // Build an exception specification pointing back at this constructor.
7577  FunctionProtoType::ExtProtoInfo EPI;
7578  EPI.ExceptionSpecType = EST_Unevaluated;
7579  EPI.ExceptionSpecDecl = DefaultCon;
7580  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7581                                              ArrayRef<QualType>(),
7582                                              EPI));
7583
7584  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7585  // constructors is easy to compute.
7586  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7587
7588  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7589    SetDeclDeleted(DefaultCon, ClassLoc);
7590
7591  // Note that we have declared this constructor.
7592  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7593
7594  if (Scope *S = getScopeForContext(ClassDecl))
7595    PushOnScopeChains(DefaultCon, S, false);
7596  ClassDecl->addDecl(DefaultCon);
7597
7598  return DefaultCon;
7599}
7600
7601void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7602                                            CXXConstructorDecl *Constructor) {
7603  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7604          !Constructor->doesThisDeclarationHaveABody() &&
7605          !Constructor->isDeleted()) &&
7606    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7607
7608  CXXRecordDecl *ClassDecl = Constructor->getParent();
7609  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7610
7611  SynthesizedFunctionScope Scope(*this, Constructor);
7612  DiagnosticErrorTrap Trap(Diags);
7613  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7614      Trap.hasErrorOccurred()) {
7615    Diag(CurrentLocation, diag::note_member_synthesized_at)
7616      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7617    Constructor->setInvalidDecl();
7618    return;
7619  }
7620
7621  SourceLocation Loc = Constructor->getLocation();
7622  Constructor->setBody(new (Context) CompoundStmt(Loc));
7623
7624  Constructor->setUsed();
7625  MarkVTableUsed(CurrentLocation, ClassDecl);
7626
7627  if (ASTMutationListener *L = getASTMutationListener()) {
7628    L->CompletedImplicitDefinition(Constructor);
7629  }
7630}
7631
7632void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7633  // Check that any explicitly-defaulted methods have exception specifications
7634  // compatible with their implicit exception specifications.
7635  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7636}
7637
7638void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
7639  // We start with an initial pass over the base classes to collect those that
7640  // inherit constructors from. If there are none, we can forgo all further
7641  // processing.
7642  typedef SmallVector<const RecordType *, 4> BasesVector;
7643  BasesVector BasesToInheritFrom;
7644  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7645                                          BaseE = ClassDecl->bases_end();
7646         BaseIt != BaseE; ++BaseIt) {
7647    if (BaseIt->getInheritConstructors()) {
7648      QualType Base = BaseIt->getType();
7649      if (Base->isDependentType()) {
7650        // If we inherit constructors from anything that is dependent, just
7651        // abort processing altogether. We'll get another chance for the
7652        // instantiations.
7653        // FIXME: We need to ensure that any call to a constructor of this class
7654        // is considered instantiation-dependent in this case.
7655        return;
7656      }
7657      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7658    }
7659  }
7660  if (BasesToInheritFrom.empty())
7661    return;
7662
7663  // FIXME: Constructor templates.
7664
7665  // Now collect the constructors that we already have in the current class.
7666  // Those take precedence over inherited constructors.
7667  // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7668  //   unless there is a user-declared constructor with the same signature in
7669  //   the class where the using-declaration appears.
7670  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7671  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7672                                    CtorE = ClassDecl->ctor_end();
7673       CtorIt != CtorE; ++CtorIt)
7674    ExistingConstructors.insert(
7675        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7676
7677  DeclarationName CreatedCtorName =
7678      Context.DeclarationNames.getCXXConstructorName(
7679          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7680
7681  // Now comes the true work.
7682  // First, we keep a map from constructor types to the base that introduced
7683  // them. Needed for finding conflicting constructors. We also keep the
7684  // actually inserted declarations in there, for pretty diagnostics.
7685  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7686  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7687  ConstructorToSourceMap InheritedConstructors;
7688  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7689                             BaseE = BasesToInheritFrom.end();
7690       BaseIt != BaseE; ++BaseIt) {
7691    const RecordType *Base = *BaseIt;
7692    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7693    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7694    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7695                                      CtorE = BaseDecl->ctor_end();
7696         CtorIt != CtorE; ++CtorIt) {
7697      // Find the using declaration for inheriting this base's constructors.
7698      // FIXME: Don't perform name lookup just to obtain a source location!
7699      DeclarationName Name =
7700          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7701      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7702      LookupQualifiedName(Result, CurContext);
7703      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7704      SourceLocation UsingLoc = UD ? UD->getLocation() :
7705                                     ClassDecl->getLocation();
7706
7707      // C++11 [class.inhctor]p1:
7708      //   The candidate set of inherited constructors from the class X named in
7709      //   the using-declaration consists of actual constructors and notional
7710      //   constructors that result from the transformation of defaulted
7711      //   parameters as follows:
7712      //   - all non-template constructors of X, and
7713      //   - for each non-template constructor of X that has at least one
7714      //     parameter with a default argument, the set of constructors that
7715      //     results from omitting any ellipsis parameter specification and
7716      //     successively omitting parameters with a default argument from the
7717      //     end of the parameter-type-list, and
7718      // FIXME: ...also constructor templates.
7719      CXXConstructorDecl *BaseCtor = *CtorIt;
7720      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7721      const FunctionProtoType *BaseCtorType =
7722          BaseCtor->getType()->getAs<FunctionProtoType>();
7723
7724      // Determine whether this would be a copy or move constructor for the
7725      // derived class.
7726      if (BaseCtorType->getNumArgs() >= 1 &&
7727          BaseCtorType->getArgType(0)->isReferenceType() &&
7728          Context.hasSameUnqualifiedType(
7729            BaseCtorType->getArgType(0)->getPointeeType(),
7730            Context.getTagDeclType(ClassDecl)))
7731        CanBeCopyOrMove = true;
7732
7733      ArrayRef<QualType> ArgTypes(BaseCtorType->getArgTypes());
7734      FunctionProtoType::ExtProtoInfo EPI = BaseCtorType->getExtProtoInfo();
7735      // Core issue (no number yet): the ellipsis is always discarded.
7736      if (EPI.Variadic) {
7737        Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7738        Diag(BaseCtor->getLocation(),
7739             diag::note_using_decl_constructor_ellipsis);
7740        EPI.Variadic = false;
7741      }
7742
7743      for (unsigned Params = BaseCtor->getMinRequiredArguments(),
7744                    MaxParams = BaseCtor->getNumParams();
7745           Params <= MaxParams; ++Params) {
7746        // Skip default constructors. They're never inherited.
7747        if (Params == 0)
7748          continue;
7749
7750        // Skip copy and move constructors for both base and derived class
7751        // for the same reason.
7752        if (CanBeCopyOrMove && Params == 1)
7753          continue;
7754
7755        // Build up a function type for this particular constructor.
7756        QualType NewCtorType =
7757            Context.getFunctionType(Context.VoidTy, ArgTypes.slice(0, Params),
7758                                    EPI);
7759        const Type *CanonicalNewCtorType =
7760            Context.getCanonicalType(NewCtorType).getTypePtr();
7761
7762        // C++11 [class.inhctor]p3:
7763        //   ... a constructor is implicitly declared with the same constructor
7764        //   characteristics unless there is a user-declared constructor with
7765        //   the same signature in the class where the using-declaration appears
7766        if (ExistingConstructors.count(CanonicalNewCtorType))
7767          continue;
7768
7769        // C++11 [class.inhctor]p7:
7770        //   If two using-declarations declare inheriting constructors with the
7771        //   same signature, the program is ill-formed
7772        std::pair<ConstructorToSourceMap::iterator, bool> result =
7773            InheritedConstructors.insert(std::make_pair(
7774                CanonicalNewCtorType,
7775                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7776        if (!result.second) {
7777          // Already in the map. If it came from a different class, that's an
7778          // error. Not if it's from the same.
7779          CanQualType PreviousBase = result.first->second.first;
7780          if (CanonicalBase != PreviousBase) {
7781            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7782            const CXXConstructorDecl *PrevBaseCtor =
7783                PrevCtor->getInheritedConstructor();
7784            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7785
7786            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7787            Diag(BaseCtor->getLocation(),
7788                 diag::note_using_decl_constructor_conflict_current_ctor);
7789            Diag(PrevBaseCtor->getLocation(),
7790                 diag::note_using_decl_constructor_conflict_previous_ctor);
7791            Diag(PrevCtor->getLocation(),
7792                 diag::note_using_decl_constructor_conflict_previous_using);
7793          } else {
7794            // Core issue (no number): if the same inheriting constructor is
7795            // produced by multiple base class constructors from the same base
7796            // class, the inheriting constructor is defined as deleted.
7797            SetDeclDeleted(result.first->second.second, UsingLoc);
7798          }
7799          continue;
7800        }
7801
7802        // OK, we're there, now add the constructor.
7803        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7804        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7805            Context, ClassDecl, UsingLoc, DNI, NewCtorType,
7806            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7807            /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7808        NewCtor->setAccess(BaseCtor->getAccess());
7809
7810        // Build an unevaluated exception specification for this constructor.
7811        EPI.ExceptionSpecType = EST_Unevaluated;
7812        EPI.ExceptionSpecDecl = NewCtor;
7813        NewCtor->setType(Context.getFunctionType(Context.VoidTy,
7814                                                 ArgTypes.slice(0, Params),
7815                                                 EPI));
7816
7817        // Build up the parameter decls and add them.
7818        SmallVector<ParmVarDecl *, 16> ParamDecls;
7819        for (unsigned i = 0; i < Params; ++i) {
7820          ParmVarDecl *PD = ParmVarDecl::Create(Context, NewCtor,
7821                                                UsingLoc, UsingLoc,
7822                                                /*IdentifierInfo=*/0,
7823                                                BaseCtorType->getArgType(i),
7824                                                /*TInfo=*/0, SC_None,
7825                                                /*DefaultArg=*/0);
7826          PD->setScopeInfo(0, i);
7827          PD->setImplicit();
7828          ParamDecls.push_back(PD);
7829        }
7830        NewCtor->setParams(ParamDecls);
7831        NewCtor->setInheritedConstructor(BaseCtor);
7832        if (BaseCtor->isDeleted())
7833          SetDeclDeleted(NewCtor, UsingLoc);
7834
7835        ClassDecl->addDecl(NewCtor);
7836        result.first->second.second = NewCtor;
7837      }
7838    }
7839  }
7840}
7841
7842void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
7843                                       CXXConstructorDecl *Constructor) {
7844  CXXRecordDecl *ClassDecl = Constructor->getParent();
7845  assert(Constructor->getInheritedConstructor() &&
7846         !Constructor->doesThisDeclarationHaveABody() &&
7847         !Constructor->isDeleted());
7848
7849  SynthesizedFunctionScope Scope(*this, Constructor);
7850  DiagnosticErrorTrap Trap(Diags);
7851  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7852      Trap.hasErrorOccurred()) {
7853    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
7854      << Context.getTagDeclType(ClassDecl);
7855    Constructor->setInvalidDecl();
7856    return;
7857  }
7858
7859  SourceLocation Loc = Constructor->getLocation();
7860  Constructor->setBody(new (Context) CompoundStmt(Loc));
7861
7862  Constructor->setUsed();
7863  MarkVTableUsed(CurrentLocation, ClassDecl);
7864
7865  if (ASTMutationListener *L = getASTMutationListener()) {
7866    L->CompletedImplicitDefinition(Constructor);
7867  }
7868}
7869
7870
7871Sema::ImplicitExceptionSpecification
7872Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7873  CXXRecordDecl *ClassDecl = MD->getParent();
7874
7875  // C++ [except.spec]p14:
7876  //   An implicitly declared special member function (Clause 12) shall have
7877  //   an exception-specification.
7878  ImplicitExceptionSpecification ExceptSpec(*this);
7879  if (ClassDecl->isInvalidDecl())
7880    return ExceptSpec;
7881
7882  // Direct base-class destructors.
7883  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7884                                       BEnd = ClassDecl->bases_end();
7885       B != BEnd; ++B) {
7886    if (B->isVirtual()) // Handled below.
7887      continue;
7888
7889    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7890      ExceptSpec.CalledDecl(B->getLocStart(),
7891                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7892  }
7893
7894  // Virtual base-class destructors.
7895  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7896                                       BEnd = ClassDecl->vbases_end();
7897       B != BEnd; ++B) {
7898    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7899      ExceptSpec.CalledDecl(B->getLocStart(),
7900                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7901  }
7902
7903  // Field destructors.
7904  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7905                               FEnd = ClassDecl->field_end();
7906       F != FEnd; ++F) {
7907    if (const RecordType *RecordTy
7908        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7909      ExceptSpec.CalledDecl(F->getLocation(),
7910                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7911  }
7912
7913  return ExceptSpec;
7914}
7915
7916CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7917  // C++ [class.dtor]p2:
7918  //   If a class has no user-declared destructor, a destructor is
7919  //   declared implicitly. An implicitly-declared destructor is an
7920  //   inline public member of its class.
7921  assert(ClassDecl->needsImplicitDestructor());
7922
7923  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
7924  if (DSM.isAlreadyBeingDeclared())
7925    return 0;
7926
7927  // Create the actual destructor declaration.
7928  CanQualType ClassType
7929    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7930  SourceLocation ClassLoc = ClassDecl->getLocation();
7931  DeclarationName Name
7932    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7933  DeclarationNameInfo NameInfo(Name, ClassLoc);
7934  CXXDestructorDecl *Destructor
7935      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7936                                  QualType(), 0, /*isInline=*/true,
7937                                  /*isImplicitlyDeclared=*/true);
7938  Destructor->setAccess(AS_public);
7939  Destructor->setDefaulted();
7940  Destructor->setImplicit();
7941
7942  // Build an exception specification pointing back at this destructor.
7943  FunctionProtoType::ExtProtoInfo EPI;
7944  EPI.ExceptionSpecType = EST_Unevaluated;
7945  EPI.ExceptionSpecDecl = Destructor;
7946  Destructor->setType(Context.getFunctionType(Context.VoidTy,
7947                                              ArrayRef<QualType>(),
7948                                              EPI));
7949
7950  AddOverriddenMethods(ClassDecl, Destructor);
7951
7952  // We don't need to use SpecialMemberIsTrivial here; triviality for
7953  // destructors is easy to compute.
7954  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7955
7956  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7957    SetDeclDeleted(Destructor, ClassLoc);
7958
7959  // Note that we have declared this destructor.
7960  ++ASTContext::NumImplicitDestructorsDeclared;
7961
7962  // Introduce this destructor into its scope.
7963  if (Scope *S = getScopeForContext(ClassDecl))
7964    PushOnScopeChains(Destructor, S, false);
7965  ClassDecl->addDecl(Destructor);
7966
7967  return Destructor;
7968}
7969
7970void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7971                                    CXXDestructorDecl *Destructor) {
7972  assert((Destructor->isDefaulted() &&
7973          !Destructor->doesThisDeclarationHaveABody() &&
7974          !Destructor->isDeleted()) &&
7975         "DefineImplicitDestructor - call it for implicit default dtor");
7976  CXXRecordDecl *ClassDecl = Destructor->getParent();
7977  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7978
7979  if (Destructor->isInvalidDecl())
7980    return;
7981
7982  SynthesizedFunctionScope Scope(*this, Destructor);
7983
7984  DiagnosticErrorTrap Trap(Diags);
7985  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7986                                         Destructor->getParent());
7987
7988  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7989    Diag(CurrentLocation, diag::note_member_synthesized_at)
7990      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7991
7992    Destructor->setInvalidDecl();
7993    return;
7994  }
7995
7996  SourceLocation Loc = Destructor->getLocation();
7997  Destructor->setBody(new (Context) CompoundStmt(Loc));
7998  Destructor->setImplicitlyDefined(true);
7999  Destructor->setUsed();
8000  MarkVTableUsed(CurrentLocation, ClassDecl);
8001
8002  if (ASTMutationListener *L = getASTMutationListener()) {
8003    L->CompletedImplicitDefinition(Destructor);
8004  }
8005}
8006
8007/// \brief Perform any semantic analysis which needs to be delayed until all
8008/// pending class member declarations have been parsed.
8009void Sema::ActOnFinishCXXMemberDecls() {
8010  // If the context is an invalid C++ class, just suppress these checks.
8011  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8012    if (Record->isInvalidDecl()) {
8013      DelayedDestructorExceptionSpecChecks.clear();
8014      return;
8015    }
8016  }
8017
8018  // Perform any deferred checking of exception specifications for virtual
8019  // destructors.
8020  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8021       i != e; ++i) {
8022    const CXXDestructorDecl *Dtor =
8023        DelayedDestructorExceptionSpecChecks[i].first;
8024    assert(!Dtor->getParent()->isDependentType() &&
8025           "Should not ever add destructors of templates into the list.");
8026    CheckOverridingFunctionExceptionSpec(Dtor,
8027        DelayedDestructorExceptionSpecChecks[i].second);
8028  }
8029  DelayedDestructorExceptionSpecChecks.clear();
8030}
8031
8032void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8033                                         CXXDestructorDecl *Destructor) {
8034  assert(getLangOpts().CPlusPlus11 &&
8035         "adjusting dtor exception specs was introduced in c++11");
8036
8037  // C++11 [class.dtor]p3:
8038  //   A declaration of a destructor that does not have an exception-
8039  //   specification is implicitly considered to have the same exception-
8040  //   specification as an implicit declaration.
8041  const FunctionProtoType *DtorType = Destructor->getType()->
8042                                        getAs<FunctionProtoType>();
8043  if (DtorType->hasExceptionSpec())
8044    return;
8045
8046  // Replace the destructor's type, building off the existing one. Fortunately,
8047  // the only thing of interest in the destructor type is its extended info.
8048  // The return and arguments are fixed.
8049  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8050  EPI.ExceptionSpecType = EST_Unevaluated;
8051  EPI.ExceptionSpecDecl = Destructor;
8052  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8053                                              ArrayRef<QualType>(),
8054                                              EPI));
8055
8056  // FIXME: If the destructor has a body that could throw, and the newly created
8057  // spec doesn't allow exceptions, we should emit a warning, because this
8058  // change in behavior can break conforming C++03 programs at runtime.
8059  // However, we don't have a body or an exception specification yet, so it
8060  // needs to be done somewhere else.
8061}
8062
8063/// When generating a defaulted copy or move assignment operator, if a field
8064/// should be copied with __builtin_memcpy rather than via explicit assignments,
8065/// do so. This optimization only applies for arrays of scalars, and for arrays
8066/// of class type where the selected copy/move-assignment operator is trivial.
8067static StmtResult
8068buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8069                           Expr *To, Expr *From) {
8070  // Compute the size of the memory buffer to be copied.
8071  QualType SizeType = S.Context.getSizeType();
8072  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8073                   S.Context.getTypeSizeInChars(T).getQuantity());
8074
8075  // Take the address of the field references for "from" and "to". We
8076  // directly construct UnaryOperators here because semantic analysis
8077  // does not permit us to take the address of an xvalue.
8078  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8079                         S.Context.getPointerType(From->getType()),
8080                         VK_RValue, OK_Ordinary, Loc);
8081  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8082                       S.Context.getPointerType(To->getType()),
8083                       VK_RValue, OK_Ordinary, Loc);
8084
8085  const Type *E = T->getBaseElementTypeUnsafe();
8086  bool NeedsCollectableMemCpy =
8087    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8088
8089  // Create a reference to the __builtin_objc_memmove_collectable function
8090  StringRef MemCpyName = NeedsCollectableMemCpy ?
8091    "__builtin_objc_memmove_collectable" :
8092    "__builtin_memcpy";
8093  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8094                 Sema::LookupOrdinaryName);
8095  S.LookupName(R, S.TUScope, true);
8096
8097  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8098  if (!MemCpy)
8099    // Something went horribly wrong earlier, and we will have complained
8100    // about it.
8101    return StmtError();
8102
8103  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8104                                            VK_RValue, Loc, 0);
8105  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8106
8107  Expr *CallArgs[] = {
8108    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8109  };
8110  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8111                                    Loc, CallArgs, Loc);
8112
8113  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8114  return S.Owned(Call.takeAs<Stmt>());
8115}
8116
8117/// \brief Builds a statement that copies/moves the given entity from \p From to
8118/// \c To.
8119///
8120/// This routine is used to copy/move the members of a class with an
8121/// implicitly-declared copy/move assignment operator. When the entities being
8122/// copied are arrays, this routine builds for loops to copy them.
8123///
8124/// \param S The Sema object used for type-checking.
8125///
8126/// \param Loc The location where the implicit copy/move is being generated.
8127///
8128/// \param T The type of the expressions being copied/moved. Both expressions
8129/// must have this type.
8130///
8131/// \param To The expression we are copying/moving to.
8132///
8133/// \param From The expression we are copying/moving from.
8134///
8135/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8136/// Otherwise, it's a non-static member subobject.
8137///
8138/// \param Copying Whether we're copying or moving.
8139///
8140/// \param Depth Internal parameter recording the depth of the recursion.
8141///
8142/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8143/// if a memcpy should be used instead.
8144static StmtResult
8145buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8146                                 Expr *To, Expr *From,
8147                                 bool CopyingBaseSubobject, bool Copying,
8148                                 unsigned Depth = 0) {
8149  // C++11 [class.copy]p28:
8150  //   Each subobject is assigned in the manner appropriate to its type:
8151  //
8152  //     - if the subobject is of class type, as if by a call to operator= with
8153  //       the subobject as the object expression and the corresponding
8154  //       subobject of x as a single function argument (as if by explicit
8155  //       qualification; that is, ignoring any possible virtual overriding
8156  //       functions in more derived classes);
8157  //
8158  // C++03 [class.copy]p13:
8159  //     - if the subobject is of class type, the copy assignment operator for
8160  //       the class is used (as if by explicit qualification; that is,
8161  //       ignoring any possible virtual overriding functions in more derived
8162  //       classes);
8163  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8164    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8165
8166    // Look for operator=.
8167    DeclarationName Name
8168      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8169    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8170    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8171
8172    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8173    // operator.
8174    if (!S.getLangOpts().CPlusPlus11) {
8175      LookupResult::Filter F = OpLookup.makeFilter();
8176      while (F.hasNext()) {
8177        NamedDecl *D = F.next();
8178        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8179          if (Method->isCopyAssignmentOperator() ||
8180              (!Copying && Method->isMoveAssignmentOperator()))
8181            continue;
8182
8183        F.erase();
8184      }
8185      F.done();
8186    }
8187
8188    // Suppress the protected check (C++ [class.protected]) for each of the
8189    // assignment operators we found. This strange dance is required when
8190    // we're assigning via a base classes's copy-assignment operator. To
8191    // ensure that we're getting the right base class subobject (without
8192    // ambiguities), we need to cast "this" to that subobject type; to
8193    // ensure that we don't go through the virtual call mechanism, we need
8194    // to qualify the operator= name with the base class (see below). However,
8195    // this means that if the base class has a protected copy assignment
8196    // operator, the protected member access check will fail. So, we
8197    // rewrite "protected" access to "public" access in this case, since we
8198    // know by construction that we're calling from a derived class.
8199    if (CopyingBaseSubobject) {
8200      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8201           L != LEnd; ++L) {
8202        if (L.getAccess() == AS_protected)
8203          L.setAccess(AS_public);
8204      }
8205    }
8206
8207    // Create the nested-name-specifier that will be used to qualify the
8208    // reference to operator=; this is required to suppress the virtual
8209    // call mechanism.
8210    CXXScopeSpec SS;
8211    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8212    SS.MakeTrivial(S.Context,
8213                   NestedNameSpecifier::Create(S.Context, 0, false,
8214                                               CanonicalT),
8215                   Loc);
8216
8217    // Create the reference to operator=.
8218    ExprResult OpEqualRef
8219      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8220                                   /*TemplateKWLoc=*/SourceLocation(),
8221                                   /*FirstQualifierInScope=*/0,
8222                                   OpLookup,
8223                                   /*TemplateArgs=*/0,
8224                                   /*SuppressQualifierCheck=*/true);
8225    if (OpEqualRef.isInvalid())
8226      return StmtError();
8227
8228    // Build the call to the assignment operator.
8229
8230    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8231                                                  OpEqualRef.takeAs<Expr>(),
8232                                                  Loc, &From, 1, Loc);
8233    if (Call.isInvalid())
8234      return StmtError();
8235
8236    // If we built a call to a trivial 'operator=' while copying an array,
8237    // bail out. We'll replace the whole shebang with a memcpy.
8238    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8239    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8240      return StmtResult((Stmt*)0);
8241
8242    // Convert to an expression-statement, and clean up any produced
8243    // temporaries.
8244    return S.ActOnExprStmt(Call);
8245  }
8246
8247  //     - if the subobject is of scalar type, the built-in assignment
8248  //       operator is used.
8249  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8250  if (!ArrayTy) {
8251    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8252    if (Assignment.isInvalid())
8253      return StmtError();
8254    return S.ActOnExprStmt(Assignment);
8255  }
8256
8257  //     - if the subobject is an array, each element is assigned, in the
8258  //       manner appropriate to the element type;
8259
8260  // Construct a loop over the array bounds, e.g.,
8261  //
8262  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8263  //
8264  // that will copy each of the array elements.
8265  QualType SizeType = S.Context.getSizeType();
8266
8267  // Create the iteration variable.
8268  IdentifierInfo *IterationVarName = 0;
8269  {
8270    SmallString<8> Str;
8271    llvm::raw_svector_ostream OS(Str);
8272    OS << "__i" << Depth;
8273    IterationVarName = &S.Context.Idents.get(OS.str());
8274  }
8275  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8276                                          IterationVarName, SizeType,
8277                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8278                                          SC_None);
8279
8280  // Initialize the iteration variable to zero.
8281  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8282  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8283
8284  // Create a reference to the iteration variable; we'll use this several
8285  // times throughout.
8286  Expr *IterationVarRef
8287    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8288  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8289  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8290  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8291
8292  // Create the DeclStmt that holds the iteration variable.
8293  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8294
8295  // Subscript the "from" and "to" expressions with the iteration variable.
8296  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8297                                                         IterationVarRefRVal,
8298                                                         Loc));
8299  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8300                                                       IterationVarRefRVal,
8301                                                       Loc));
8302  if (!Copying) // Cast to rvalue
8303    From = CastForMoving(S, From);
8304
8305  // Build the copy/move for an individual element of the array.
8306  StmtResult Copy =
8307    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8308                                     To, From, CopyingBaseSubobject,
8309                                     Copying, Depth + 1);
8310  // Bail out if copying fails or if we determined that we should use memcpy.
8311  if (Copy.isInvalid() || !Copy.get())
8312    return Copy;
8313
8314  // Create the comparison against the array bound.
8315  llvm::APInt Upper
8316    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8317  Expr *Comparison
8318    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8319                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8320                                     BO_NE, S.Context.BoolTy,
8321                                     VK_RValue, OK_Ordinary, Loc, false);
8322
8323  // Create the pre-increment of the iteration variable.
8324  Expr *Increment
8325    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8326                                    VK_LValue, OK_Ordinary, Loc);
8327
8328  // Construct the loop that copies all elements of this array.
8329  return S.ActOnForStmt(Loc, Loc, InitStmt,
8330                        S.MakeFullExpr(Comparison),
8331                        0, S.MakeFullDiscardedValueExpr(Increment),
8332                        Loc, Copy.take());
8333}
8334
8335static StmtResult
8336buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8337                      Expr *To, Expr *From,
8338                      bool CopyingBaseSubobject, bool Copying) {
8339  // Maybe we should use a memcpy?
8340  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8341      T.isTriviallyCopyableType(S.Context))
8342    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8343
8344  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8345                                                     CopyingBaseSubobject,
8346                                                     Copying, 0));
8347
8348  // If we ended up picking a trivial assignment operator for an array of a
8349  // non-trivially-copyable class type, just emit a memcpy.
8350  if (!Result.isInvalid() && !Result.get())
8351    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8352
8353  return Result;
8354}
8355
8356Sema::ImplicitExceptionSpecification
8357Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8358  CXXRecordDecl *ClassDecl = MD->getParent();
8359
8360  ImplicitExceptionSpecification ExceptSpec(*this);
8361  if (ClassDecl->isInvalidDecl())
8362    return ExceptSpec;
8363
8364  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8365  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8366  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8367
8368  // C++ [except.spec]p14:
8369  //   An implicitly declared special member function (Clause 12) shall have an
8370  //   exception-specification. [...]
8371
8372  // It is unspecified whether or not an implicit copy assignment operator
8373  // attempts to deduplicate calls to assignment operators of virtual bases are
8374  // made. As such, this exception specification is effectively unspecified.
8375  // Based on a similar decision made for constness in C++0x, we're erring on
8376  // the side of assuming such calls to be made regardless of whether they
8377  // actually happen.
8378  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8379                                       BaseEnd = ClassDecl->bases_end();
8380       Base != BaseEnd; ++Base) {
8381    if (Base->isVirtual())
8382      continue;
8383
8384    CXXRecordDecl *BaseClassDecl
8385      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8386    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8387                                                            ArgQuals, false, 0))
8388      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8389  }
8390
8391  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8392                                       BaseEnd = ClassDecl->vbases_end();
8393       Base != BaseEnd; ++Base) {
8394    CXXRecordDecl *BaseClassDecl
8395      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8396    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8397                                                            ArgQuals, false, 0))
8398      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8399  }
8400
8401  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8402                                  FieldEnd = ClassDecl->field_end();
8403       Field != FieldEnd;
8404       ++Field) {
8405    QualType FieldType = Context.getBaseElementType(Field->getType());
8406    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8407      if (CXXMethodDecl *CopyAssign =
8408          LookupCopyingAssignment(FieldClassDecl,
8409                                  ArgQuals | FieldType.getCVRQualifiers(),
8410                                  false, 0))
8411        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8412    }
8413  }
8414
8415  return ExceptSpec;
8416}
8417
8418CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8419  // Note: The following rules are largely analoguous to the copy
8420  // constructor rules. Note that virtual bases are not taken into account
8421  // for determining the argument type of the operator. Note also that
8422  // operators taking an object instead of a reference are allowed.
8423  assert(ClassDecl->needsImplicitCopyAssignment());
8424
8425  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8426  if (DSM.isAlreadyBeingDeclared())
8427    return 0;
8428
8429  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8430  QualType RetType = Context.getLValueReferenceType(ArgType);
8431  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8432    ArgType = ArgType.withConst();
8433  ArgType = Context.getLValueReferenceType(ArgType);
8434
8435  //   An implicitly-declared copy assignment operator is an inline public
8436  //   member of its class.
8437  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8438  SourceLocation ClassLoc = ClassDecl->getLocation();
8439  DeclarationNameInfo NameInfo(Name, ClassLoc);
8440  CXXMethodDecl *CopyAssignment
8441    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8442                            /*TInfo=*/0,
8443                            /*StorageClass=*/SC_None,
8444                            /*isInline=*/true, /*isConstexpr=*/false,
8445                            SourceLocation());
8446  CopyAssignment->setAccess(AS_public);
8447  CopyAssignment->setDefaulted();
8448  CopyAssignment->setImplicit();
8449
8450  // Build an exception specification pointing back at this member.
8451  FunctionProtoType::ExtProtoInfo EPI;
8452  EPI.ExceptionSpecType = EST_Unevaluated;
8453  EPI.ExceptionSpecDecl = CopyAssignment;
8454  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8455
8456  // Add the parameter to the operator.
8457  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8458                                               ClassLoc, ClassLoc, /*Id=*/0,
8459                                               ArgType, /*TInfo=*/0,
8460                                               SC_None, 0);
8461  CopyAssignment->setParams(FromParam);
8462
8463  AddOverriddenMethods(ClassDecl, CopyAssignment);
8464
8465  CopyAssignment->setTrivial(
8466    ClassDecl->needsOverloadResolutionForCopyAssignment()
8467      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8468      : ClassDecl->hasTrivialCopyAssignment());
8469
8470  // C++0x [class.copy]p19:
8471  //   ....  If the class definition does not explicitly declare a copy
8472  //   assignment operator, there is no user-declared move constructor, and
8473  //   there is no user-declared move assignment operator, a copy assignment
8474  //   operator is implicitly declared as defaulted.
8475  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8476    SetDeclDeleted(CopyAssignment, ClassLoc);
8477
8478  // Note that we have added this copy-assignment operator.
8479  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8480
8481  if (Scope *S = getScopeForContext(ClassDecl))
8482    PushOnScopeChains(CopyAssignment, S, false);
8483  ClassDecl->addDecl(CopyAssignment);
8484
8485  return CopyAssignment;
8486}
8487
8488void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8489                                        CXXMethodDecl *CopyAssignOperator) {
8490  assert((CopyAssignOperator->isDefaulted() &&
8491          CopyAssignOperator->isOverloadedOperator() &&
8492          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8493          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8494          !CopyAssignOperator->isDeleted()) &&
8495         "DefineImplicitCopyAssignment called for wrong function");
8496
8497  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8498
8499  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8500    CopyAssignOperator->setInvalidDecl();
8501    return;
8502  }
8503
8504  CopyAssignOperator->setUsed();
8505
8506  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8507  DiagnosticErrorTrap Trap(Diags);
8508
8509  // C++0x [class.copy]p30:
8510  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8511  //   for a non-union class X performs memberwise copy assignment of its
8512  //   subobjects. The direct base classes of X are assigned first, in the
8513  //   order of their declaration in the base-specifier-list, and then the
8514  //   immediate non-static data members of X are assigned, in the order in
8515  //   which they were declared in the class definition.
8516
8517  // The statements that form the synthesized function body.
8518  SmallVector<Stmt*, 8> Statements;
8519
8520  // The parameter for the "other" object, which we are copying from.
8521  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8522  Qualifiers OtherQuals = Other->getType().getQualifiers();
8523  QualType OtherRefType = Other->getType();
8524  if (const LValueReferenceType *OtherRef
8525                                = OtherRefType->getAs<LValueReferenceType>()) {
8526    OtherRefType = OtherRef->getPointeeType();
8527    OtherQuals = OtherRefType.getQualifiers();
8528  }
8529
8530  // Our location for everything implicitly-generated.
8531  SourceLocation Loc = CopyAssignOperator->getLocation();
8532
8533  // Construct a reference to the "other" object. We'll be using this
8534  // throughout the generated ASTs.
8535  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8536  assert(OtherRef && "Reference to parameter cannot fail!");
8537
8538  // Construct the "this" pointer. We'll be using this throughout the generated
8539  // ASTs.
8540  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8541  assert(This && "Reference to this cannot fail!");
8542
8543  // Assign base classes.
8544  bool Invalid = false;
8545  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8546       E = ClassDecl->bases_end(); Base != E; ++Base) {
8547    // Form the assignment:
8548    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8549    QualType BaseType = Base->getType().getUnqualifiedType();
8550    if (!BaseType->isRecordType()) {
8551      Invalid = true;
8552      continue;
8553    }
8554
8555    CXXCastPath BasePath;
8556    BasePath.push_back(Base);
8557
8558    // Construct the "from" expression, which is an implicit cast to the
8559    // appropriately-qualified base type.
8560    Expr *From = OtherRef;
8561    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8562                             CK_UncheckedDerivedToBase,
8563                             VK_LValue, &BasePath).take();
8564
8565    // Dereference "this".
8566    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8567
8568    // Implicitly cast "this" to the appropriately-qualified base type.
8569    To = ImpCastExprToType(To.take(),
8570                           Context.getCVRQualifiedType(BaseType,
8571                                     CopyAssignOperator->getTypeQualifiers()),
8572                           CK_UncheckedDerivedToBase,
8573                           VK_LValue, &BasePath);
8574
8575    // Build the copy.
8576    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8577                                            To.get(), From,
8578                                            /*CopyingBaseSubobject=*/true,
8579                                            /*Copying=*/true);
8580    if (Copy.isInvalid()) {
8581      Diag(CurrentLocation, diag::note_member_synthesized_at)
8582        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8583      CopyAssignOperator->setInvalidDecl();
8584      return;
8585    }
8586
8587    // Success! Record the copy.
8588    Statements.push_back(Copy.takeAs<Expr>());
8589  }
8590
8591  // Assign non-static members.
8592  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8593                                  FieldEnd = ClassDecl->field_end();
8594       Field != FieldEnd; ++Field) {
8595    if (Field->isUnnamedBitfield())
8596      continue;
8597
8598    // Check for members of reference type; we can't copy those.
8599    if (Field->getType()->isReferenceType()) {
8600      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8601        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8602      Diag(Field->getLocation(), diag::note_declared_at);
8603      Diag(CurrentLocation, diag::note_member_synthesized_at)
8604        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8605      Invalid = true;
8606      continue;
8607    }
8608
8609    // Check for members of const-qualified, non-class type.
8610    QualType BaseType = Context.getBaseElementType(Field->getType());
8611    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8612      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8613        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8614      Diag(Field->getLocation(), diag::note_declared_at);
8615      Diag(CurrentLocation, diag::note_member_synthesized_at)
8616        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8617      Invalid = true;
8618      continue;
8619    }
8620
8621    // Suppress assigning zero-width bitfields.
8622    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8623      continue;
8624
8625    QualType FieldType = Field->getType().getNonReferenceType();
8626    if (FieldType->isIncompleteArrayType()) {
8627      assert(ClassDecl->hasFlexibleArrayMember() &&
8628             "Incomplete array type is not valid");
8629      continue;
8630    }
8631
8632    // Build references to the field in the object we're copying from and to.
8633    CXXScopeSpec SS; // Intentionally empty
8634    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8635                              LookupMemberName);
8636    MemberLookup.addDecl(*Field);
8637    MemberLookup.resolveKind();
8638    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8639                                               Loc, /*IsArrow=*/false,
8640                                               SS, SourceLocation(), 0,
8641                                               MemberLookup, 0);
8642    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8643                                             Loc, /*IsArrow=*/true,
8644                                             SS, SourceLocation(), 0,
8645                                             MemberLookup, 0);
8646    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8647    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8648
8649    // Build the copy of this field.
8650    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8651                                            To.get(), From.get(),
8652                                            /*CopyingBaseSubobject=*/false,
8653                                            /*Copying=*/true);
8654    if (Copy.isInvalid()) {
8655      Diag(CurrentLocation, diag::note_member_synthesized_at)
8656        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8657      CopyAssignOperator->setInvalidDecl();
8658      return;
8659    }
8660
8661    // Success! Record the copy.
8662    Statements.push_back(Copy.takeAs<Stmt>());
8663  }
8664
8665  if (!Invalid) {
8666    // Add a "return *this;"
8667    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8668
8669    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8670    if (Return.isInvalid())
8671      Invalid = true;
8672    else {
8673      Statements.push_back(Return.takeAs<Stmt>());
8674
8675      if (Trap.hasErrorOccurred()) {
8676        Diag(CurrentLocation, diag::note_member_synthesized_at)
8677          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8678        Invalid = true;
8679      }
8680    }
8681  }
8682
8683  if (Invalid) {
8684    CopyAssignOperator->setInvalidDecl();
8685    return;
8686  }
8687
8688  StmtResult Body;
8689  {
8690    CompoundScopeRAII CompoundScope(*this);
8691    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8692                             /*isStmtExpr=*/false);
8693    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8694  }
8695  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8696
8697  if (ASTMutationListener *L = getASTMutationListener()) {
8698    L->CompletedImplicitDefinition(CopyAssignOperator);
8699  }
8700}
8701
8702Sema::ImplicitExceptionSpecification
8703Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8704  CXXRecordDecl *ClassDecl = MD->getParent();
8705
8706  ImplicitExceptionSpecification ExceptSpec(*this);
8707  if (ClassDecl->isInvalidDecl())
8708    return ExceptSpec;
8709
8710  // C++0x [except.spec]p14:
8711  //   An implicitly declared special member function (Clause 12) shall have an
8712  //   exception-specification. [...]
8713
8714  // It is unspecified whether or not an implicit move assignment operator
8715  // attempts to deduplicate calls to assignment operators of virtual bases are
8716  // made. As such, this exception specification is effectively unspecified.
8717  // Based on a similar decision made for constness in C++0x, we're erring on
8718  // the side of assuming such calls to be made regardless of whether they
8719  // actually happen.
8720  // Note that a move constructor is not implicitly declared when there are
8721  // virtual bases, but it can still be user-declared and explicitly defaulted.
8722  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8723                                       BaseEnd = ClassDecl->bases_end();
8724       Base != BaseEnd; ++Base) {
8725    if (Base->isVirtual())
8726      continue;
8727
8728    CXXRecordDecl *BaseClassDecl
8729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8730    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8731                                                           0, false, 0))
8732      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8733  }
8734
8735  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8736                                       BaseEnd = ClassDecl->vbases_end();
8737       Base != BaseEnd; ++Base) {
8738    CXXRecordDecl *BaseClassDecl
8739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8740    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8741                                                           0, false, 0))
8742      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8743  }
8744
8745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8746                                  FieldEnd = ClassDecl->field_end();
8747       Field != FieldEnd;
8748       ++Field) {
8749    QualType FieldType = Context.getBaseElementType(Field->getType());
8750    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8751      if (CXXMethodDecl *MoveAssign =
8752              LookupMovingAssignment(FieldClassDecl,
8753                                     FieldType.getCVRQualifiers(),
8754                                     false, 0))
8755        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8756    }
8757  }
8758
8759  return ExceptSpec;
8760}
8761
8762/// Determine whether the class type has any direct or indirect virtual base
8763/// classes which have a non-trivial move assignment operator.
8764static bool
8765hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8766  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8767                                          BaseEnd = ClassDecl->vbases_end();
8768       Base != BaseEnd; ++Base) {
8769    CXXRecordDecl *BaseClass =
8770        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8771
8772    // Try to declare the move assignment. If it would be deleted, then the
8773    // class does not have a non-trivial move assignment.
8774    if (BaseClass->needsImplicitMoveAssignment())
8775      S.DeclareImplicitMoveAssignment(BaseClass);
8776
8777    if (BaseClass->hasNonTrivialMoveAssignment())
8778      return true;
8779  }
8780
8781  return false;
8782}
8783
8784/// Determine whether the given type either has a move constructor or is
8785/// trivially copyable.
8786static bool
8787hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8788  Type = S.Context.getBaseElementType(Type);
8789
8790  // FIXME: Technically, non-trivially-copyable non-class types, such as
8791  // reference types, are supposed to return false here, but that appears
8792  // to be a standard defect.
8793  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8794  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8795    return true;
8796
8797  if (Type.isTriviallyCopyableType(S.Context))
8798    return true;
8799
8800  if (IsConstructor) {
8801    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8802    // give the right answer.
8803    if (ClassDecl->needsImplicitMoveConstructor())
8804      S.DeclareImplicitMoveConstructor(ClassDecl);
8805    return ClassDecl->hasMoveConstructor();
8806  }
8807
8808  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8809  // give the right answer.
8810  if (ClassDecl->needsImplicitMoveAssignment())
8811    S.DeclareImplicitMoveAssignment(ClassDecl);
8812  return ClassDecl->hasMoveAssignment();
8813}
8814
8815/// Determine whether all non-static data members and direct or virtual bases
8816/// of class \p ClassDecl have either a move operation, or are trivially
8817/// copyable.
8818static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8819                                            bool IsConstructor) {
8820  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8821                                          BaseEnd = ClassDecl->bases_end();
8822       Base != BaseEnd; ++Base) {
8823    if (Base->isVirtual())
8824      continue;
8825
8826    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8827      return false;
8828  }
8829
8830  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8831                                          BaseEnd = ClassDecl->vbases_end();
8832       Base != BaseEnd; ++Base) {
8833    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8834      return false;
8835  }
8836
8837  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8838                                     FieldEnd = ClassDecl->field_end();
8839       Field != FieldEnd; ++Field) {
8840    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8841      return false;
8842  }
8843
8844  return true;
8845}
8846
8847CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8848  // C++11 [class.copy]p20:
8849  //   If the definition of a class X does not explicitly declare a move
8850  //   assignment operator, one will be implicitly declared as defaulted
8851  //   if and only if:
8852  //
8853  //   - [first 4 bullets]
8854  assert(ClassDecl->needsImplicitMoveAssignment());
8855
8856  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
8857  if (DSM.isAlreadyBeingDeclared())
8858    return 0;
8859
8860  // [Checked after we build the declaration]
8861  //   - the move assignment operator would not be implicitly defined as
8862  //     deleted,
8863
8864  // [DR1402]:
8865  //   - X has no direct or indirect virtual base class with a non-trivial
8866  //     move assignment operator, and
8867  //   - each of X's non-static data members and direct or virtual base classes
8868  //     has a type that either has a move assignment operator or is trivially
8869  //     copyable.
8870  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8871      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8872    ClassDecl->setFailedImplicitMoveAssignment();
8873    return 0;
8874  }
8875
8876  // Note: The following rules are largely analoguous to the move
8877  // constructor rules.
8878
8879  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8880  QualType RetType = Context.getLValueReferenceType(ArgType);
8881  ArgType = Context.getRValueReferenceType(ArgType);
8882
8883  //   An implicitly-declared move assignment operator is an inline public
8884  //   member of its class.
8885  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8886  SourceLocation ClassLoc = ClassDecl->getLocation();
8887  DeclarationNameInfo NameInfo(Name, ClassLoc);
8888  CXXMethodDecl *MoveAssignment
8889    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8890                            /*TInfo=*/0,
8891                            /*StorageClass=*/SC_None,
8892                            /*isInline=*/true,
8893                            /*isConstexpr=*/false,
8894                            SourceLocation());
8895  MoveAssignment->setAccess(AS_public);
8896  MoveAssignment->setDefaulted();
8897  MoveAssignment->setImplicit();
8898
8899  // Build an exception specification pointing back at this member.
8900  FunctionProtoType::ExtProtoInfo EPI;
8901  EPI.ExceptionSpecType = EST_Unevaluated;
8902  EPI.ExceptionSpecDecl = MoveAssignment;
8903  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8904
8905  // Add the parameter to the operator.
8906  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8907                                               ClassLoc, ClassLoc, /*Id=*/0,
8908                                               ArgType, /*TInfo=*/0,
8909                                               SC_None, 0);
8910  MoveAssignment->setParams(FromParam);
8911
8912  AddOverriddenMethods(ClassDecl, MoveAssignment);
8913
8914  MoveAssignment->setTrivial(
8915    ClassDecl->needsOverloadResolutionForMoveAssignment()
8916      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
8917      : ClassDecl->hasTrivialMoveAssignment());
8918
8919  // C++0x [class.copy]p9:
8920  //   If the definition of a class X does not explicitly declare a move
8921  //   assignment operator, one will be implicitly declared as defaulted if and
8922  //   only if:
8923  //   [...]
8924  //   - the move assignment operator would not be implicitly defined as
8925  //     deleted.
8926  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8927    // Cache this result so that we don't try to generate this over and over
8928    // on every lookup, leaking memory and wasting time.
8929    ClassDecl->setFailedImplicitMoveAssignment();
8930    return 0;
8931  }
8932
8933  // Note that we have added this copy-assignment operator.
8934  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8935
8936  if (Scope *S = getScopeForContext(ClassDecl))
8937    PushOnScopeChains(MoveAssignment, S, false);
8938  ClassDecl->addDecl(MoveAssignment);
8939
8940  return MoveAssignment;
8941}
8942
8943void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8944                                        CXXMethodDecl *MoveAssignOperator) {
8945  assert((MoveAssignOperator->isDefaulted() &&
8946          MoveAssignOperator->isOverloadedOperator() &&
8947          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8948          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8949          !MoveAssignOperator->isDeleted()) &&
8950         "DefineImplicitMoveAssignment called for wrong function");
8951
8952  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8953
8954  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8955    MoveAssignOperator->setInvalidDecl();
8956    return;
8957  }
8958
8959  MoveAssignOperator->setUsed();
8960
8961  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8962  DiagnosticErrorTrap Trap(Diags);
8963
8964  // C++0x [class.copy]p28:
8965  //   The implicitly-defined or move assignment operator for a non-union class
8966  //   X performs memberwise move assignment of its subobjects. The direct base
8967  //   classes of X are assigned first, in the order of their declaration in the
8968  //   base-specifier-list, and then the immediate non-static data members of X
8969  //   are assigned, in the order in which they were declared in the class
8970  //   definition.
8971
8972  // The statements that form the synthesized function body.
8973  SmallVector<Stmt*, 8> Statements;
8974
8975  // The parameter for the "other" object, which we are move from.
8976  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8977  QualType OtherRefType = Other->getType()->
8978      getAs<RValueReferenceType>()->getPointeeType();
8979  assert(OtherRefType.getQualifiers() == 0 &&
8980         "Bad argument type of defaulted move assignment");
8981
8982  // Our location for everything implicitly-generated.
8983  SourceLocation Loc = MoveAssignOperator->getLocation();
8984
8985  // Construct a reference to the "other" object. We'll be using this
8986  // throughout the generated ASTs.
8987  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8988  assert(OtherRef && "Reference to parameter cannot fail!");
8989  // Cast to rvalue.
8990  OtherRef = CastForMoving(*this, OtherRef);
8991
8992  // Construct the "this" pointer. We'll be using this throughout the generated
8993  // ASTs.
8994  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8995  assert(This && "Reference to this cannot fail!");
8996
8997  // Assign base classes.
8998  bool Invalid = false;
8999  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9000       E = ClassDecl->bases_end(); Base != E; ++Base) {
9001    // Form the assignment:
9002    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9003    QualType BaseType = Base->getType().getUnqualifiedType();
9004    if (!BaseType->isRecordType()) {
9005      Invalid = true;
9006      continue;
9007    }
9008
9009    CXXCastPath BasePath;
9010    BasePath.push_back(Base);
9011
9012    // Construct the "from" expression, which is an implicit cast to the
9013    // appropriately-qualified base type.
9014    Expr *From = OtherRef;
9015    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9016                             VK_XValue, &BasePath).take();
9017
9018    // Dereference "this".
9019    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9020
9021    // Implicitly cast "this" to the appropriately-qualified base type.
9022    To = ImpCastExprToType(To.take(),
9023                           Context.getCVRQualifiedType(BaseType,
9024                                     MoveAssignOperator->getTypeQualifiers()),
9025                           CK_UncheckedDerivedToBase,
9026                           VK_LValue, &BasePath);
9027
9028    // Build the move.
9029    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9030                                            To.get(), From,
9031                                            /*CopyingBaseSubobject=*/true,
9032                                            /*Copying=*/false);
9033    if (Move.isInvalid()) {
9034      Diag(CurrentLocation, diag::note_member_synthesized_at)
9035        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9036      MoveAssignOperator->setInvalidDecl();
9037      return;
9038    }
9039
9040    // Success! Record the move.
9041    Statements.push_back(Move.takeAs<Expr>());
9042  }
9043
9044  // Assign non-static members.
9045  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9046                                  FieldEnd = ClassDecl->field_end();
9047       Field != FieldEnd; ++Field) {
9048    if (Field->isUnnamedBitfield())
9049      continue;
9050
9051    // Check for members of reference type; we can't move those.
9052    if (Field->getType()->isReferenceType()) {
9053      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9054        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9055      Diag(Field->getLocation(), diag::note_declared_at);
9056      Diag(CurrentLocation, diag::note_member_synthesized_at)
9057        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9058      Invalid = true;
9059      continue;
9060    }
9061
9062    // Check for members of const-qualified, non-class type.
9063    QualType BaseType = Context.getBaseElementType(Field->getType());
9064    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9065      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9066        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9067      Diag(Field->getLocation(), diag::note_declared_at);
9068      Diag(CurrentLocation, diag::note_member_synthesized_at)
9069        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9070      Invalid = true;
9071      continue;
9072    }
9073
9074    // Suppress assigning zero-width bitfields.
9075    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9076      continue;
9077
9078    QualType FieldType = Field->getType().getNonReferenceType();
9079    if (FieldType->isIncompleteArrayType()) {
9080      assert(ClassDecl->hasFlexibleArrayMember() &&
9081             "Incomplete array type is not valid");
9082      continue;
9083    }
9084
9085    // Build references to the field in the object we're copying from and to.
9086    CXXScopeSpec SS; // Intentionally empty
9087    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9088                              LookupMemberName);
9089    MemberLookup.addDecl(*Field);
9090    MemberLookup.resolveKind();
9091    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9092                                               Loc, /*IsArrow=*/false,
9093                                               SS, SourceLocation(), 0,
9094                                               MemberLookup, 0);
9095    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9096                                             Loc, /*IsArrow=*/true,
9097                                             SS, SourceLocation(), 0,
9098                                             MemberLookup, 0);
9099    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9100    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9101
9102    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9103        "Member reference with rvalue base must be rvalue except for reference "
9104        "members, which aren't allowed for move assignment.");
9105
9106    // Build the move of this field.
9107    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9108                                            To.get(), From.get(),
9109                                            /*CopyingBaseSubobject=*/false,
9110                                            /*Copying=*/false);
9111    if (Move.isInvalid()) {
9112      Diag(CurrentLocation, diag::note_member_synthesized_at)
9113        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9114      MoveAssignOperator->setInvalidDecl();
9115      return;
9116    }
9117
9118    // Success! Record the copy.
9119    Statements.push_back(Move.takeAs<Stmt>());
9120  }
9121
9122  if (!Invalid) {
9123    // Add a "return *this;"
9124    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9125
9126    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9127    if (Return.isInvalid())
9128      Invalid = true;
9129    else {
9130      Statements.push_back(Return.takeAs<Stmt>());
9131
9132      if (Trap.hasErrorOccurred()) {
9133        Diag(CurrentLocation, diag::note_member_synthesized_at)
9134          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9135        Invalid = true;
9136      }
9137    }
9138  }
9139
9140  if (Invalid) {
9141    MoveAssignOperator->setInvalidDecl();
9142    return;
9143  }
9144
9145  StmtResult Body;
9146  {
9147    CompoundScopeRAII CompoundScope(*this);
9148    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9149                             /*isStmtExpr=*/false);
9150    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9151  }
9152  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9153
9154  if (ASTMutationListener *L = getASTMutationListener()) {
9155    L->CompletedImplicitDefinition(MoveAssignOperator);
9156  }
9157}
9158
9159Sema::ImplicitExceptionSpecification
9160Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9161  CXXRecordDecl *ClassDecl = MD->getParent();
9162
9163  ImplicitExceptionSpecification ExceptSpec(*this);
9164  if (ClassDecl->isInvalidDecl())
9165    return ExceptSpec;
9166
9167  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9168  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9169  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9170
9171  // C++ [except.spec]p14:
9172  //   An implicitly declared special member function (Clause 12) shall have an
9173  //   exception-specification. [...]
9174  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9175                                       BaseEnd = ClassDecl->bases_end();
9176       Base != BaseEnd;
9177       ++Base) {
9178    // Virtual bases are handled below.
9179    if (Base->isVirtual())
9180      continue;
9181
9182    CXXRecordDecl *BaseClassDecl
9183      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9184    if (CXXConstructorDecl *CopyConstructor =
9185          LookupCopyingConstructor(BaseClassDecl, Quals))
9186      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9187  }
9188  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9189                                       BaseEnd = ClassDecl->vbases_end();
9190       Base != BaseEnd;
9191       ++Base) {
9192    CXXRecordDecl *BaseClassDecl
9193      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9194    if (CXXConstructorDecl *CopyConstructor =
9195          LookupCopyingConstructor(BaseClassDecl, Quals))
9196      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9197  }
9198  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9199                                  FieldEnd = ClassDecl->field_end();
9200       Field != FieldEnd;
9201       ++Field) {
9202    QualType FieldType = Context.getBaseElementType(Field->getType());
9203    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9204      if (CXXConstructorDecl *CopyConstructor =
9205              LookupCopyingConstructor(FieldClassDecl,
9206                                       Quals | FieldType.getCVRQualifiers()))
9207      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9208    }
9209  }
9210
9211  return ExceptSpec;
9212}
9213
9214CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9215                                                    CXXRecordDecl *ClassDecl) {
9216  // C++ [class.copy]p4:
9217  //   If the class definition does not explicitly declare a copy
9218  //   constructor, one is declared implicitly.
9219  assert(ClassDecl->needsImplicitCopyConstructor());
9220
9221  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9222  if (DSM.isAlreadyBeingDeclared())
9223    return 0;
9224
9225  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9226  QualType ArgType = ClassType;
9227  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9228  if (Const)
9229    ArgType = ArgType.withConst();
9230  ArgType = Context.getLValueReferenceType(ArgType);
9231
9232  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9233                                                     CXXCopyConstructor,
9234                                                     Const);
9235
9236  DeclarationName Name
9237    = Context.DeclarationNames.getCXXConstructorName(
9238                                           Context.getCanonicalType(ClassType));
9239  SourceLocation ClassLoc = ClassDecl->getLocation();
9240  DeclarationNameInfo NameInfo(Name, ClassLoc);
9241
9242  //   An implicitly-declared copy constructor is an inline public
9243  //   member of its class.
9244  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9245      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9246      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9247      Constexpr);
9248  CopyConstructor->setAccess(AS_public);
9249  CopyConstructor->setDefaulted();
9250
9251  // Build an exception specification pointing back at this member.
9252  FunctionProtoType::ExtProtoInfo EPI;
9253  EPI.ExceptionSpecType = EST_Unevaluated;
9254  EPI.ExceptionSpecDecl = CopyConstructor;
9255  CopyConstructor->setType(
9256      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9257
9258  // Add the parameter to the constructor.
9259  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9260                                               ClassLoc, ClassLoc,
9261                                               /*IdentifierInfo=*/0,
9262                                               ArgType, /*TInfo=*/0,
9263                                               SC_None, 0);
9264  CopyConstructor->setParams(FromParam);
9265
9266  CopyConstructor->setTrivial(
9267    ClassDecl->needsOverloadResolutionForCopyConstructor()
9268      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9269      : ClassDecl->hasTrivialCopyConstructor());
9270
9271  // C++11 [class.copy]p8:
9272  //   ... If the class definition does not explicitly declare a copy
9273  //   constructor, there is no user-declared move constructor, and there is no
9274  //   user-declared move assignment operator, a copy constructor is implicitly
9275  //   declared as defaulted.
9276  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9277    SetDeclDeleted(CopyConstructor, ClassLoc);
9278
9279  // Note that we have declared this constructor.
9280  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9281
9282  if (Scope *S = getScopeForContext(ClassDecl))
9283    PushOnScopeChains(CopyConstructor, S, false);
9284  ClassDecl->addDecl(CopyConstructor);
9285
9286  return CopyConstructor;
9287}
9288
9289void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9290                                   CXXConstructorDecl *CopyConstructor) {
9291  assert((CopyConstructor->isDefaulted() &&
9292          CopyConstructor->isCopyConstructor() &&
9293          !CopyConstructor->doesThisDeclarationHaveABody() &&
9294          !CopyConstructor->isDeleted()) &&
9295         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9296
9297  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9298  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9299
9300  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9301  DiagnosticErrorTrap Trap(Diags);
9302
9303  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9304      Trap.hasErrorOccurred()) {
9305    Diag(CurrentLocation, diag::note_member_synthesized_at)
9306      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9307    CopyConstructor->setInvalidDecl();
9308  }  else {
9309    Sema::CompoundScopeRAII CompoundScope(*this);
9310    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9311                                               CopyConstructor->getLocation(),
9312                                               MultiStmtArg(),
9313                                               /*isStmtExpr=*/false)
9314                                                              .takeAs<Stmt>());
9315    CopyConstructor->setImplicitlyDefined(true);
9316  }
9317
9318  CopyConstructor->setUsed();
9319  if (ASTMutationListener *L = getASTMutationListener()) {
9320    L->CompletedImplicitDefinition(CopyConstructor);
9321  }
9322}
9323
9324Sema::ImplicitExceptionSpecification
9325Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9326  CXXRecordDecl *ClassDecl = MD->getParent();
9327
9328  // C++ [except.spec]p14:
9329  //   An implicitly declared special member function (Clause 12) shall have an
9330  //   exception-specification. [...]
9331  ImplicitExceptionSpecification ExceptSpec(*this);
9332  if (ClassDecl->isInvalidDecl())
9333    return ExceptSpec;
9334
9335  // Direct base-class constructors.
9336  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9337                                       BEnd = ClassDecl->bases_end();
9338       B != BEnd; ++B) {
9339    if (B->isVirtual()) // Handled below.
9340      continue;
9341
9342    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9343      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9344      CXXConstructorDecl *Constructor =
9345          LookupMovingConstructor(BaseClassDecl, 0);
9346      // If this is a deleted function, add it anyway. This might be conformant
9347      // with the standard. This might not. I'm not sure. It might not matter.
9348      if (Constructor)
9349        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9350    }
9351  }
9352
9353  // Virtual base-class constructors.
9354  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9355                                       BEnd = ClassDecl->vbases_end();
9356       B != BEnd; ++B) {
9357    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9358      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9359      CXXConstructorDecl *Constructor =
9360          LookupMovingConstructor(BaseClassDecl, 0);
9361      // If this is a deleted function, add it anyway. This might be conformant
9362      // with the standard. This might not. I'm not sure. It might not matter.
9363      if (Constructor)
9364        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9365    }
9366  }
9367
9368  // Field constructors.
9369  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9370                               FEnd = ClassDecl->field_end();
9371       F != FEnd; ++F) {
9372    QualType FieldType = Context.getBaseElementType(F->getType());
9373    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9374      CXXConstructorDecl *Constructor =
9375          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9376      // If this is a deleted function, add it anyway. This might be conformant
9377      // with the standard. This might not. I'm not sure. It might not matter.
9378      // In particular, the problem is that this function never gets called. It
9379      // might just be ill-formed because this function attempts to refer to
9380      // a deleted function here.
9381      if (Constructor)
9382        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9383    }
9384  }
9385
9386  return ExceptSpec;
9387}
9388
9389CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9390                                                    CXXRecordDecl *ClassDecl) {
9391  // C++11 [class.copy]p9:
9392  //   If the definition of a class X does not explicitly declare a move
9393  //   constructor, one will be implicitly declared as defaulted if and only if:
9394  //
9395  //   - [first 4 bullets]
9396  assert(ClassDecl->needsImplicitMoveConstructor());
9397
9398  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9399  if (DSM.isAlreadyBeingDeclared())
9400    return 0;
9401
9402  // [Checked after we build the declaration]
9403  //   - the move assignment operator would not be implicitly defined as
9404  //     deleted,
9405
9406  // [DR1402]:
9407  //   - each of X's non-static data members and direct or virtual base classes
9408  //     has a type that either has a move constructor or is trivially copyable.
9409  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9410    ClassDecl->setFailedImplicitMoveConstructor();
9411    return 0;
9412  }
9413
9414  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9415  QualType ArgType = Context.getRValueReferenceType(ClassType);
9416
9417  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9418                                                     CXXMoveConstructor,
9419                                                     false);
9420
9421  DeclarationName Name
9422    = Context.DeclarationNames.getCXXConstructorName(
9423                                           Context.getCanonicalType(ClassType));
9424  SourceLocation ClassLoc = ClassDecl->getLocation();
9425  DeclarationNameInfo NameInfo(Name, ClassLoc);
9426
9427  // C++0x [class.copy]p11:
9428  //   An implicitly-declared copy/move constructor is an inline public
9429  //   member of its class.
9430  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9431      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9432      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9433      Constexpr);
9434  MoveConstructor->setAccess(AS_public);
9435  MoveConstructor->setDefaulted();
9436
9437  // Build an exception specification pointing back at this member.
9438  FunctionProtoType::ExtProtoInfo EPI;
9439  EPI.ExceptionSpecType = EST_Unevaluated;
9440  EPI.ExceptionSpecDecl = MoveConstructor;
9441  MoveConstructor->setType(
9442      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9443
9444  // Add the parameter to the constructor.
9445  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9446                                               ClassLoc, ClassLoc,
9447                                               /*IdentifierInfo=*/0,
9448                                               ArgType, /*TInfo=*/0,
9449                                               SC_None, 0);
9450  MoveConstructor->setParams(FromParam);
9451
9452  MoveConstructor->setTrivial(
9453    ClassDecl->needsOverloadResolutionForMoveConstructor()
9454      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9455      : ClassDecl->hasTrivialMoveConstructor());
9456
9457  // C++0x [class.copy]p9:
9458  //   If the definition of a class X does not explicitly declare a move
9459  //   constructor, one will be implicitly declared as defaulted if and only if:
9460  //   [...]
9461  //   - the move constructor would not be implicitly defined as deleted.
9462  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9463    // Cache this result so that we don't try to generate this over and over
9464    // on every lookup, leaking memory and wasting time.
9465    ClassDecl->setFailedImplicitMoveConstructor();
9466    return 0;
9467  }
9468
9469  // Note that we have declared this constructor.
9470  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9471
9472  if (Scope *S = getScopeForContext(ClassDecl))
9473    PushOnScopeChains(MoveConstructor, S, false);
9474  ClassDecl->addDecl(MoveConstructor);
9475
9476  return MoveConstructor;
9477}
9478
9479void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9480                                   CXXConstructorDecl *MoveConstructor) {
9481  assert((MoveConstructor->isDefaulted() &&
9482          MoveConstructor->isMoveConstructor() &&
9483          !MoveConstructor->doesThisDeclarationHaveABody() &&
9484          !MoveConstructor->isDeleted()) &&
9485         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9486
9487  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9488  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9489
9490  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9491  DiagnosticErrorTrap Trap(Diags);
9492
9493  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9494      Trap.hasErrorOccurred()) {
9495    Diag(CurrentLocation, diag::note_member_synthesized_at)
9496      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9497    MoveConstructor->setInvalidDecl();
9498  }  else {
9499    Sema::CompoundScopeRAII CompoundScope(*this);
9500    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9501                                               MoveConstructor->getLocation(),
9502                                               MultiStmtArg(),
9503                                               /*isStmtExpr=*/false)
9504                                                              .takeAs<Stmt>());
9505    MoveConstructor->setImplicitlyDefined(true);
9506  }
9507
9508  MoveConstructor->setUsed();
9509
9510  if (ASTMutationListener *L = getASTMutationListener()) {
9511    L->CompletedImplicitDefinition(MoveConstructor);
9512  }
9513}
9514
9515bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9516  return FD->isDeleted() &&
9517         (FD->isDefaulted() || FD->isImplicit()) &&
9518         isa<CXXMethodDecl>(FD);
9519}
9520
9521/// \brief Mark the call operator of the given lambda closure type as "used".
9522static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9523  CXXMethodDecl *CallOperator
9524    = cast<CXXMethodDecl>(
9525        Lambda->lookup(
9526          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9527  CallOperator->setReferenced();
9528  CallOperator->setUsed();
9529}
9530
9531void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9532       SourceLocation CurrentLocation,
9533       CXXConversionDecl *Conv)
9534{
9535  CXXRecordDecl *Lambda = Conv->getParent();
9536
9537  // Make sure that the lambda call operator is marked used.
9538  markLambdaCallOperatorUsed(*this, Lambda);
9539
9540  Conv->setUsed();
9541
9542  SynthesizedFunctionScope Scope(*this, Conv);
9543  DiagnosticErrorTrap Trap(Diags);
9544
9545  // Return the address of the __invoke function.
9546  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9547  CXXMethodDecl *Invoke
9548    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9549  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9550                                       VK_LValue, Conv->getLocation()).take();
9551  assert(FunctionRef && "Can't refer to __invoke function?");
9552  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9553  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9554                                           Conv->getLocation(),
9555                                           Conv->getLocation()));
9556
9557  // Fill in the __invoke function with a dummy implementation. IR generation
9558  // will fill in the actual details.
9559  Invoke->setUsed();
9560  Invoke->setReferenced();
9561  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9562
9563  if (ASTMutationListener *L = getASTMutationListener()) {
9564    L->CompletedImplicitDefinition(Conv);
9565    L->CompletedImplicitDefinition(Invoke);
9566  }
9567}
9568
9569void Sema::DefineImplicitLambdaToBlockPointerConversion(
9570       SourceLocation CurrentLocation,
9571       CXXConversionDecl *Conv)
9572{
9573  Conv->setUsed();
9574
9575  SynthesizedFunctionScope Scope(*this, Conv);
9576  DiagnosticErrorTrap Trap(Diags);
9577
9578  // Copy-initialize the lambda object as needed to capture it.
9579  Expr *This = ActOnCXXThis(CurrentLocation).take();
9580  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9581
9582  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9583                                                        Conv->getLocation(),
9584                                                        Conv, DerefThis);
9585
9586  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9587  // behavior.  Note that only the general conversion function does this
9588  // (since it's unusable otherwise); in the case where we inline the
9589  // block literal, it has block literal lifetime semantics.
9590  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9591    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9592                                          CK_CopyAndAutoreleaseBlockObject,
9593                                          BuildBlock.get(), 0, VK_RValue);
9594
9595  if (BuildBlock.isInvalid()) {
9596    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9597    Conv->setInvalidDecl();
9598    return;
9599  }
9600
9601  // Create the return statement that returns the block from the conversion
9602  // function.
9603  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9604  if (Return.isInvalid()) {
9605    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9606    Conv->setInvalidDecl();
9607    return;
9608  }
9609
9610  // Set the body of the conversion function.
9611  Stmt *ReturnS = Return.take();
9612  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9613                                           Conv->getLocation(),
9614                                           Conv->getLocation()));
9615
9616  // We're done; notify the mutation listener, if any.
9617  if (ASTMutationListener *L = getASTMutationListener()) {
9618    L->CompletedImplicitDefinition(Conv);
9619  }
9620}
9621
9622/// \brief Determine whether the given list arguments contains exactly one
9623/// "real" (non-default) argument.
9624static bool hasOneRealArgument(MultiExprArg Args) {
9625  switch (Args.size()) {
9626  case 0:
9627    return false;
9628
9629  default:
9630    if (!Args[1]->isDefaultArgument())
9631      return false;
9632
9633    // fall through
9634  case 1:
9635    return !Args[0]->isDefaultArgument();
9636  }
9637
9638  return false;
9639}
9640
9641ExprResult
9642Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9643                            CXXConstructorDecl *Constructor,
9644                            MultiExprArg ExprArgs,
9645                            bool HadMultipleCandidates,
9646                            bool IsListInitialization,
9647                            bool RequiresZeroInit,
9648                            unsigned ConstructKind,
9649                            SourceRange ParenRange) {
9650  bool Elidable = false;
9651
9652  // C++0x [class.copy]p34:
9653  //   When certain criteria are met, an implementation is allowed to
9654  //   omit the copy/move construction of a class object, even if the
9655  //   copy/move constructor and/or destructor for the object have
9656  //   side effects. [...]
9657  //     - when a temporary class object that has not been bound to a
9658  //       reference (12.2) would be copied/moved to a class object
9659  //       with the same cv-unqualified type, the copy/move operation
9660  //       can be omitted by constructing the temporary object
9661  //       directly into the target of the omitted copy/move
9662  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9663      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9664    Expr *SubExpr = ExprArgs[0];
9665    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9666  }
9667
9668  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9669                               Elidable, ExprArgs, HadMultipleCandidates,
9670                               IsListInitialization, RequiresZeroInit,
9671                               ConstructKind, ParenRange);
9672}
9673
9674/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9675/// including handling of its default argument expressions.
9676ExprResult
9677Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9678                            CXXConstructorDecl *Constructor, bool Elidable,
9679                            MultiExprArg ExprArgs,
9680                            bool HadMultipleCandidates,
9681                            bool IsListInitialization,
9682                            bool RequiresZeroInit,
9683                            unsigned ConstructKind,
9684                            SourceRange ParenRange) {
9685  MarkFunctionReferenced(ConstructLoc, Constructor);
9686  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9687                                        Constructor, Elidable, ExprArgs,
9688                                        HadMultipleCandidates,
9689                                        IsListInitialization, RequiresZeroInit,
9690              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9691                                        ParenRange));
9692}
9693
9694void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9695  if (VD->isInvalidDecl()) return;
9696
9697  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9698  if (ClassDecl->isInvalidDecl()) return;
9699  if (ClassDecl->hasIrrelevantDestructor()) return;
9700  if (ClassDecl->isDependentContext()) return;
9701
9702  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9703  MarkFunctionReferenced(VD->getLocation(), Destructor);
9704  CheckDestructorAccess(VD->getLocation(), Destructor,
9705                        PDiag(diag::err_access_dtor_var)
9706                        << VD->getDeclName()
9707                        << VD->getType());
9708  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9709
9710  if (!VD->hasGlobalStorage()) return;
9711
9712  // Emit warning for non-trivial dtor in global scope (a real global,
9713  // class-static, function-static).
9714  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9715
9716  // TODO: this should be re-enabled for static locals by !CXAAtExit
9717  if (!VD->isStaticLocal())
9718    Diag(VD->getLocation(), diag::warn_global_destructor);
9719}
9720
9721/// \brief Given a constructor and the set of arguments provided for the
9722/// constructor, convert the arguments and add any required default arguments
9723/// to form a proper call to this constructor.
9724///
9725/// \returns true if an error occurred, false otherwise.
9726bool
9727Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9728                              MultiExprArg ArgsPtr,
9729                              SourceLocation Loc,
9730                              SmallVectorImpl<Expr*> &ConvertedArgs,
9731                              bool AllowExplicit,
9732                              bool IsListInitialization) {
9733  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9734  unsigned NumArgs = ArgsPtr.size();
9735  Expr **Args = ArgsPtr.data();
9736
9737  const FunctionProtoType *Proto
9738    = Constructor->getType()->getAs<FunctionProtoType>();
9739  assert(Proto && "Constructor without a prototype?");
9740  unsigned NumArgsInProto = Proto->getNumArgs();
9741
9742  // If too few arguments are available, we'll fill in the rest with defaults.
9743  if (NumArgs < NumArgsInProto)
9744    ConvertedArgs.reserve(NumArgsInProto);
9745  else
9746    ConvertedArgs.reserve(NumArgs);
9747
9748  VariadicCallType CallType =
9749    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9750  SmallVector<Expr *, 8> AllArgs;
9751  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9752                                        Proto, 0, Args, NumArgs, AllArgs,
9753                                        CallType, AllowExplicit,
9754                                        IsListInitialization);
9755  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9756
9757  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9758
9759  CheckConstructorCall(Constructor,
9760                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9761                                                        AllArgs.size()),
9762                       Proto, Loc);
9763
9764  return Invalid;
9765}
9766
9767static inline bool
9768CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9769                                       const FunctionDecl *FnDecl) {
9770  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9771  if (isa<NamespaceDecl>(DC)) {
9772    return SemaRef.Diag(FnDecl->getLocation(),
9773                        diag::err_operator_new_delete_declared_in_namespace)
9774      << FnDecl->getDeclName();
9775  }
9776
9777  if (isa<TranslationUnitDecl>(DC) &&
9778      FnDecl->getStorageClass() == SC_Static) {
9779    return SemaRef.Diag(FnDecl->getLocation(),
9780                        diag::err_operator_new_delete_declared_static)
9781      << FnDecl->getDeclName();
9782  }
9783
9784  return false;
9785}
9786
9787static inline bool
9788CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9789                            CanQualType ExpectedResultType,
9790                            CanQualType ExpectedFirstParamType,
9791                            unsigned DependentParamTypeDiag,
9792                            unsigned InvalidParamTypeDiag) {
9793  QualType ResultType =
9794    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9795
9796  // Check that the result type is not dependent.
9797  if (ResultType->isDependentType())
9798    return SemaRef.Diag(FnDecl->getLocation(),
9799                        diag::err_operator_new_delete_dependent_result_type)
9800    << FnDecl->getDeclName() << ExpectedResultType;
9801
9802  // Check that the result type is what we expect.
9803  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9804    return SemaRef.Diag(FnDecl->getLocation(),
9805                        diag::err_operator_new_delete_invalid_result_type)
9806    << FnDecl->getDeclName() << ExpectedResultType;
9807
9808  // A function template must have at least 2 parameters.
9809  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9810    return SemaRef.Diag(FnDecl->getLocation(),
9811                      diag::err_operator_new_delete_template_too_few_parameters)
9812        << FnDecl->getDeclName();
9813
9814  // The function decl must have at least 1 parameter.
9815  if (FnDecl->getNumParams() == 0)
9816    return SemaRef.Diag(FnDecl->getLocation(),
9817                        diag::err_operator_new_delete_too_few_parameters)
9818      << FnDecl->getDeclName();
9819
9820  // Check the first parameter type is not dependent.
9821  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9822  if (FirstParamType->isDependentType())
9823    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9824      << FnDecl->getDeclName() << ExpectedFirstParamType;
9825
9826  // Check that the first parameter type is what we expect.
9827  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9828      ExpectedFirstParamType)
9829    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9830    << FnDecl->getDeclName() << ExpectedFirstParamType;
9831
9832  return false;
9833}
9834
9835static bool
9836CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9837  // C++ [basic.stc.dynamic.allocation]p1:
9838  //   A program is ill-formed if an allocation function is declared in a
9839  //   namespace scope other than global scope or declared static in global
9840  //   scope.
9841  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9842    return true;
9843
9844  CanQualType SizeTy =
9845    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9846
9847  // C++ [basic.stc.dynamic.allocation]p1:
9848  //  The return type shall be void*. The first parameter shall have type
9849  //  std::size_t.
9850  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9851                                  SizeTy,
9852                                  diag::err_operator_new_dependent_param_type,
9853                                  diag::err_operator_new_param_type))
9854    return true;
9855
9856  // C++ [basic.stc.dynamic.allocation]p1:
9857  //  The first parameter shall not have an associated default argument.
9858  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9859    return SemaRef.Diag(FnDecl->getLocation(),
9860                        diag::err_operator_new_default_arg)
9861      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9862
9863  return false;
9864}
9865
9866static bool
9867CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9868  // C++ [basic.stc.dynamic.deallocation]p1:
9869  //   A program is ill-formed if deallocation functions are declared in a
9870  //   namespace scope other than global scope or declared static in global
9871  //   scope.
9872  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9873    return true;
9874
9875  // C++ [basic.stc.dynamic.deallocation]p2:
9876  //   Each deallocation function shall return void and its first parameter
9877  //   shall be void*.
9878  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9879                                  SemaRef.Context.VoidPtrTy,
9880                                 diag::err_operator_delete_dependent_param_type,
9881                                 diag::err_operator_delete_param_type))
9882    return true;
9883
9884  return false;
9885}
9886
9887/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9888/// of this overloaded operator is well-formed. If so, returns false;
9889/// otherwise, emits appropriate diagnostics and returns true.
9890bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9891  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9892         "Expected an overloaded operator declaration");
9893
9894  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9895
9896  // C++ [over.oper]p5:
9897  //   The allocation and deallocation functions, operator new,
9898  //   operator new[], operator delete and operator delete[], are
9899  //   described completely in 3.7.3. The attributes and restrictions
9900  //   found in the rest of this subclause do not apply to them unless
9901  //   explicitly stated in 3.7.3.
9902  if (Op == OO_Delete || Op == OO_Array_Delete)
9903    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9904
9905  if (Op == OO_New || Op == OO_Array_New)
9906    return CheckOperatorNewDeclaration(*this, FnDecl);
9907
9908  // C++ [over.oper]p6:
9909  //   An operator function shall either be a non-static member
9910  //   function or be a non-member function and have at least one
9911  //   parameter whose type is a class, a reference to a class, an
9912  //   enumeration, or a reference to an enumeration.
9913  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9914    if (MethodDecl->isStatic())
9915      return Diag(FnDecl->getLocation(),
9916                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9917  } else {
9918    bool ClassOrEnumParam = false;
9919    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9920                                   ParamEnd = FnDecl->param_end();
9921         Param != ParamEnd; ++Param) {
9922      QualType ParamType = (*Param)->getType().getNonReferenceType();
9923      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9924          ParamType->isEnumeralType()) {
9925        ClassOrEnumParam = true;
9926        break;
9927      }
9928    }
9929
9930    if (!ClassOrEnumParam)
9931      return Diag(FnDecl->getLocation(),
9932                  diag::err_operator_overload_needs_class_or_enum)
9933        << FnDecl->getDeclName();
9934  }
9935
9936  // C++ [over.oper]p8:
9937  //   An operator function cannot have default arguments (8.3.6),
9938  //   except where explicitly stated below.
9939  //
9940  // Only the function-call operator allows default arguments
9941  // (C++ [over.call]p1).
9942  if (Op != OO_Call) {
9943    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9944         Param != FnDecl->param_end(); ++Param) {
9945      if ((*Param)->hasDefaultArg())
9946        return Diag((*Param)->getLocation(),
9947                    diag::err_operator_overload_default_arg)
9948          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9949    }
9950  }
9951
9952  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9953    { false, false, false }
9954#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9955    , { Unary, Binary, MemberOnly }
9956#include "clang/Basic/OperatorKinds.def"
9957  };
9958
9959  bool CanBeUnaryOperator = OperatorUses[Op][0];
9960  bool CanBeBinaryOperator = OperatorUses[Op][1];
9961  bool MustBeMemberOperator = OperatorUses[Op][2];
9962
9963  // C++ [over.oper]p8:
9964  //   [...] Operator functions cannot have more or fewer parameters
9965  //   than the number required for the corresponding operator, as
9966  //   described in the rest of this subclause.
9967  unsigned NumParams = FnDecl->getNumParams()
9968                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9969  if (Op != OO_Call &&
9970      ((NumParams == 1 && !CanBeUnaryOperator) ||
9971       (NumParams == 2 && !CanBeBinaryOperator) ||
9972       (NumParams < 1) || (NumParams > 2))) {
9973    // We have the wrong number of parameters.
9974    unsigned ErrorKind;
9975    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9976      ErrorKind = 2;  // 2 -> unary or binary.
9977    } else if (CanBeUnaryOperator) {
9978      ErrorKind = 0;  // 0 -> unary
9979    } else {
9980      assert(CanBeBinaryOperator &&
9981             "All non-call overloaded operators are unary or binary!");
9982      ErrorKind = 1;  // 1 -> binary
9983    }
9984
9985    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9986      << FnDecl->getDeclName() << NumParams << ErrorKind;
9987  }
9988
9989  // Overloaded operators other than operator() cannot be variadic.
9990  if (Op != OO_Call &&
9991      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9992    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9993      << FnDecl->getDeclName();
9994  }
9995
9996  // Some operators must be non-static member functions.
9997  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9998    return Diag(FnDecl->getLocation(),
9999                diag::err_operator_overload_must_be_member)
10000      << FnDecl->getDeclName();
10001  }
10002
10003  // C++ [over.inc]p1:
10004  //   The user-defined function called operator++ implements the
10005  //   prefix and postfix ++ operator. If this function is a member
10006  //   function with no parameters, or a non-member function with one
10007  //   parameter of class or enumeration type, it defines the prefix
10008  //   increment operator ++ for objects of that type. If the function
10009  //   is a member function with one parameter (which shall be of type
10010  //   int) or a non-member function with two parameters (the second
10011  //   of which shall be of type int), it defines the postfix
10012  //   increment operator ++ for objects of that type.
10013  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10014    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10015    bool ParamIsInt = false;
10016    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10017      ParamIsInt = BT->getKind() == BuiltinType::Int;
10018
10019    if (!ParamIsInt)
10020      return Diag(LastParam->getLocation(),
10021                  diag::err_operator_overload_post_incdec_must_be_int)
10022        << LastParam->getType() << (Op == OO_MinusMinus);
10023  }
10024
10025  return false;
10026}
10027
10028/// CheckLiteralOperatorDeclaration - Check whether the declaration
10029/// of this literal operator function is well-formed. If so, returns
10030/// false; otherwise, emits appropriate diagnostics and returns true.
10031bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10032  if (isa<CXXMethodDecl>(FnDecl)) {
10033    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10034      << FnDecl->getDeclName();
10035    return true;
10036  }
10037
10038  if (FnDecl->isExternC()) {
10039    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10040    return true;
10041  }
10042
10043  bool Valid = false;
10044
10045  // This might be the definition of a literal operator template.
10046  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10047  // This might be a specialization of a literal operator template.
10048  if (!TpDecl)
10049    TpDecl = FnDecl->getPrimaryTemplate();
10050
10051  // template <char...> type operator "" name() is the only valid template
10052  // signature, and the only valid signature with no parameters.
10053  if (TpDecl) {
10054    if (FnDecl->param_size() == 0) {
10055      // Must have only one template parameter
10056      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10057      if (Params->size() == 1) {
10058        NonTypeTemplateParmDecl *PmDecl =
10059          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10060
10061        // The template parameter must be a char parameter pack.
10062        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10063            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10064          Valid = true;
10065      }
10066    }
10067  } else if (FnDecl->param_size()) {
10068    // Check the first parameter
10069    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10070
10071    QualType T = (*Param)->getType().getUnqualifiedType();
10072
10073    // unsigned long long int, long double, and any character type are allowed
10074    // as the only parameters.
10075    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10076        Context.hasSameType(T, Context.LongDoubleTy) ||
10077        Context.hasSameType(T, Context.CharTy) ||
10078        Context.hasSameType(T, Context.WCharTy) ||
10079        Context.hasSameType(T, Context.Char16Ty) ||
10080        Context.hasSameType(T, Context.Char32Ty)) {
10081      if (++Param == FnDecl->param_end())
10082        Valid = true;
10083      goto FinishedParams;
10084    }
10085
10086    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10087    const PointerType *PT = T->getAs<PointerType>();
10088    if (!PT)
10089      goto FinishedParams;
10090    T = PT->getPointeeType();
10091    if (!T.isConstQualified() || T.isVolatileQualified())
10092      goto FinishedParams;
10093    T = T.getUnqualifiedType();
10094
10095    // Move on to the second parameter;
10096    ++Param;
10097
10098    // If there is no second parameter, the first must be a const char *
10099    if (Param == FnDecl->param_end()) {
10100      if (Context.hasSameType(T, Context.CharTy))
10101        Valid = true;
10102      goto FinishedParams;
10103    }
10104
10105    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10106    // are allowed as the first parameter to a two-parameter function
10107    if (!(Context.hasSameType(T, Context.CharTy) ||
10108          Context.hasSameType(T, Context.WCharTy) ||
10109          Context.hasSameType(T, Context.Char16Ty) ||
10110          Context.hasSameType(T, Context.Char32Ty)))
10111      goto FinishedParams;
10112
10113    // The second and final parameter must be an std::size_t
10114    T = (*Param)->getType().getUnqualifiedType();
10115    if (Context.hasSameType(T, Context.getSizeType()) &&
10116        ++Param == FnDecl->param_end())
10117      Valid = true;
10118  }
10119
10120  // FIXME: This diagnostic is absolutely terrible.
10121FinishedParams:
10122  if (!Valid) {
10123    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10124      << FnDecl->getDeclName();
10125    return true;
10126  }
10127
10128  // A parameter-declaration-clause containing a default argument is not
10129  // equivalent to any of the permitted forms.
10130  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10131                                    ParamEnd = FnDecl->param_end();
10132       Param != ParamEnd; ++Param) {
10133    if ((*Param)->hasDefaultArg()) {
10134      Diag((*Param)->getDefaultArgRange().getBegin(),
10135           diag::err_literal_operator_default_argument)
10136        << (*Param)->getDefaultArgRange();
10137      break;
10138    }
10139  }
10140
10141  StringRef LiteralName
10142    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10143  if (LiteralName[0] != '_') {
10144    // C++11 [usrlit.suffix]p1:
10145    //   Literal suffix identifiers that do not start with an underscore
10146    //   are reserved for future standardization.
10147    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10148  }
10149
10150  return false;
10151}
10152
10153/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10154/// linkage specification, including the language and (if present)
10155/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10156/// the location of the language string literal, which is provided
10157/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10158/// the '{' brace. Otherwise, this linkage specification does not
10159/// have any braces.
10160Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10161                                           SourceLocation LangLoc,
10162                                           StringRef Lang,
10163                                           SourceLocation LBraceLoc) {
10164  LinkageSpecDecl::LanguageIDs Language;
10165  if (Lang == "\"C\"")
10166    Language = LinkageSpecDecl::lang_c;
10167  else if (Lang == "\"C++\"")
10168    Language = LinkageSpecDecl::lang_cxx;
10169  else {
10170    Diag(LangLoc, diag::err_bad_language);
10171    return 0;
10172  }
10173
10174  // FIXME: Add all the various semantics of linkage specifications
10175
10176  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10177                                               ExternLoc, LangLoc, Language);
10178  CurContext->addDecl(D);
10179  PushDeclContext(S, D);
10180  return D;
10181}
10182
10183/// ActOnFinishLinkageSpecification - Complete the definition of
10184/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10185/// valid, it's the position of the closing '}' brace in a linkage
10186/// specification that uses braces.
10187Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10188                                            Decl *LinkageSpec,
10189                                            SourceLocation RBraceLoc) {
10190  if (LinkageSpec) {
10191    if (RBraceLoc.isValid()) {
10192      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10193      LSDecl->setRBraceLoc(RBraceLoc);
10194    }
10195    PopDeclContext();
10196  }
10197  return LinkageSpec;
10198}
10199
10200Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10201                                  AttributeList *AttrList,
10202                                  SourceLocation SemiLoc) {
10203  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10204  // Attribute declarations appertain to empty declaration so we handle
10205  // them here.
10206  if (AttrList)
10207    ProcessDeclAttributeList(S, ED, AttrList);
10208
10209  CurContext->addDecl(ED);
10210  return ED;
10211}
10212
10213/// \brief Perform semantic analysis for the variable declaration that
10214/// occurs within a C++ catch clause, returning the newly-created
10215/// variable.
10216VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10217                                         TypeSourceInfo *TInfo,
10218                                         SourceLocation StartLoc,
10219                                         SourceLocation Loc,
10220                                         IdentifierInfo *Name) {
10221  bool Invalid = false;
10222  QualType ExDeclType = TInfo->getType();
10223
10224  // Arrays and functions decay.
10225  if (ExDeclType->isArrayType())
10226    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10227  else if (ExDeclType->isFunctionType())
10228    ExDeclType = Context.getPointerType(ExDeclType);
10229
10230  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10231  // The exception-declaration shall not denote a pointer or reference to an
10232  // incomplete type, other than [cv] void*.
10233  // N2844 forbids rvalue references.
10234  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10235    Diag(Loc, diag::err_catch_rvalue_ref);
10236    Invalid = true;
10237  }
10238
10239  QualType BaseType = ExDeclType;
10240  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10241  unsigned DK = diag::err_catch_incomplete;
10242  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10243    BaseType = Ptr->getPointeeType();
10244    Mode = 1;
10245    DK = diag::err_catch_incomplete_ptr;
10246  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10247    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10248    BaseType = Ref->getPointeeType();
10249    Mode = 2;
10250    DK = diag::err_catch_incomplete_ref;
10251  }
10252  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10253      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10254    Invalid = true;
10255
10256  if (!Invalid && !ExDeclType->isDependentType() &&
10257      RequireNonAbstractType(Loc, ExDeclType,
10258                             diag::err_abstract_type_in_decl,
10259                             AbstractVariableType))
10260    Invalid = true;
10261
10262  // Only the non-fragile NeXT runtime currently supports C++ catches
10263  // of ObjC types, and no runtime supports catching ObjC types by value.
10264  if (!Invalid && getLangOpts().ObjC1) {
10265    QualType T = ExDeclType;
10266    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10267      T = RT->getPointeeType();
10268
10269    if (T->isObjCObjectType()) {
10270      Diag(Loc, diag::err_objc_object_catch);
10271      Invalid = true;
10272    } else if (T->isObjCObjectPointerType()) {
10273      // FIXME: should this be a test for macosx-fragile specifically?
10274      if (getLangOpts().ObjCRuntime.isFragile())
10275        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10276    }
10277  }
10278
10279  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10280                                    ExDeclType, TInfo, SC_None);
10281  ExDecl->setExceptionVariable(true);
10282
10283  // In ARC, infer 'retaining' for variables of retainable type.
10284  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10285    Invalid = true;
10286
10287  if (!Invalid && !ExDeclType->isDependentType()) {
10288    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10289      // Insulate this from anything else we might currently be parsing.
10290      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10291
10292      // C++ [except.handle]p16:
10293      //   The object declared in an exception-declaration or, if the
10294      //   exception-declaration does not specify a name, a temporary (12.2) is
10295      //   copy-initialized (8.5) from the exception object. [...]
10296      //   The object is destroyed when the handler exits, after the destruction
10297      //   of any automatic objects initialized within the handler.
10298      //
10299      // We just pretend to initialize the object with itself, then make sure
10300      // it can be destroyed later.
10301      QualType initType = ExDeclType;
10302
10303      InitializedEntity entity =
10304        InitializedEntity::InitializeVariable(ExDecl);
10305      InitializationKind initKind =
10306        InitializationKind::CreateCopy(Loc, SourceLocation());
10307
10308      Expr *opaqueValue =
10309        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10310      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10311      ExprResult result = sequence.Perform(*this, entity, initKind,
10312                                           MultiExprArg(&opaqueValue, 1));
10313      if (result.isInvalid())
10314        Invalid = true;
10315      else {
10316        // If the constructor used was non-trivial, set this as the
10317        // "initializer".
10318        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10319        if (!construct->getConstructor()->isTrivial()) {
10320          Expr *init = MaybeCreateExprWithCleanups(construct);
10321          ExDecl->setInit(init);
10322        }
10323
10324        // And make sure it's destructable.
10325        FinalizeVarWithDestructor(ExDecl, recordType);
10326      }
10327    }
10328  }
10329
10330  if (Invalid)
10331    ExDecl->setInvalidDecl();
10332
10333  return ExDecl;
10334}
10335
10336/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10337/// handler.
10338Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10339  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10340  bool Invalid = D.isInvalidType();
10341
10342  // Check for unexpanded parameter packs.
10343  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10344                                      UPPC_ExceptionType)) {
10345    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10346                                             D.getIdentifierLoc());
10347    Invalid = true;
10348  }
10349
10350  IdentifierInfo *II = D.getIdentifier();
10351  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10352                                             LookupOrdinaryName,
10353                                             ForRedeclaration)) {
10354    // The scope should be freshly made just for us. There is just no way
10355    // it contains any previous declaration.
10356    assert(!S->isDeclScope(PrevDecl));
10357    if (PrevDecl->isTemplateParameter()) {
10358      // Maybe we will complain about the shadowed template parameter.
10359      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10360      PrevDecl = 0;
10361    }
10362  }
10363
10364  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10365    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10366      << D.getCXXScopeSpec().getRange();
10367    Invalid = true;
10368  }
10369
10370  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10371                                              D.getLocStart(),
10372                                              D.getIdentifierLoc(),
10373                                              D.getIdentifier());
10374  if (Invalid)
10375    ExDecl->setInvalidDecl();
10376
10377  // Add the exception declaration into this scope.
10378  if (II)
10379    PushOnScopeChains(ExDecl, S);
10380  else
10381    CurContext->addDecl(ExDecl);
10382
10383  ProcessDeclAttributes(S, ExDecl, D);
10384  return ExDecl;
10385}
10386
10387Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10388                                         Expr *AssertExpr,
10389                                         Expr *AssertMessageExpr,
10390                                         SourceLocation RParenLoc) {
10391  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10392
10393  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10394    return 0;
10395
10396  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10397                                      AssertMessage, RParenLoc, false);
10398}
10399
10400Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10401                                         Expr *AssertExpr,
10402                                         StringLiteral *AssertMessage,
10403                                         SourceLocation RParenLoc,
10404                                         bool Failed) {
10405  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10406      !Failed) {
10407    // In a static_assert-declaration, the constant-expression shall be a
10408    // constant expression that can be contextually converted to bool.
10409    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10410    if (Converted.isInvalid())
10411      Failed = true;
10412
10413    llvm::APSInt Cond;
10414    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10415          diag::err_static_assert_expression_is_not_constant,
10416          /*AllowFold=*/false).isInvalid())
10417      Failed = true;
10418
10419    if (!Failed && !Cond) {
10420      SmallString<256> MsgBuffer;
10421      llvm::raw_svector_ostream Msg(MsgBuffer);
10422      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10423      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10424        << Msg.str() << AssertExpr->getSourceRange();
10425      Failed = true;
10426    }
10427  }
10428
10429  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10430                                        AssertExpr, AssertMessage, RParenLoc,
10431                                        Failed);
10432
10433  CurContext->addDecl(Decl);
10434  return Decl;
10435}
10436
10437/// \brief Perform semantic analysis of the given friend type declaration.
10438///
10439/// \returns A friend declaration that.
10440FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10441                                      SourceLocation FriendLoc,
10442                                      TypeSourceInfo *TSInfo) {
10443  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10444
10445  QualType T = TSInfo->getType();
10446  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10447
10448  // C++03 [class.friend]p2:
10449  //   An elaborated-type-specifier shall be used in a friend declaration
10450  //   for a class.*
10451  //
10452  //   * The class-key of the elaborated-type-specifier is required.
10453  if (!ActiveTemplateInstantiations.empty()) {
10454    // Do not complain about the form of friend template types during
10455    // template instantiation; we will already have complained when the
10456    // template was declared.
10457  } else {
10458    if (!T->isElaboratedTypeSpecifier()) {
10459      // If we evaluated the type to a record type, suggest putting
10460      // a tag in front.
10461      if (const RecordType *RT = T->getAs<RecordType>()) {
10462        RecordDecl *RD = RT->getDecl();
10463
10464        std::string InsertionText = std::string(" ") + RD->getKindName();
10465
10466        Diag(TypeRange.getBegin(),
10467             getLangOpts().CPlusPlus11 ?
10468               diag::warn_cxx98_compat_unelaborated_friend_type :
10469               diag::ext_unelaborated_friend_type)
10470          << (unsigned) RD->getTagKind()
10471          << T
10472          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10473                                        InsertionText);
10474      } else {
10475        Diag(FriendLoc,
10476             getLangOpts().CPlusPlus11 ?
10477               diag::warn_cxx98_compat_nonclass_type_friend :
10478               diag::ext_nonclass_type_friend)
10479          << T
10480          << TypeRange;
10481      }
10482    } else if (T->getAs<EnumType>()) {
10483      Diag(FriendLoc,
10484           getLangOpts().CPlusPlus11 ?
10485             diag::warn_cxx98_compat_enum_friend :
10486             diag::ext_enum_friend)
10487        << T
10488        << TypeRange;
10489    }
10490
10491    // C++11 [class.friend]p3:
10492    //   A friend declaration that does not declare a function shall have one
10493    //   of the following forms:
10494    //     friend elaborated-type-specifier ;
10495    //     friend simple-type-specifier ;
10496    //     friend typename-specifier ;
10497    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10498      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10499  }
10500
10501  //   If the type specifier in a friend declaration designates a (possibly
10502  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10503  //   the friend declaration is ignored.
10504  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10505}
10506
10507/// Handle a friend tag declaration where the scope specifier was
10508/// templated.
10509Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10510                                    unsigned TagSpec, SourceLocation TagLoc,
10511                                    CXXScopeSpec &SS,
10512                                    IdentifierInfo *Name,
10513                                    SourceLocation NameLoc,
10514                                    AttributeList *Attr,
10515                                    MultiTemplateParamsArg TempParamLists) {
10516  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10517
10518  bool isExplicitSpecialization = false;
10519  bool Invalid = false;
10520
10521  if (TemplateParameterList *TemplateParams
10522        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10523                                                  TempParamLists.data(),
10524                                                  TempParamLists.size(),
10525                                                  /*friend*/ true,
10526                                                  isExplicitSpecialization,
10527                                                  Invalid)) {
10528    if (TemplateParams->size() > 0) {
10529      // This is a declaration of a class template.
10530      if (Invalid)
10531        return 0;
10532
10533      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10534                                SS, Name, NameLoc, Attr,
10535                                TemplateParams, AS_public,
10536                                /*ModulePrivateLoc=*/SourceLocation(),
10537                                TempParamLists.size() - 1,
10538                                TempParamLists.data()).take();
10539    } else {
10540      // The "template<>" header is extraneous.
10541      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10542        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10543      isExplicitSpecialization = true;
10544    }
10545  }
10546
10547  if (Invalid) return 0;
10548
10549  bool isAllExplicitSpecializations = true;
10550  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10551    if (TempParamLists[I]->size()) {
10552      isAllExplicitSpecializations = false;
10553      break;
10554    }
10555  }
10556
10557  // FIXME: don't ignore attributes.
10558
10559  // If it's explicit specializations all the way down, just forget
10560  // about the template header and build an appropriate non-templated
10561  // friend.  TODO: for source fidelity, remember the headers.
10562  if (isAllExplicitSpecializations) {
10563    if (SS.isEmpty()) {
10564      bool Owned = false;
10565      bool IsDependent = false;
10566      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10567                      Attr, AS_public,
10568                      /*ModulePrivateLoc=*/SourceLocation(),
10569                      MultiTemplateParamsArg(), Owned, IsDependent,
10570                      /*ScopedEnumKWLoc=*/SourceLocation(),
10571                      /*ScopedEnumUsesClassTag=*/false,
10572                      /*UnderlyingType=*/TypeResult());
10573    }
10574
10575    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10576    ElaboratedTypeKeyword Keyword
10577      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10578    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10579                                   *Name, NameLoc);
10580    if (T.isNull())
10581      return 0;
10582
10583    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10584    if (isa<DependentNameType>(T)) {
10585      DependentNameTypeLoc TL =
10586          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10587      TL.setElaboratedKeywordLoc(TagLoc);
10588      TL.setQualifierLoc(QualifierLoc);
10589      TL.setNameLoc(NameLoc);
10590    } else {
10591      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10592      TL.setElaboratedKeywordLoc(TagLoc);
10593      TL.setQualifierLoc(QualifierLoc);
10594      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10595    }
10596
10597    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10598                                            TSI, FriendLoc, TempParamLists);
10599    Friend->setAccess(AS_public);
10600    CurContext->addDecl(Friend);
10601    return Friend;
10602  }
10603
10604  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10605
10606
10607
10608  // Handle the case of a templated-scope friend class.  e.g.
10609  //   template <class T> class A<T>::B;
10610  // FIXME: we don't support these right now.
10611  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10612  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10613  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10614  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10615  TL.setElaboratedKeywordLoc(TagLoc);
10616  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10617  TL.setNameLoc(NameLoc);
10618
10619  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10620                                          TSI, FriendLoc, TempParamLists);
10621  Friend->setAccess(AS_public);
10622  Friend->setUnsupportedFriend(true);
10623  CurContext->addDecl(Friend);
10624  return Friend;
10625}
10626
10627
10628/// Handle a friend type declaration.  This works in tandem with
10629/// ActOnTag.
10630///
10631/// Notes on friend class templates:
10632///
10633/// We generally treat friend class declarations as if they were
10634/// declaring a class.  So, for example, the elaborated type specifier
10635/// in a friend declaration is required to obey the restrictions of a
10636/// class-head (i.e. no typedefs in the scope chain), template
10637/// parameters are required to match up with simple template-ids, &c.
10638/// However, unlike when declaring a template specialization, it's
10639/// okay to refer to a template specialization without an empty
10640/// template parameter declaration, e.g.
10641///   friend class A<T>::B<unsigned>;
10642/// We permit this as a special case; if there are any template
10643/// parameters present at all, require proper matching, i.e.
10644///   template <> template \<class T> friend class A<int>::B;
10645Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10646                                MultiTemplateParamsArg TempParams) {
10647  SourceLocation Loc = DS.getLocStart();
10648
10649  assert(DS.isFriendSpecified());
10650  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10651
10652  // Try to convert the decl specifier to a type.  This works for
10653  // friend templates because ActOnTag never produces a ClassTemplateDecl
10654  // for a TUK_Friend.
10655  Declarator TheDeclarator(DS, Declarator::MemberContext);
10656  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10657  QualType T = TSI->getType();
10658  if (TheDeclarator.isInvalidType())
10659    return 0;
10660
10661  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10662    return 0;
10663
10664  // This is definitely an error in C++98.  It's probably meant to
10665  // be forbidden in C++0x, too, but the specification is just
10666  // poorly written.
10667  //
10668  // The problem is with declarations like the following:
10669  //   template <T> friend A<T>::foo;
10670  // where deciding whether a class C is a friend or not now hinges
10671  // on whether there exists an instantiation of A that causes
10672  // 'foo' to equal C.  There are restrictions on class-heads
10673  // (which we declare (by fiat) elaborated friend declarations to
10674  // be) that makes this tractable.
10675  //
10676  // FIXME: handle "template <> friend class A<T>;", which
10677  // is possibly well-formed?  Who even knows?
10678  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10679    Diag(Loc, diag::err_tagless_friend_type_template)
10680      << DS.getSourceRange();
10681    return 0;
10682  }
10683
10684  // C++98 [class.friend]p1: A friend of a class is a function
10685  //   or class that is not a member of the class . . .
10686  // This is fixed in DR77, which just barely didn't make the C++03
10687  // deadline.  It's also a very silly restriction that seriously
10688  // affects inner classes and which nobody else seems to implement;
10689  // thus we never diagnose it, not even in -pedantic.
10690  //
10691  // But note that we could warn about it: it's always useless to
10692  // friend one of your own members (it's not, however, worthless to
10693  // friend a member of an arbitrary specialization of your template).
10694
10695  Decl *D;
10696  if (unsigned NumTempParamLists = TempParams.size())
10697    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10698                                   NumTempParamLists,
10699                                   TempParams.data(),
10700                                   TSI,
10701                                   DS.getFriendSpecLoc());
10702  else
10703    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10704
10705  if (!D)
10706    return 0;
10707
10708  D->setAccess(AS_public);
10709  CurContext->addDecl(D);
10710
10711  return D;
10712}
10713
10714NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10715                                        MultiTemplateParamsArg TemplateParams) {
10716  const DeclSpec &DS = D.getDeclSpec();
10717
10718  assert(DS.isFriendSpecified());
10719  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10720
10721  SourceLocation Loc = D.getIdentifierLoc();
10722  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10723
10724  // C++ [class.friend]p1
10725  //   A friend of a class is a function or class....
10726  // Note that this sees through typedefs, which is intended.
10727  // It *doesn't* see through dependent types, which is correct
10728  // according to [temp.arg.type]p3:
10729  //   If a declaration acquires a function type through a
10730  //   type dependent on a template-parameter and this causes
10731  //   a declaration that does not use the syntactic form of a
10732  //   function declarator to have a function type, the program
10733  //   is ill-formed.
10734  if (!TInfo->getType()->isFunctionType()) {
10735    Diag(Loc, diag::err_unexpected_friend);
10736
10737    // It might be worthwhile to try to recover by creating an
10738    // appropriate declaration.
10739    return 0;
10740  }
10741
10742  // C++ [namespace.memdef]p3
10743  //  - If a friend declaration in a non-local class first declares a
10744  //    class or function, the friend class or function is a member
10745  //    of the innermost enclosing namespace.
10746  //  - The name of the friend is not found by simple name lookup
10747  //    until a matching declaration is provided in that namespace
10748  //    scope (either before or after the class declaration granting
10749  //    friendship).
10750  //  - If a friend function is called, its name may be found by the
10751  //    name lookup that considers functions from namespaces and
10752  //    classes associated with the types of the function arguments.
10753  //  - When looking for a prior declaration of a class or a function
10754  //    declared as a friend, scopes outside the innermost enclosing
10755  //    namespace scope are not considered.
10756
10757  CXXScopeSpec &SS = D.getCXXScopeSpec();
10758  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10759  DeclarationName Name = NameInfo.getName();
10760  assert(Name);
10761
10762  // Check for unexpanded parameter packs.
10763  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10764      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10765      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10766    return 0;
10767
10768  // The context we found the declaration in, or in which we should
10769  // create the declaration.
10770  DeclContext *DC;
10771  Scope *DCScope = S;
10772  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10773                        ForRedeclaration);
10774
10775  // FIXME: there are different rules in local classes
10776
10777  // There are four cases here.
10778  //   - There's no scope specifier, in which case we just go to the
10779  //     appropriate scope and look for a function or function template
10780  //     there as appropriate.
10781  // Recover from invalid scope qualifiers as if they just weren't there.
10782  if (SS.isInvalid() || !SS.isSet()) {
10783    // C++0x [namespace.memdef]p3:
10784    //   If the name in a friend declaration is neither qualified nor
10785    //   a template-id and the declaration is a function or an
10786    //   elaborated-type-specifier, the lookup to determine whether
10787    //   the entity has been previously declared shall not consider
10788    //   any scopes outside the innermost enclosing namespace.
10789    // C++0x [class.friend]p11:
10790    //   If a friend declaration appears in a local class and the name
10791    //   specified is an unqualified name, a prior declaration is
10792    //   looked up without considering scopes that are outside the
10793    //   innermost enclosing non-class scope. For a friend function
10794    //   declaration, if there is no prior declaration, the program is
10795    //   ill-formed.
10796    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10797    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10798
10799    // Find the appropriate context according to the above.
10800    DC = CurContext;
10801    while (true) {
10802      // Skip class contexts.  If someone can cite chapter and verse
10803      // for this behavior, that would be nice --- it's what GCC and
10804      // EDG do, and it seems like a reasonable intent, but the spec
10805      // really only says that checks for unqualified existing
10806      // declarations should stop at the nearest enclosing namespace,
10807      // not that they should only consider the nearest enclosing
10808      // namespace.
10809      while (DC->isRecord() || DC->isTransparentContext())
10810        DC = DC->getParent();
10811
10812      LookupQualifiedName(Previous, DC);
10813
10814      // TODO: decide what we think about using declarations.
10815      if (isLocal || !Previous.empty())
10816        break;
10817
10818      if (isTemplateId) {
10819        if (isa<TranslationUnitDecl>(DC)) break;
10820      } else {
10821        if (DC->isFileContext()) break;
10822      }
10823      DC = DC->getParent();
10824    }
10825
10826    DCScope = getScopeForDeclContext(S, DC);
10827
10828    // C++ [class.friend]p6:
10829    //   A function can be defined in a friend declaration of a class if and
10830    //   only if the class is a non-local class (9.8), the function name is
10831    //   unqualified, and the function has namespace scope.
10832    if (isLocal && D.isFunctionDefinition()) {
10833      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10834    }
10835
10836  //   - There's a non-dependent scope specifier, in which case we
10837  //     compute it and do a previous lookup there for a function
10838  //     or function template.
10839  } else if (!SS.getScopeRep()->isDependent()) {
10840    DC = computeDeclContext(SS);
10841    if (!DC) return 0;
10842
10843    if (RequireCompleteDeclContext(SS, DC)) return 0;
10844
10845    LookupQualifiedName(Previous, DC);
10846
10847    // Ignore things found implicitly in the wrong scope.
10848    // TODO: better diagnostics for this case.  Suggesting the right
10849    // qualified scope would be nice...
10850    LookupResult::Filter F = Previous.makeFilter();
10851    while (F.hasNext()) {
10852      NamedDecl *D = F.next();
10853      if (!DC->InEnclosingNamespaceSetOf(
10854              D->getDeclContext()->getRedeclContext()))
10855        F.erase();
10856    }
10857    F.done();
10858
10859    if (Previous.empty()) {
10860      D.setInvalidType();
10861      Diag(Loc, diag::err_qualified_friend_not_found)
10862          << Name << TInfo->getType();
10863      return 0;
10864    }
10865
10866    // C++ [class.friend]p1: A friend of a class is a function or
10867    //   class that is not a member of the class . . .
10868    if (DC->Equals(CurContext))
10869      Diag(DS.getFriendSpecLoc(),
10870           getLangOpts().CPlusPlus11 ?
10871             diag::warn_cxx98_compat_friend_is_member :
10872             diag::err_friend_is_member);
10873
10874    if (D.isFunctionDefinition()) {
10875      // C++ [class.friend]p6:
10876      //   A function can be defined in a friend declaration of a class if and
10877      //   only if the class is a non-local class (9.8), the function name is
10878      //   unqualified, and the function has namespace scope.
10879      SemaDiagnosticBuilder DB
10880        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10881
10882      DB << SS.getScopeRep();
10883      if (DC->isFileContext())
10884        DB << FixItHint::CreateRemoval(SS.getRange());
10885      SS.clear();
10886    }
10887
10888  //   - There's a scope specifier that does not match any template
10889  //     parameter lists, in which case we use some arbitrary context,
10890  //     create a method or method template, and wait for instantiation.
10891  //   - There's a scope specifier that does match some template
10892  //     parameter lists, which we don't handle right now.
10893  } else {
10894    if (D.isFunctionDefinition()) {
10895      // C++ [class.friend]p6:
10896      //   A function can be defined in a friend declaration of a class if and
10897      //   only if the class is a non-local class (9.8), the function name is
10898      //   unqualified, and the function has namespace scope.
10899      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10900        << SS.getScopeRep();
10901    }
10902
10903    DC = CurContext;
10904    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10905  }
10906
10907  if (!DC->isRecord()) {
10908    // This implies that it has to be an operator or function.
10909    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10910        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10911        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10912      Diag(Loc, diag::err_introducing_special_friend) <<
10913        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10914         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10915      return 0;
10916    }
10917  }
10918
10919  // FIXME: This is an egregious hack to cope with cases where the scope stack
10920  // does not contain the declaration context, i.e., in an out-of-line
10921  // definition of a class.
10922  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10923  if (!DCScope) {
10924    FakeDCScope.setEntity(DC);
10925    DCScope = &FakeDCScope;
10926  }
10927
10928  bool AddToScope = true;
10929  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10930                                          TemplateParams, AddToScope);
10931  if (!ND) return 0;
10932
10933  assert(ND->getDeclContext() == DC);
10934  assert(ND->getLexicalDeclContext() == CurContext);
10935
10936  // Add the function declaration to the appropriate lookup tables,
10937  // adjusting the redeclarations list as necessary.  We don't
10938  // want to do this yet if the friending class is dependent.
10939  //
10940  // Also update the scope-based lookup if the target context's
10941  // lookup context is in lexical scope.
10942  if (!CurContext->isDependentContext()) {
10943    DC = DC->getRedeclContext();
10944    DC->makeDeclVisibleInContext(ND);
10945    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10946      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10947  }
10948
10949  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10950                                       D.getIdentifierLoc(), ND,
10951                                       DS.getFriendSpecLoc());
10952  FrD->setAccess(AS_public);
10953  CurContext->addDecl(FrD);
10954
10955  if (ND->isInvalidDecl()) {
10956    FrD->setInvalidDecl();
10957  } else {
10958    if (DC->isRecord()) CheckFriendAccess(ND);
10959
10960    FunctionDecl *FD;
10961    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10962      FD = FTD->getTemplatedDecl();
10963    else
10964      FD = cast<FunctionDecl>(ND);
10965
10966    // Mark templated-scope function declarations as unsupported.
10967    if (FD->getNumTemplateParameterLists())
10968      FrD->setUnsupportedFriend(true);
10969  }
10970
10971  return ND;
10972}
10973
10974void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10975  AdjustDeclIfTemplate(Dcl);
10976
10977  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
10978  if (!Fn) {
10979    Diag(DelLoc, diag::err_deleted_non_function);
10980    return;
10981  }
10982
10983  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10984    // Don't consider the implicit declaration we generate for explicit
10985    // specializations. FIXME: Do not generate these implicit declarations.
10986    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10987        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10988      Diag(DelLoc, diag::err_deleted_decl_not_first);
10989      Diag(Prev->getLocation(), diag::note_previous_declaration);
10990    }
10991    // If the declaration wasn't the first, we delete the function anyway for
10992    // recovery.
10993    Fn = Fn->getCanonicalDecl();
10994  }
10995
10996  if (Fn->isDeleted())
10997    return;
10998
10999  // See if we're deleting a function which is already known to override a
11000  // non-deleted virtual function.
11001  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11002    bool IssuedDiagnostic = false;
11003    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11004                                        E = MD->end_overridden_methods();
11005         I != E; ++I) {
11006      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11007        if (!IssuedDiagnostic) {
11008          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11009          IssuedDiagnostic = true;
11010        }
11011        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11012      }
11013    }
11014  }
11015
11016  Fn->setDeletedAsWritten();
11017}
11018
11019void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11020  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11021
11022  if (MD) {
11023    if (MD->getParent()->isDependentType()) {
11024      MD->setDefaulted();
11025      MD->setExplicitlyDefaulted();
11026      return;
11027    }
11028
11029    CXXSpecialMember Member = getSpecialMember(MD);
11030    if (Member == CXXInvalid) {
11031      Diag(DefaultLoc, diag::err_default_special_members);
11032      return;
11033    }
11034
11035    MD->setDefaulted();
11036    MD->setExplicitlyDefaulted();
11037
11038    // If this definition appears within the record, do the checking when
11039    // the record is complete.
11040    const FunctionDecl *Primary = MD;
11041    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11042      // Find the uninstantiated declaration that actually had the '= default'
11043      // on it.
11044      Pattern->isDefined(Primary);
11045
11046    // If the method was defaulted on its first declaration, we will have
11047    // already performed the checking in CheckCompletedCXXClass. Such a
11048    // declaration doesn't trigger an implicit definition.
11049    if (Primary == Primary->getCanonicalDecl())
11050      return;
11051
11052    CheckExplicitlyDefaultedSpecialMember(MD);
11053
11054    // The exception specification is needed because we are defining the
11055    // function.
11056    ResolveExceptionSpec(DefaultLoc,
11057                         MD->getType()->castAs<FunctionProtoType>());
11058
11059    switch (Member) {
11060    case CXXDefaultConstructor: {
11061      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11062      if (!CD->isInvalidDecl())
11063        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11064      break;
11065    }
11066
11067    case CXXCopyConstructor: {
11068      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11069      if (!CD->isInvalidDecl())
11070        DefineImplicitCopyConstructor(DefaultLoc, CD);
11071      break;
11072    }
11073
11074    case CXXCopyAssignment: {
11075      if (!MD->isInvalidDecl())
11076        DefineImplicitCopyAssignment(DefaultLoc, MD);
11077      break;
11078    }
11079
11080    case CXXDestructor: {
11081      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11082      if (!DD->isInvalidDecl())
11083        DefineImplicitDestructor(DefaultLoc, DD);
11084      break;
11085    }
11086
11087    case CXXMoveConstructor: {
11088      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11089      if (!CD->isInvalidDecl())
11090        DefineImplicitMoveConstructor(DefaultLoc, CD);
11091      break;
11092    }
11093
11094    case CXXMoveAssignment: {
11095      if (!MD->isInvalidDecl())
11096        DefineImplicitMoveAssignment(DefaultLoc, MD);
11097      break;
11098    }
11099
11100    case CXXInvalid:
11101      llvm_unreachable("Invalid special member.");
11102    }
11103  } else {
11104    Diag(DefaultLoc, diag::err_default_special_members);
11105  }
11106}
11107
11108static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11109  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11110    Stmt *SubStmt = *CI;
11111    if (!SubStmt)
11112      continue;
11113    if (isa<ReturnStmt>(SubStmt))
11114      Self.Diag(SubStmt->getLocStart(),
11115           diag::err_return_in_constructor_handler);
11116    if (!isa<Expr>(SubStmt))
11117      SearchForReturnInStmt(Self, SubStmt);
11118  }
11119}
11120
11121void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11122  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11123    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11124    SearchForReturnInStmt(*this, Handler);
11125  }
11126}
11127
11128bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11129                                             const CXXMethodDecl *Old) {
11130  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11131  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11132
11133  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11134
11135  // If the calling conventions match, everything is fine
11136  if (NewCC == OldCC)
11137    return false;
11138
11139  // If either of the calling conventions are set to "default", we need to pick
11140  // something more sensible based on the target. This supports code where the
11141  // one method explicitly sets thiscall, and another has no explicit calling
11142  // convention.
11143  CallingConv Default =
11144    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11145  if (NewCC == CC_Default)
11146    NewCC = Default;
11147  if (OldCC == CC_Default)
11148    OldCC = Default;
11149
11150  // If the calling conventions still don't match, then report the error
11151  if (NewCC != OldCC) {
11152    Diag(New->getLocation(),
11153         diag::err_conflicting_overriding_cc_attributes)
11154      << New->getDeclName() << New->getType() << Old->getType();
11155    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11156    return true;
11157  }
11158
11159  return false;
11160}
11161
11162bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11163                                             const CXXMethodDecl *Old) {
11164  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11165  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11166
11167  if (Context.hasSameType(NewTy, OldTy) ||
11168      NewTy->isDependentType() || OldTy->isDependentType())
11169    return false;
11170
11171  // Check if the return types are covariant
11172  QualType NewClassTy, OldClassTy;
11173
11174  /// Both types must be pointers or references to classes.
11175  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11176    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11177      NewClassTy = NewPT->getPointeeType();
11178      OldClassTy = OldPT->getPointeeType();
11179    }
11180  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11181    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11182      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11183        NewClassTy = NewRT->getPointeeType();
11184        OldClassTy = OldRT->getPointeeType();
11185      }
11186    }
11187  }
11188
11189  // The return types aren't either both pointers or references to a class type.
11190  if (NewClassTy.isNull()) {
11191    Diag(New->getLocation(),
11192         diag::err_different_return_type_for_overriding_virtual_function)
11193      << New->getDeclName() << NewTy << OldTy;
11194    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11195
11196    return true;
11197  }
11198
11199  // C++ [class.virtual]p6:
11200  //   If the return type of D::f differs from the return type of B::f, the
11201  //   class type in the return type of D::f shall be complete at the point of
11202  //   declaration of D::f or shall be the class type D.
11203  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11204    if (!RT->isBeingDefined() &&
11205        RequireCompleteType(New->getLocation(), NewClassTy,
11206                            diag::err_covariant_return_incomplete,
11207                            New->getDeclName()))
11208    return true;
11209  }
11210
11211  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11212    // Check if the new class derives from the old class.
11213    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11214      Diag(New->getLocation(),
11215           diag::err_covariant_return_not_derived)
11216      << New->getDeclName() << NewTy << OldTy;
11217      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11218      return true;
11219    }
11220
11221    // Check if we the conversion from derived to base is valid.
11222    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11223                    diag::err_covariant_return_inaccessible_base,
11224                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11225                    // FIXME: Should this point to the return type?
11226                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11227      // FIXME: this note won't trigger for delayed access control
11228      // diagnostics, and it's impossible to get an undelayed error
11229      // here from access control during the original parse because
11230      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11231      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11232      return true;
11233    }
11234  }
11235
11236  // The qualifiers of the return types must be the same.
11237  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11238    Diag(New->getLocation(),
11239         diag::err_covariant_return_type_different_qualifications)
11240    << New->getDeclName() << NewTy << OldTy;
11241    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11242    return true;
11243  };
11244
11245
11246  // The new class type must have the same or less qualifiers as the old type.
11247  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11248    Diag(New->getLocation(),
11249         diag::err_covariant_return_type_class_type_more_qualified)
11250    << New->getDeclName() << NewTy << OldTy;
11251    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11252    return true;
11253  };
11254
11255  return false;
11256}
11257
11258/// \brief Mark the given method pure.
11259///
11260/// \param Method the method to be marked pure.
11261///
11262/// \param InitRange the source range that covers the "0" initializer.
11263bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11264  SourceLocation EndLoc = InitRange.getEnd();
11265  if (EndLoc.isValid())
11266    Method->setRangeEnd(EndLoc);
11267
11268  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11269    Method->setPure();
11270    return false;
11271  }
11272
11273  if (!Method->isInvalidDecl())
11274    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11275      << Method->getDeclName() << InitRange;
11276  return true;
11277}
11278
11279/// \brief Determine whether the given declaration is a static data member.
11280static bool isStaticDataMember(Decl *D) {
11281  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11282  if (!Var)
11283    return false;
11284
11285  return Var->isStaticDataMember();
11286}
11287/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11288/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11289/// is a fresh scope pushed for just this purpose.
11290///
11291/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11292/// static data member of class X, names should be looked up in the scope of
11293/// class X.
11294void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11295  // If there is no declaration, there was an error parsing it.
11296  if (D == 0 || D->isInvalidDecl()) return;
11297
11298  // We should only get called for declarations with scope specifiers, like:
11299  //   int foo::bar;
11300  assert(D->isOutOfLine());
11301  EnterDeclaratorContext(S, D->getDeclContext());
11302
11303  // If we are parsing the initializer for a static data member, push a
11304  // new expression evaluation context that is associated with this static
11305  // data member.
11306  if (isStaticDataMember(D))
11307    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11308}
11309
11310/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11311/// initializer for the out-of-line declaration 'D'.
11312void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11313  // If there is no declaration, there was an error parsing it.
11314  if (D == 0 || D->isInvalidDecl()) return;
11315
11316  if (isStaticDataMember(D))
11317    PopExpressionEvaluationContext();
11318
11319  assert(D->isOutOfLine());
11320  ExitDeclaratorContext(S);
11321}
11322
11323/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11324/// C++ if/switch/while/for statement.
11325/// e.g: "if (int x = f()) {...}"
11326DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11327  // C++ 6.4p2:
11328  // The declarator shall not specify a function or an array.
11329  // The type-specifier-seq shall not contain typedef and shall not declare a
11330  // new class or enumeration.
11331  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11332         "Parser allowed 'typedef' as storage class of condition decl.");
11333
11334  Decl *Dcl = ActOnDeclarator(S, D);
11335  if (!Dcl)
11336    return true;
11337
11338  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11339    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11340      << D.getSourceRange();
11341    return true;
11342  }
11343
11344  return Dcl;
11345}
11346
11347void Sema::LoadExternalVTableUses() {
11348  if (!ExternalSource)
11349    return;
11350
11351  SmallVector<ExternalVTableUse, 4> VTables;
11352  ExternalSource->ReadUsedVTables(VTables);
11353  SmallVector<VTableUse, 4> NewUses;
11354  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11355    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11356      = VTablesUsed.find(VTables[I].Record);
11357    // Even if a definition wasn't required before, it may be required now.
11358    if (Pos != VTablesUsed.end()) {
11359      if (!Pos->second && VTables[I].DefinitionRequired)
11360        Pos->second = true;
11361      continue;
11362    }
11363
11364    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11365    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11366  }
11367
11368  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11369}
11370
11371void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11372                          bool DefinitionRequired) {
11373  // Ignore any vtable uses in unevaluated operands or for classes that do
11374  // not have a vtable.
11375  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11376      CurContext->isDependentContext() ||
11377      ExprEvalContexts.back().Context == Unevaluated)
11378    return;
11379
11380  // Try to insert this class into the map.
11381  LoadExternalVTableUses();
11382  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11383  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11384    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11385  if (!Pos.second) {
11386    // If we already had an entry, check to see if we are promoting this vtable
11387    // to required a definition. If so, we need to reappend to the VTableUses
11388    // list, since we may have already processed the first entry.
11389    if (DefinitionRequired && !Pos.first->second) {
11390      Pos.first->second = true;
11391    } else {
11392      // Otherwise, we can early exit.
11393      return;
11394    }
11395  }
11396
11397  // Local classes need to have their virtual members marked
11398  // immediately. For all other classes, we mark their virtual members
11399  // at the end of the translation unit.
11400  if (Class->isLocalClass())
11401    MarkVirtualMembersReferenced(Loc, Class);
11402  else
11403    VTableUses.push_back(std::make_pair(Class, Loc));
11404}
11405
11406bool Sema::DefineUsedVTables() {
11407  LoadExternalVTableUses();
11408  if (VTableUses.empty())
11409    return false;
11410
11411  // Note: The VTableUses vector could grow as a result of marking
11412  // the members of a class as "used", so we check the size each
11413  // time through the loop and prefer indices (which are stable) to
11414  // iterators (which are not).
11415  bool DefinedAnything = false;
11416  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11417    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11418    if (!Class)
11419      continue;
11420
11421    SourceLocation Loc = VTableUses[I].second;
11422
11423    bool DefineVTable = true;
11424
11425    // If this class has a key function, but that key function is
11426    // defined in another translation unit, we don't need to emit the
11427    // vtable even though we're using it.
11428    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11429    if (KeyFunction && !KeyFunction->hasBody()) {
11430      switch (KeyFunction->getTemplateSpecializationKind()) {
11431      case TSK_Undeclared:
11432      case TSK_ExplicitSpecialization:
11433      case TSK_ExplicitInstantiationDeclaration:
11434        // The key function is in another translation unit.
11435        DefineVTable = false;
11436        break;
11437
11438      case TSK_ExplicitInstantiationDefinition:
11439      case TSK_ImplicitInstantiation:
11440        // We will be instantiating the key function.
11441        break;
11442      }
11443    } else if (!KeyFunction) {
11444      // If we have a class with no key function that is the subject
11445      // of an explicit instantiation declaration, suppress the
11446      // vtable; it will live with the explicit instantiation
11447      // definition.
11448      bool IsExplicitInstantiationDeclaration
11449        = Class->getTemplateSpecializationKind()
11450                                      == TSK_ExplicitInstantiationDeclaration;
11451      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11452                                 REnd = Class->redecls_end();
11453           R != REnd; ++R) {
11454        TemplateSpecializationKind TSK
11455          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11456        if (TSK == TSK_ExplicitInstantiationDeclaration)
11457          IsExplicitInstantiationDeclaration = true;
11458        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11459          IsExplicitInstantiationDeclaration = false;
11460          break;
11461        }
11462      }
11463
11464      if (IsExplicitInstantiationDeclaration)
11465        DefineVTable = false;
11466    }
11467
11468    // The exception specifications for all virtual members may be needed even
11469    // if we are not providing an authoritative form of the vtable in this TU.
11470    // We may choose to emit it available_externally anyway.
11471    if (!DefineVTable) {
11472      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11473      continue;
11474    }
11475
11476    // Mark all of the virtual members of this class as referenced, so
11477    // that we can build a vtable. Then, tell the AST consumer that a
11478    // vtable for this class is required.
11479    DefinedAnything = true;
11480    MarkVirtualMembersReferenced(Loc, Class);
11481    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11482    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11483
11484    // Optionally warn if we're emitting a weak vtable.
11485    if (Class->hasExternalLinkage() &&
11486        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11487      const FunctionDecl *KeyFunctionDef = 0;
11488      if (!KeyFunction ||
11489          (KeyFunction->hasBody(KeyFunctionDef) &&
11490           KeyFunctionDef->isInlined()))
11491        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11492             TSK_ExplicitInstantiationDefinition
11493             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11494          << Class;
11495    }
11496  }
11497  VTableUses.clear();
11498
11499  return DefinedAnything;
11500}
11501
11502void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11503                                                 const CXXRecordDecl *RD) {
11504  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11505                                      E = RD->method_end(); I != E; ++I)
11506    if ((*I)->isVirtual() && !(*I)->isPure())
11507      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11508}
11509
11510void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11511                                        const CXXRecordDecl *RD) {
11512  // Mark all functions which will appear in RD's vtable as used.
11513  CXXFinalOverriderMap FinalOverriders;
11514  RD->getFinalOverriders(FinalOverriders);
11515  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11516                                            E = FinalOverriders.end();
11517       I != E; ++I) {
11518    for (OverridingMethods::const_iterator OI = I->second.begin(),
11519                                           OE = I->second.end();
11520         OI != OE; ++OI) {
11521      assert(OI->second.size() > 0 && "no final overrider");
11522      CXXMethodDecl *Overrider = OI->second.front().Method;
11523
11524      // C++ [basic.def.odr]p2:
11525      //   [...] A virtual member function is used if it is not pure. [...]
11526      if (!Overrider->isPure())
11527        MarkFunctionReferenced(Loc, Overrider);
11528    }
11529  }
11530
11531  // Only classes that have virtual bases need a VTT.
11532  if (RD->getNumVBases() == 0)
11533    return;
11534
11535  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11536           e = RD->bases_end(); i != e; ++i) {
11537    const CXXRecordDecl *Base =
11538        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11539    if (Base->getNumVBases() == 0)
11540      continue;
11541    MarkVirtualMembersReferenced(Loc, Base);
11542  }
11543}
11544
11545/// SetIvarInitializers - This routine builds initialization ASTs for the
11546/// Objective-C implementation whose ivars need be initialized.
11547void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11548  if (!getLangOpts().CPlusPlus)
11549    return;
11550  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11551    SmallVector<ObjCIvarDecl*, 8> ivars;
11552    CollectIvarsToConstructOrDestruct(OID, ivars);
11553    if (ivars.empty())
11554      return;
11555    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11556    for (unsigned i = 0; i < ivars.size(); i++) {
11557      FieldDecl *Field = ivars[i];
11558      if (Field->isInvalidDecl())
11559        continue;
11560
11561      CXXCtorInitializer *Member;
11562      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11563      InitializationKind InitKind =
11564        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11565
11566      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11567      ExprResult MemberInit =
11568        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11569      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11570      // Note, MemberInit could actually come back empty if no initialization
11571      // is required (e.g., because it would call a trivial default constructor)
11572      if (!MemberInit.get() || MemberInit.isInvalid())
11573        continue;
11574
11575      Member =
11576        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11577                                         SourceLocation(),
11578                                         MemberInit.takeAs<Expr>(),
11579                                         SourceLocation());
11580      AllToInit.push_back(Member);
11581
11582      // Be sure that the destructor is accessible and is marked as referenced.
11583      if (const RecordType *RecordTy
11584                  = Context.getBaseElementType(Field->getType())
11585                                                        ->getAs<RecordType>()) {
11586                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11587        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11588          MarkFunctionReferenced(Field->getLocation(), Destructor);
11589          CheckDestructorAccess(Field->getLocation(), Destructor,
11590                            PDiag(diag::err_access_dtor_ivar)
11591                              << Context.getBaseElementType(Field->getType()));
11592        }
11593      }
11594    }
11595    ObjCImplementation->setIvarInitializers(Context,
11596                                            AllToInit.data(), AllToInit.size());
11597  }
11598}
11599
11600static
11601void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11602                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11603                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11604                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11605                           Sema &S) {
11606  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11607                                                   CE = Current.end();
11608  if (Ctor->isInvalidDecl())
11609    return;
11610
11611  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11612
11613  // Target may not be determinable yet, for instance if this is a dependent
11614  // call in an uninstantiated template.
11615  if (Target) {
11616    const FunctionDecl *FNTarget = 0;
11617    (void)Target->hasBody(FNTarget);
11618    Target = const_cast<CXXConstructorDecl*>(
11619      cast_or_null<CXXConstructorDecl>(FNTarget));
11620  }
11621
11622  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11623                     // Avoid dereferencing a null pointer here.
11624                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11625
11626  if (!Current.insert(Canonical))
11627    return;
11628
11629  // We know that beyond here, we aren't chaining into a cycle.
11630  if (!Target || !Target->isDelegatingConstructor() ||
11631      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11632    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11633      Valid.insert(*CI);
11634    Current.clear();
11635  // We've hit a cycle.
11636  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11637             Current.count(TCanonical)) {
11638    // If we haven't diagnosed this cycle yet, do so now.
11639    if (!Invalid.count(TCanonical)) {
11640      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11641             diag::warn_delegating_ctor_cycle)
11642        << Ctor;
11643
11644      // Don't add a note for a function delegating directly to itself.
11645      if (TCanonical != Canonical)
11646        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11647
11648      CXXConstructorDecl *C = Target;
11649      while (C->getCanonicalDecl() != Canonical) {
11650        const FunctionDecl *FNTarget = 0;
11651        (void)C->getTargetConstructor()->hasBody(FNTarget);
11652        assert(FNTarget && "Ctor cycle through bodiless function");
11653
11654        C = const_cast<CXXConstructorDecl*>(
11655          cast<CXXConstructorDecl>(FNTarget));
11656        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11657      }
11658    }
11659
11660    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11661      Invalid.insert(*CI);
11662    Current.clear();
11663  } else {
11664    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11665  }
11666}
11667
11668
11669void Sema::CheckDelegatingCtorCycles() {
11670  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11671
11672  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11673                                                   CE = Current.end();
11674
11675  for (DelegatingCtorDeclsType::iterator
11676         I = DelegatingCtorDecls.begin(ExternalSource),
11677         E = DelegatingCtorDecls.end();
11678       I != E; ++I)
11679    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11680
11681  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11682    (*CI)->setInvalidDecl();
11683}
11684
11685namespace {
11686  /// \brief AST visitor that finds references to the 'this' expression.
11687  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11688    Sema &S;
11689
11690  public:
11691    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11692
11693    bool VisitCXXThisExpr(CXXThisExpr *E) {
11694      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11695        << E->isImplicit();
11696      return false;
11697    }
11698  };
11699}
11700
11701bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11702  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11703  if (!TSInfo)
11704    return false;
11705
11706  TypeLoc TL = TSInfo->getTypeLoc();
11707  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11708  if (!ProtoTL)
11709    return false;
11710
11711  // C++11 [expr.prim.general]p3:
11712  //   [The expression this] shall not appear before the optional
11713  //   cv-qualifier-seq and it shall not appear within the declaration of a
11714  //   static member function (although its type and value category are defined
11715  //   within a static member function as they are within a non-static member
11716  //   function). [ Note: this is because declaration matching does not occur
11717  //  until the complete declarator is known. - end note ]
11718  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11719  FindCXXThisExpr Finder(*this);
11720
11721  // If the return type came after the cv-qualifier-seq, check it now.
11722  if (Proto->hasTrailingReturn() &&
11723      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11724    return true;
11725
11726  // Check the exception specification.
11727  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11728    return true;
11729
11730  return checkThisInStaticMemberFunctionAttributes(Method);
11731}
11732
11733bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11734  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11735  if (!TSInfo)
11736    return false;
11737
11738  TypeLoc TL = TSInfo->getTypeLoc();
11739  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11740  if (!ProtoTL)
11741    return false;
11742
11743  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11744  FindCXXThisExpr Finder(*this);
11745
11746  switch (Proto->getExceptionSpecType()) {
11747  case EST_Uninstantiated:
11748  case EST_Unevaluated:
11749  case EST_BasicNoexcept:
11750  case EST_DynamicNone:
11751  case EST_MSAny:
11752  case EST_None:
11753    break;
11754
11755  case EST_ComputedNoexcept:
11756    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11757      return true;
11758
11759  case EST_Dynamic:
11760    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11761         EEnd = Proto->exception_end();
11762         E != EEnd; ++E) {
11763      if (!Finder.TraverseType(*E))
11764        return true;
11765    }
11766    break;
11767  }
11768
11769  return false;
11770}
11771
11772bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11773  FindCXXThisExpr Finder(*this);
11774
11775  // Check attributes.
11776  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11777       A != AEnd; ++A) {
11778    // FIXME: This should be emitted by tblgen.
11779    Expr *Arg = 0;
11780    ArrayRef<Expr *> Args;
11781    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11782      Arg = G->getArg();
11783    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11784      Arg = G->getArg();
11785    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11786      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11787    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11788      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11789    else if (ExclusiveLockFunctionAttr *ELF
11790               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11791      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11792    else if (SharedLockFunctionAttr *SLF
11793               = dyn_cast<SharedLockFunctionAttr>(*A))
11794      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11795    else if (ExclusiveTrylockFunctionAttr *ETLF
11796               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11797      Arg = ETLF->getSuccessValue();
11798      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11799    } else if (SharedTrylockFunctionAttr *STLF
11800                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11801      Arg = STLF->getSuccessValue();
11802      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11803    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11804      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11805    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11806      Arg = LR->getArg();
11807    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11808      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11809    else if (ExclusiveLocksRequiredAttr *ELR
11810               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11811      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11812    else if (SharedLocksRequiredAttr *SLR
11813               = dyn_cast<SharedLocksRequiredAttr>(*A))
11814      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11815
11816    if (Arg && !Finder.TraverseStmt(Arg))
11817      return true;
11818
11819    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11820      if (!Finder.TraverseStmt(Args[I]))
11821        return true;
11822    }
11823  }
11824
11825  return false;
11826}
11827
11828void
11829Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11830                                  ArrayRef<ParsedType> DynamicExceptions,
11831                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11832                                  Expr *NoexceptExpr,
11833                                  SmallVectorImpl<QualType> &Exceptions,
11834                                  FunctionProtoType::ExtProtoInfo &EPI) {
11835  Exceptions.clear();
11836  EPI.ExceptionSpecType = EST;
11837  if (EST == EST_Dynamic) {
11838    Exceptions.reserve(DynamicExceptions.size());
11839    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11840      // FIXME: Preserve type source info.
11841      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11842
11843      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11844      collectUnexpandedParameterPacks(ET, Unexpanded);
11845      if (!Unexpanded.empty()) {
11846        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11847                                         UPPC_ExceptionType,
11848                                         Unexpanded);
11849        continue;
11850      }
11851
11852      // Check that the type is valid for an exception spec, and
11853      // drop it if not.
11854      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11855        Exceptions.push_back(ET);
11856    }
11857    EPI.NumExceptions = Exceptions.size();
11858    EPI.Exceptions = Exceptions.data();
11859    return;
11860  }
11861
11862  if (EST == EST_ComputedNoexcept) {
11863    // If an error occurred, there's no expression here.
11864    if (NoexceptExpr) {
11865      assert((NoexceptExpr->isTypeDependent() ||
11866              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11867              Context.BoolTy) &&
11868             "Parser should have made sure that the expression is boolean");
11869      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11870        EPI.ExceptionSpecType = EST_BasicNoexcept;
11871        return;
11872      }
11873
11874      if (!NoexceptExpr->isValueDependent())
11875        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11876                         diag::err_noexcept_needs_constant_expression,
11877                         /*AllowFold*/ false).take();
11878      EPI.NoexceptExpr = NoexceptExpr;
11879    }
11880    return;
11881  }
11882}
11883
11884/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11885Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11886  // Implicitly declared functions (e.g. copy constructors) are
11887  // __host__ __device__
11888  if (D->isImplicit())
11889    return CFT_HostDevice;
11890
11891  if (D->hasAttr<CUDAGlobalAttr>())
11892    return CFT_Global;
11893
11894  if (D->hasAttr<CUDADeviceAttr>()) {
11895    if (D->hasAttr<CUDAHostAttr>())
11896      return CFT_HostDevice;
11897    else
11898      return CFT_Device;
11899  }
11900
11901  return CFT_Host;
11902}
11903
11904bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11905                           CUDAFunctionTarget CalleeTarget) {
11906  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11907  // Callable from the device only."
11908  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11909    return true;
11910
11911  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11912  // Callable from the host only."
11913  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11914  // Callable from the host only."
11915  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11916      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11917    return true;
11918
11919  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11920    return true;
11921
11922  return false;
11923}
11924